Advertisement

Antimicrobial Ingredients

  • Catherine A. Simpson
  • John N. Sofos

Microorganisms Associated with Meat and Poultry Products

There are five classes of foodborne biological hazards: (1) bacteria, (2) parasites, (3) fungi, (4) viruses, and (5) prions (the inclusion of which is debatable). Depending on type, in addition to adverse human health issues, bacteria present in meat or poultry products or other foods may lead to fermentation or spoilage. This chapter focuses on controlling spoilage and pathogenic bacterial and fungal agents, as other biological hazards lack the ability to multiply in foods at the postharvest stage. Specific pathogens and spoilage organisms present and of concern may vary between fresh and ready-to-eat (RTE) meat and poultry products. Pathogenic Escherichia coli, Salmonella, and Campylobacter are those of greatest current concern in fresh products, while Listeria monocytogenes contamination is of primary concern in processed and RTE meat products (Bacon & Sofos, 2003; Sofos, 2002, 2004).

The most common sources of foodborne...

Keywords

Lactic Acid Bacterium Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid Poultry Product Ground Beef 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aalto, T. R., Firman, M. C., & Rigler, N. E. (1953). p-Hydroxybenzoic acid esters as preservatives: Uses, antibacterial and antifungal studies, properties and determination. Journal of the American Pharmacists Association, 42, 449–457.Google Scholar
  2. Abee, T., & Delves-Boughton, J. (2003). Bacteriocins—Nisin. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 146–178). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  3. Adams, M. R., & Hall, C. J. (1988). Growth inhibition of foodborne pathogens by lactic and acetic acids and their mixtures. International Journal of Food Science and Technology, 23 287–292.Google Scholar
  4. Ahn, H. J., Kim, J. H., Jo, C., Lee, C. H., & Byun, M. W. (2002). Reduction of carcinogenic N-nitrosamines and residual nitrite in model system sausage by irradiation. Journal of Food Science, 67, 1370–1373.Google Scholar
  5. Ajjarapu, S., & Shelef, L. A. (1999). Fate of pGFP-bearing Escherichia coli O157:H7 in ground beef at 2 and 10°C and effects of lactate, diacetate, and citrate. Applied and Environmental Microbiology, 65, 5394–5397.Google Scholar
  6. Al-Haq, M. I., Sugiyama, J., & Isobe, S. (2005). Review: Applications of electrolyzed water in agriculture and food industries. Food Science and Technology, 11, 135–150.Google Scholar
  7. Allen, D. M., Hunt, M. C., Luchiari Filho, A., Danler, R. J., & Goll, S. J. (1987). Effects of spray chilling and carcass spacing on beef carcass cooler shrink and grade factors. Journal of Animal Science, 64, 165–172.Google Scholar
  8. Al-Sheddy, I., Al-Dagal, M., & Bazaraa, W. A. (1999). Microbial and sensory quality of fresh camel meat treated with organic acid salts and/or bifidobacteria. Journal of Food Science, 64 336–339.Google Scholar
  9. Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.Google Scholar
  10. Archer, D. L. (2002). Review: Evidence that ingested nitrate and nitrite are beneficial to health. Journal of Food Protection, 65, 872–875.Google Scholar
  11. Arrit, F. M., Eifert, J. D., Pierson, M. D., & Sumner, S. S. (2002). Efficacy of antimicrobials against Campylobacter jejuni on chicken breast skin. Journal of Applied Poultry Research, 11 358–366.Google Scholar
  12. Axtell, S. P., Russell, S. M., & Berman, E. (2006). Effect of immersion chilling of broiler chicken carcasses in monochloramine on lipid oxidation and halogenated residual compound formation. Journal of Food Protection, 69, 907–911.Google Scholar
  13. Ayebah, B., Hung, Y.-C., & Frank, J. F. (2005). Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. Journal of Food Protection, 68, 1375–1380.Google Scholar
  14. Bacon, R. T., & Sofos, J. N. (2003). Characteristics of biological hazards in foods. In R. H. Schmidt & G. E. Rodrick (Eds.), Food safety handbook (pp. 157–195). New York: Willey Interscience.Google Scholar
  15. Bacon, R. T., Belk, K. E., Sofos, J. N., Clayton, R. P., Reagan, J. O., & Smith, G. C. (2003). Microbial populations on animal hides and beef carcasses at different stages of slaughter in plants employing multiple-sequential interventions for decontamination. Journal of Food Protection, 68, 1080–1086.Google Scholar
  16. Bara, M. T. F., & Vanetti, M. C. D. (1996). Antimicrobial effect of spices on the growth of Yersinia enterocolitica Journal of Herbs, Spices and Medicinal Plants, 3, 41–58Google Scholar
  17. Barker, C., & Park, S. F. (2001). Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Applied and Environmental Microbiology, 67, 1594–1600.Google Scholar
  18. Barmpalia, I. M., Koutsoumanis, K. P., Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., & Sofos, J. N. (2005). Effect of antimicrobials as ingredients of pork bologna for Listeria monocytogenes control during storage at 4 or 10°C. Food Microbiology, 22 205–211.Google Scholar
  19. Baylis, C. L. (2006). Enterobacteriaceae. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 624–667). Cambridge: Woodhead Publishing.Google Scholar
  20. Belk, K. E. (2001). Beef decontamination technologies (Beef facts). Centennial, CO: National Cattlemen's Beef Association, Research and Technical Services.Google Scholar
  21. Bell, B. P., Goldoft, M., Griffin, P. M., Dans, M. A., Gordon, D. C., Tarr, P. J., Bartelson, C.A., Lewis, J. H., Barret, T. J., Wells, J. W., Baron, J. W., & Kabayashi, J. (1994). A multistate outbreak of Escherichia coli O157:H7 — Associated bloody diarrhea and hemolytic uremic syndrome from hamburgers, the Washington experience. The Journal of the American Medical Association, 272, 1249–1353.Google Scholar
  22. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta, 1121 130–136.Google Scholar
  23. Berg, J. D., Roberts, P. V., & Martin, A. (1986). Effect of chlorine dioxide on selected membrane functions of Escherichia coli. Journal of Applied Bacteriology, 603, 213–220.Google Scholar
  24. Betts, G. (2006). Other spoilage bacteria. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 668–690). Cambridge: Woodhead Publishing.Google Scholar
  25. Beuchat, L. R. (1983). Influence of water activity on growth, metabolic activities and survival of yeasts and molds. Journal of Food Protection, 46, 135–141.Google Scholar
  26. Beuchat, L. R. (1998). Surface decontamination of fruits and vegetables eaten raw: A review (WHO/FSF/FOS/98.2). World Health Organization, Food Safety Unit.Google Scholar
  27. Beuchat, L. R., & Brackett, R. E. (1996). Inhibitory effects of raw carrots on Listeria monocy-togenes. Applied and Environmental Microbiology, 56, 1734–1742.Google Scholar
  28. Bhunia, A. K., Johnson, M. C., & Ray, B. (1988). Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. Journal of Applied Bacteriology, 65, 261–268.Google Scholar
  29. Bhunia, A. K., Johnson, M. C., & Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. Journal of Applied Bacteriology, 70 25–33.Google Scholar
  30. Blom, H., Nerbrink, E., Dainty, R., Hagtvedt, T., Borch, E., Nissen, H., & Nesbakken, T. (1997). Addition of 2.5%lactate and 0.25%acetate controls growth of Listeria monocytogenes in vacuum-packed sensory-acceptable servelat sausage and cooked ham stored at 4°C. International Journal of Food Microbiology, 38, 71–78.Google Scholar
  31. Bogaert, J-C., & Naidu, A. S. (2000). Lactic acid. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 613–636). Boca Raton, FL: CRC Press.Google Scholar
  32. Bosilevac, J. M., Shackelford, S. D., Fahle, R., Biela, T., & Koohmaraie, M. (2004). Decreased dosage of acidified sodium chlorite reduces microbial contamination and maintains organoleptic qualities of ground beef products. Journal of Food Protection, 67, 2248–2254.Google Scholar
  33. Bowles, B. L., & Miller, A. J. (1993). Antibotulinal properties of selected aromatic and aliphatic aldehydes. Journal of Food Protection, 56, 788–794.Google Scholar
  34. Bowles, B. L., Sackitey, S. K., & Williams, A. C. (1995). Inhibitory effects of flavor compounds on Staphylococcus aureus WRRC B124. Journal of Food Safety, 15, 337–347.Google Scholar
  35. Boyle, D. L., Sofos, J. N., & Maga, J. A. (1988). Inhibition of spoilage and pathogenic microorganisms by liquid smoke from various woods. Lebensmittel-Wissenschaft und Technologie, 21 54–58.Google Scholar
  36. Bredin, J., Davin-Regli, A., & Pages, J. (2005). Propyl paraben induces potassium efflux in Escherichia coli Journal of Antimicrobial Chemotherapy, 55, 1013–1015.Google Scholar
  37. Breen, P. J., Compadre, C. M., Fifer, E. K., Salari, H., Serbus, D. C., & Lattin, D. L. (1995). Quaternary ammonium compounds inhibit and reduce the attachment of viable Salmonella Typhimurium to poultry tissues. Journal of Food Science, 60, 1191–1196.Google Scholar
  38. Brewer, R., Adams, M. R., & Park, S. F. (2002). Enhanced inactivation of Listeria monocytogenes by nisin in the presence of ethanol. Letters in Applied Microbiology, 34, 18–21.Google Scholar
  39. Bricher, J. L. (2005). Technology round-up: Innovations in microbial interventions. Food Safety Magazine, 11, 29–33.Google Scholar
  40. Buchanan, R. L., & Golden, M. H. (1994). Interaction of citric acid concentration and pH on the kinetics of Listeria monocytogenes inactivation. Journal of Food Protection, 57 567–570.Google Scholar
  41. Buchanan, R. L., Stahl, H. G., & Whiting, R. C. (1989). Effects and interactions of temperature, pH, sodium chloride, and sodium nitrite on the growth of Listeria monocytogenes. Journal of Food Protection, 52, 844–851.Google Scholar
  42. Bunch, P. K., Mat-Jan, F., Lee, N., & Clark, D. P. (1997). The idhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology, 143, 187–195.Google Scholar
  43. Buncic, S., Fitzgerald, C. M., Bell, R. G., & Hudson, J. A. (1995). Individual and combined liste-ricidal effects of sodium lactate, potassium sorbate, nisin and curing salts at refrigeration temperatures. Journal of Food Safety, 15, 247–264.Google Scholar
  44. Bunin, G. R., Kuijten, R. R., Buckley, J. D., Rorke, L. B., & Meadows, A. T. (1993). Relation between maternal diet and subsequent primitive neuroectodermal brain tumors in young children. New England Journal of Medicine, 329, 536–541.Google Scholar
  45. Burnett, S. L., Chopskie, J. H., Podtburg, T. C., Gutzmann, T. A., Gilbreth S. E., & Bodnaruk, P. W. (2007). Use of octanoic acid as a postlethality treatment to reduce Listeria monocytogenes on ready-to-eat meat and poultry products. Journal of Food Protection, 70, 392–397.Google Scholar
  46. Cabedo, L., Sofos, J. N., & Smith, G. C. (1996). Removal of bacteria from beef tissue by spray washing after different times of exposure to fecal material. Journal of Food Protection, 59 1284–1287.Google Scholar
  47. Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67, 833–848.Google Scholar
  48. Caneiro de Melo, A. M., Cassar, C. A., & Miles, R. J. (1998). Trisodium phosphate increases sensitivity of gram-negative bacteria to lysozyme and nisin. Journal of Food Protection, 61 839–843.Google Scholar
  49. Capita, R., Alonso-Calleja, C., Garcia-Fernandez, M. C., & Moreno, B. (2002). Review: Trisodium phosphate (TSP) treatment for decontamination of poultry. Food Science and Technology International, 8, 11–24.Google Scholar
  50. Carlton, R. M., Noordman, W. H., Biswas, B., de Messter, E. D., & Loessner, M. J. (2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioin-formatics analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology, 43, 301–312.Google Scholar
  51. Carpenter, C. E., Reddy, D. S., & Cornforth, D. P. (1987). Inactivation of clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase by sodium nitrite. Applied and Environmental Microbiology, 53, 549–552.Google Scholar
  52. Castillo, A., McKenzie, K. S., Lucia L. M., & Acuff, G. R. (2003). Ozone treatment for reduction of Escherichia coli O157:H7 and Salmonella serotype Typhimurium on beef carcass surfaces. Journal of Food Protection, 66, 775–779.Google Scholar
  53. Castillo, A., Savell, J. W., Lucia, L. M., Acuff, G. R., Harris, K. B., & King, D. A. (2005). Evaluation of peroxyacetic acid as a post-chilling intervention for control of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces. Meat Science, 69 401–407.Google Scholar
  54. Centers for Disease Control and Prevention. (1998). Update: Multistate outbreak of listeriosis — United States, 1998–1999. Morbidity and Mortality Weekly Report, 47, 1117–1118.Google Scholar
  55. Centers for Disease Control and Prevention. (2000). Multistate outbreak of listeriosis — United States, 2000. Morbidity and Mortality Weekly Report, 49, 1129–1130.Google Scholar
  56. Centers for Disease Control and Prevention. (2002). Public health dispatch: Outbreak of liste-riosis — Northeastern United States, 2002. Morbidity and Mortality Weekly Report, 51, 950–951.Google Scholar
  57. Ceylan, E., Hajmeer, M. N., & Marsden, J. L. (2002, June). Antimicrobial effect of buffered sodium citrate, and combination of buffered sodium citrate and sodium diacetate on total aerobic count of ground beef stored at 4°C. Paper presented at the Annual Meeting of the Institute of Food Technologists, Anaheim, CA.Google Scholar
  58. Chacon, P. A., Muthukumarasamy, P., & Holley, R. A. (2006). Elimination of Escherichia coli O157:H7 from fermented dry sausages at an organoleptically acceptance level of microencap-sulated allyl isothiocyanate. Applied and Environmental Microbiology, 72, 3096–3102.Google Scholar
  59. Chichester, D. F., & Tanner, F. W. (1972). Antimicrobial food additives. In T. E. Furia (Ed.), Handbook of food additives (pp. 115–184). Cleveland, OH: Chemical Rubber Co. Press.Google Scholar
  60. Chin, Y.-C., Anderson, H. H., Alderton, G., & Lewis, J. C. (1949). Antituberculous activity and toxicity of lupulon for the mouse. Proceedings of the Society for Environmental Biology and Medicine, 70, 158–162.Google Scholar
  61. Chipley, J. R. (2005). Sodium benzoate and benzoic acid. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 11–48). Boca Raton, FL: Taylor & Francis.Google Scholar
  62. Chiu, T.-C., Duan, J., Liu, C., & Su, Y.-C. (2006). Efficacy of electrolyzed oxidizing water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces. Letters in Applied Microbiology, 43, 666–672.Google Scholar
  63. Chmielewski, R. A. N., & Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2, 22–32.Google Scholar
  64. Christiansen, L. N., Johnston, R. W., Kautter, D. A., Howard, J. W., & Aunan, W. J. (1973). Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat. Applied Microbiology, 25, 357–362.Google Scholar
  65. Christiansen, L. N., Tompkin, R. B., Shaparis, A. B., Kueper, T. V., Johnston, R. W., Kautter, D. A., & Kolari, J. (1974). Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon. Applied Microbiology, 27, 733–737.Google Scholar
  66. Chun, W., & Hancock, R. E. (2000). Action of lysozyme and nisin mixtures against lactic acid bacteria. International Journal of Food Microbiology, 60, 25–32.Google Scholar
  67. Code of Federal Regulations. (2001). Chap. 3 — Food Safety and Inspection Service, Department of Agriculture. 9 C.F.R. § 300–592. Washington, DC: U.S. Government Printing Office.Google Scholar
  68. Code of Federal Regulations. (2002). Chap. 1 — Food and Drug Administration, Department of Health and Human Services. 21 C.F.R. § 1–1299. Washington, DC: U.S. Government Printing Office.Google Scholar
  69. Code of Federal Regulations. (2007a). Foods; labeling of spices, flavorings, colorings and chemical preservatives. 21 C.F.R. § 101.22. Washington, DC: U.S. Government Printing Office.Google Scholar
  70. Code of Federal Regulations. (2007b). Listeria -specific bacteriophage preparation. 21 C.F.R. § 172.785. Washington, DC: U.S. Government Printing Office.Google Scholar
  71. Code of Federal Regulations. (2007c). Papain. 21 C.F.R. § 184.1585. Washington, DC: U.S. Government Printing Office.Google Scholar
  72. Conley, A. J., & Kabara, J. J. (1973). Antimicrobial action of esters of polyhydric alcohols. Antimicrobial Agents and Chemotherapy, 4, 501–506.Google Scholar
  73. Cords, B. R., & Dychdala, G. R. (1993). Sanitizers: Halogens, surface-active agents and peroxides. In P. M. Davidson & A. L. Branen (Eds.), Antimicrobials in food (2nd ed., pp. 469–537). New York: Marcel Dekker.Google Scholar
  74. Cords, B. R., Burnett, S. L., Hilgren, J., Finley, M., & Magnuson, J. (2005). Sanitizers: Halogens, surface-active agents, and peroxides. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 507–572). Boca Raton, FL: Taylor & Francis.Google Scholar
  75. Cosentino, S., Tuberoso, C. I. G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., & Palmas, F. (1999). In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29, 130–135.Google Scholar
  76. Crandall, A. D., & Montville, T. J. (1998). Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Applied and Environmental Microbiology, 64, 231–237.Google Scholar
  77. Cunningham, F. E., Proctor, V. A., & Goettsch, S. J. (1991). Egg-white lysozyme as a preservative: An overview. World Poultry Science Journal, 47, 141–163.Google Scholar
  78. Cutter, C. N. (2000). Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Typhimurium associated with beef. Journal of Food Protection, 63, 601–607.Google Scholar
  79. Cutter, C. N., & Fabrizio, K. A. (2004). Comparison of electrolyzed oxidizing water with other antimicrobial interventions to reduce pathogens on fresh pork. Meat Science, 68, 463–468.Google Scholar
  80. Cutter, C. N., & Rivera-Betancourt, M. (2000). Interventions for the reduction of Salmonella Typhimurium DT 104 and non-O157:H7 enterohemorrhagic Escherichia coli on beef surfaces. Journal of Food Protection, 63, 1326–1332.Google Scholar
  81. Cutter, C. N., & Siragusa, G. R. (1996). Reduction of Brochothrix thermospacta on beef surfaces following immobilization of nisin in calcium alginate gels. Letters in Applied Microbiology, 3 9–12.Google Scholar
  82. Cutter, C. N., Dorsa, W. J., & Siragusa, G. R. (1997). Rapid desiccation with heat in combination with water washing for reducing bacteria on beef carcass surfaces. Food Microbiology, 14 496–503.Google Scholar
  83. Davidson, P. M. (2001). Chemical preservatives and natural antimicrobial compounds. In M. P. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology: Fundamentals and frontiers (pp. 593–627). Washington DC: ASM Press.Google Scholar
  84. Davidson, P. M. (2005). Parabens. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 291–303). Boca Raton, FL: Taylor & Francis.Google Scholar
  85. Davidson, P. M., & Harrison. M. A. (2002). Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technology, 56, 69–78.Google Scholar
  86. Davidson, P. M., & Naidu, A. S. (2000). Phyto-phenols. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 265–294). Boca Raton, FL: CRC Press.Google Scholar
  87. Degnan, A. J., & Luchansky, J. B. (1992). Influence of beef tallow and muscle on the antilisterial activity of pediocin AcH and liposome-encapsulated pediocin AcH. Journal of Food Protection, 55, 552–554.Google Scholar
  88. Delves-Broughton, J., (2005). Nisin as a food preservative. Food Australia, 57, 525–527.Google Scholar
  89. Delves-Broughton, J., & Gasson, M. J. (1994). Nisin. In V. M. Dillon & R. G. Board (Eds.), Natural antimicrobial systems and food preservation (pp. 99–131). Wallingford, UK: CAB International.Google Scholar
  90. Delves-Broughton, J., Thomas, L. V., Doan, C. H., & Davidson, P. M. (2005). In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food(3rd ed., pp. 275–289). Boca Raton, FL: Taylor & Francis.Google Scholar
  91. Deumier, F. (2006). Decontamination of deboned chicken legs by vacuum-tumbling in lactic acid solution. International Journal of Food Science and Technology, 41, 23–32.Google Scholar
  92. Deza, M.A., Araujo, M., & Garrido, M. J. (2005). Inactivation of Escherichia coli, Listeria mono-cytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolyzed water. Letters in Applied Microbiology, 40, 341–346.Google Scholar
  93. Dickson, J. S. (1992). Acetic-acid action on beef tissue surfaces contaminated with Salmonella typhimurium. Journal of Food Science, 57, 297–301.Google Scholar
  94. Dickson, J. S. & Siragusa, G. R. (1994). Survival of Salmonella typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes during storage on beef sanitized with organic acids. Journal of Food Safety, 14, 313–327.Google Scholar
  95. Dickson, J. S., Nettles Cutter, C. G., & Siragusa, G. R. (1994). Antimicrobial effect of trisodium phosphate against bacteria attached to beef tissue. Journal of Food Protection, 57 952–955.Google Scholar
  96. Doores, S. (1993). Organic acids. In P. M. Davidson & A. L. Branen (Eds.) Antimicrobials in foods (pp. 95–136). New York: Marcel Dekker.Google Scholar
  97. Doores, S. (2003). Acidulants. In J. Smith & L. Hong-Shum (Eds.), Food additives handbook (pp. 1–70). Oxford, UK: Blackwell Science.Google Scholar
  98. Doores, S. (2005). Organic acids. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 91–142). Boca Raton, FL: Taylor & Francis.Google Scholar
  99. Doyle, M. E. (1999). Literature survey of the various techniques used in Listeria intervention (FRI Briefings). University of Wisconsin—Madison, Food Research Institute. Retrieved January 7, 2008, from http://www.wisc.edu/fri/briefs/listeria.pdf
  100. Doyle, M. E. (2005). Food antimicrobials, cleaners, and sanitizers: A review of the scientific literature (FRI Briefings). University of Wisconsin—Madison, Food Research Institute. Retrieved January 7, 2008, from http://www.wisc.edu/fri/briefs/Antimicrob_Clean_Sanit_05.pdf
  101. Doyle M. P., & Schoeni, J. L. (1984). Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Applied and Environmental Microbiology, 48 855–856.Google Scholar
  102. Draughon, F. A., Sung, S. C., Mount, J. R., & Davidson, P. M. (1982). Effect of parabens with and without nitrite on Clostridium botulinum and toxin production in canned pork slurry. Journal of Food Science, 47, 1635–1642.Google Scholar
  103. Drosinos, E. H., Mataragas, M., Kampani, A., Kritikos, D., & Metaxopoulos, I. (2000). Inhibitory effect of organic acid salts on spoilage flora in culture medium and cured cooked meat products under commercial manufacturing conditions. Meat Science, 73, 75–81.Google Scholar
  104. Dubal, Z. B., Paturkar, A. M., Waskar, V. S., Zende, R. J., Latha, C., Rawool, D. B., & Kadam, M. M. (2004). Effect of food grade organic acids on inoculated Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella Typhimurium in sheep/goat meat stored at refrigeration temperature. Meat Science, 66, 817–821.Google Scholar
  105. Duffy, L. L., Vanderlinde, P. B., & Grau, F. H. (1994). Growth of Listeria monocytogenes on vacuum-packed meats: Effects of pH, a w, nitrite and ascorbate. International Journal of Food Microbiology, 23, 377–390.Google Scholar
  106. Duffy, L. L., Grau, F. H., & Vanderlinde, P. B. (2000). Acid resistance of enterohaemorrhagic and generic Escherichia coli associated with foodborne disease and meat. International Journal of Food Microbiology, 60, 83–89.Google Scholar
  107. Durán, G., & Sofos, J. N. (2006). Effects of low equal molar concentrations of three food grade acids on Listeria monocytogenes in bologna (2006 Animal Science Departmental Research Report). Fort Collins, CO: Colorado State University. Retrieved May 3, 2007, from Colorado State University, Department of Animal Science Web Site: http://ansci.colostate.edu/files/research_reports/06ResearchReports/duran%20doc%201.pdf.
  108. Ecolab. (2008). Sanova. Retrieved January 7, 2008, from http://www.ecolab.com/Initiatives/FoodSafety/FST/Sanova.asp
  109. El-Kest, S. E., & Marth, E. H. (1988). Temperature, pH, and strain of pathogen as factors affecting inactivation of Listeria monocytogenes by chlorine. Journal of Food Protection, 51 622–625.Google Scholar
  110. Ellebracht, J. W., King, D. A., Castillo, A., Lucia, L. M., Acuff, G. R., Harris, K. B., & Savell, J. W. (2005). Evaluation of peroxyacetic acid as a potential pre-grinding treatment for control of Escherichia coli O157:H7 and Salmonella Typhimurium on beef trimmings. Meat Science, 70 197–203.Google Scholar
  111. Ellison, R. T., & Giehl, T. J. (1991). Killing of gram-negative bacteria by lactoferrin and lys-ozyme. Journal of Clinical Investigation, 88, 1080–1091.Google Scholar
  112. Epand, R. M., & Vogel, H. J. (1999). Diversity of antimicrobial peptides and their mechanism of action. Biochimica et Biophysica Acta, 1462, 11–28.Google Scholar
  113. Eswaranandam, S., Hettiarachacy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic or tartaric acids and nisin-incorporated soy protein film against Listeria monocy-togenes, Escherichia coli O157:H7, and Salmonella Gaminara. Journal of Food Science, 69 79–84.Google Scholar
  114. Ezeike, G. O. I., & Hung, Y.-C. (2004). Acidic electrolyzed water properties as affected by parameters and their response surface models. Journal of Food Processing and Preservation, 28 11–27.Google Scholar
  115. Fabrizio, K. A., & Cutter, C. N. (2003). Stability of electrolyzed oxidizing water and its efficacy against cell suspension of Salmonella Typhimurium and Listeria monocytogenes. Journal of Food Protection, 66, 1379–1384.Google Scholar
  116. Fabrizio, K. A., Sharma, R. R., Demirci, A., & Cutter, C. N. (2002). Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. Poultry Science, 81, 1598–1605.Google Scholar
  117. Faith, N. G., Yousef, A. E., & Luchansky, J. B. (1992). Inhibition of Listeria monocytogenes by liquid smoke and isoeugenol, a phenolic component found in smoke. Journal of Food Safety, 12, 303–314.Google Scholar
  118. Filgueiras, C. T., & Vanetti, M. C. D. (2006). Effect of eugenol on growth and listeriolysin O production by Listeria monocytogenes. Brazilian Archives of Biology and Technology, 49 405–409.Google Scholar
  119. Flores, L. M., Sumner, S. S., Peters, D. L., & Mandigo, R. (1996). Evaluation of a phosphate to control pathogen growth in fresh meat and processed meat products. Journal of Food Protection, 59, 356–259.Google Scholar
  120. Foegeding, P. M., & Busta, F. F. (1991). Chemical food preservatives. In S. Block (Ed.), Disinfection, sterilization and preservation (pp. 802–832). Philadelphia, PA: Lea & Febiger.Google Scholar
  121. Foegeding, P. M., Thomas, A. B., Pilkington D. H., & Klaenhammer, T. R. (1992). Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Applied and Environmental Microbiology, 58, 884–890.Google Scholar
  122. Food and Agriculture Organization/World Health Organization. (1966). Specifications for the identity and purity of food additives and their toxicological evaluation: Some antimicrobials, antioxi-dants, emulsifiers, stabilizers, flour-treatment agents, acids, and bases (9th Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Series No. 339, FAO Nutrition Meetings Report Series No. 40). Geneva, Switzerland: World Health Organization. Retrieved January 7, 2008, from http://whqlibdoc.who.int/trs/WHO_TRS_339.pdf
  123. Food and Agriculture Organization/World Health Organization. (1974). Toxicological evaluation of certain food additives with a review of general principles and of specifications. (17th Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Series No. 539, FAO Nutrition Meetings Report Series No. 53). Geneva, Switzerland: World Health Organization. Retrieved January 7, 2008, from http://whqlibdoc.who.int/trs/WHO_TRS_539.pdf
  124. Food and Agriculture Organization/World Health Organization (FAO/WHO). (1976). Toxicological evaluation of certain food additives. WHO Food Additives Series No. 10. Retrieved January 7, 2008, from http://www.inchem.org/documents/jecfa/jecmono/v10je09.htm
  125. Freese, E., Sheu, C. W., & Galliers, E. (1973). Function of lipophilic acids as antimicrobial food additives. Nature, 241, 321–325.Google Scholar
  126. Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral and antifungal activities of tea flavonoids and teas. Molecular Nutrition and Food Research, 51, 116–134.Google Scholar
  127. Fu, A.-H., Sebranek. J. G., & Murano, E. A. (1995). Survival of Listeria monocytogenes and Salmonella typhimurium and quality attributes of cooked pork chops and cured ham after irradiation. Journal of Food Science, 60, 1001–1005.Google Scholar
  128. Gagnaire, F., Marignac, B., Hecht, G., & Héry, M. (2002). Sensory irradiation of acetic acid, hydrogen peroxide, peroxyacetic acid and their mixture in mice. Annals of Occupational Hygiene, 46, 97–102.Google Scholar
  129. Gahan, C. G., O'Driscoll, B., & Hill, C. (1996). Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Applied and Environmental Microbiology, 62, 3128–3132.Google Scholar
  130. Garvie, E. J. (1986). Genus Pediococcus. In P. H. A. Sneath & J. G. Holt (Eds.), Bergeys's manual of systematic bacteriology (pp. 1075–1079). Baltimore: Williams & Wilkins.Google Scholar
  131. Geornaras, I., & Sofos, J. N. (2005a). Activity of ε-polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. Journal of Food Science, 70 404–408.Google Scholar
  132. Geornaras, I., & Sofos, J. N. (2005b). Combining physical and chemical decontamination interventions for meat. In J. N. Sofos (Ed.), Improving the safety of fresh meat (pp. 433–460). Cambridge, UK: Woodhead Publishing.Google Scholar
  133. Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., & Sofos, J. N. (2005). Postprocessing antimicrobial treatments to control Listeria monocytogenes in commercial vacuum-packaged bologna and ham stored at 10°C. Journal of Food Protection, 68, 991–998.Google Scholar
  134. Geornaras, I., Skandamis, P. N., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., & Sofos, J. N. (2006). Post-processing control of Listeria monocytogenes on commercial frankfurters formulated with and without antimicrobials and stored at 10°C. Journal of Food Protection, 69, 53–61.Google Scholar
  135. Geornaras, I., Yoon, Y., Belk, K. E., Smith, G. C., & Sofos, J. N. (2007). Antimicrobial activity of -polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts. Journal of Food Science, 72, 330–334.Google Scholar
  136. Gill, A. O., & Holley, R. A. (2003). Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24°C. International Journal of Food Microbiology, 80, 251–259.Google Scholar
  137. Gill, A. O., & Holley, R. A. (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 70, 5750–5755.Google Scholar
  138. Glass, K., Smith, A., Granberg, D., & Johnson, E. (1999). Effect of sodium lactate, sodium diac-etate and monolaurin on Listeria monocytogenes on processed meat products (1999 Annual Report, pp. 33–34). University of Wisconsin—Madison, Food Research Institute.Google Scholar
  139. Gleason, M. N., Gosselin, R. E., Hodge, H. C., & Smith, R. P. (1969). Clinical toxicology of commercial products (3rd ed.). Baltimore: Williams & Wilkins.Google Scholar
  140. Gorman, B. M., Kochevar, S. L., Sofos, J. N., Morgan, J. B., Schmidt, G. R., & Smith, G. C. (1995). Evaluation of hand-trimming, various sanitizing agents and hot water spray-washing as decontamination interventions for beef brisket adipose tissue. Journal of Food Protection, 58, 899–907.Google Scholar
  141. Gorman, B. M., Kochevar, S. L., Sofos, J. N., Morgan, J. B., Schmidt, G. R., & Smith, G. C. (1997). Changes on beef adipose tissue following decontamination with chemical solutions or water of 35°C or 74°C. Journal of Muscle Foods, 8, 185–197.Google Scholar
  142. Gould, G. W. (2000). Preservation: Past, present and future. British Medical Bulletin, 56, 84–96.Google Scholar
  143. Gould, G. W., & Russell, N.J. (2003). Major, new, and emerging food-poisoning and food spoilage microorganisms. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 1–13). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  144. Grau, F. H., & Vanderlinde, P. B. (1992). Occurance, numbers, and growth of Listeria monocy-togenes on some vacuum-packaged processed meats. Journal of Food Protection, 55, 4–7.Google Scholar
  145. Graves-Delmore, L. R., Sofos, J. N., Schmidt, G. R., & Smith, G. C. (1998). Decontamination of inoculated beef with sequential spraying treatments. Journal of Food Science, 63, 890–893.Google Scholar
  146. Gravesen, A., Jydegaard Axelsen, A.-M., Mendes da Silva, J., Hansen, T. B., & Knøchel, S. (2002). Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Applied and Environmental Microbiology, 68, 756–764.Google Scholar
  147. Greer, G. G., & Dilts, B. D. (1990). Inability of a bacteriophage pool to control beef spoilage. International Journal of Food Microbiology, 10, 331–342.Google Scholar
  148. Greer, G. G., & Jones, S. D. M. (1989). Effects of ozone on beef carcasse shrinkage, muscle quality and bacterial spoilage. Canadian Institute of Food Science and Technology Journal, 22 156–160.Google Scholar
  149. Greiner, S. T. (2005). The use of xylitol to minimize contamination of beef carcass surfaces with Salmonella Typhimurium and Escherichia coli O157:H7. Master's thesis, Texas A&MUniversity, College Station, TX.Google Scholar
  150. Guan, D., & Hoover, D. G. (2005). Emerging decontamination techniques for meat. In J. N. Sofos (Ed.), Improving the safety of fresh meat (pp. 388–417). New York: Woodhead Publishing/ CRC Press.Google Scholar
  151. Gutzmann, T. A., Anderson, B. J., Reed, P. J., Cords, B. R., Grab, L. A., & Richardson, E. H. (2000). Treatment of animal carcasses. U.S. Patent No. 6,103,286. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  152. Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86, 985–990.Google Scholar
  153. Hammes, W. P., & Vogel, R. F. (1995). The genus Lactobacillus. In B. J. B. Wood & W. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 19–54). London: Blackie Academic & ProfessionalGoogle Scholar
  154. Hammes, W. P., Bantleon, A., & Min, S. (1990). Lactic acid bacteria in meat fermentation. FEMS Microbiology Reviews, 87, 165–174.Google Scholar
  155. Hardin, M. D., Acuff, G. R., Lucia, L. M., Oman, J. S., & Savell, J. W. (1995). Comparison of methods for decontamination of beef carcass surfaces. Journal of Food Protection, 58 368–374.Google Scholar
  156. Helander, I. M., Alakomi, H. L., Latva, K. K., Mattila, S. T., Pol, I., Smid, E. J., Gorris, L. G. M., & von Wright, A. (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46, 3590–3595.Google Scholar
  157. Heller, C. E., Scanga, J. A., Sofos, J. N., Belk, K. E., Warren-Serna, W., Bellinger, G. R., Bacon, R. T., Rossman, M. L., & Smith, G. C. (2007). Decontamination of beef subprimal cuts intended for blade tenderization or moisture enhancement. Journal of Food Protection, 70 1174–1180.Google Scholar
  158. Hilgren, J. D., & Gutzmann, T. A. (2002, June). Peroxyacid rinses as antimicrobial interventions during carcass processing. Paper presented at the Annual Meeting of the Institute of Food Technologists, Anaheim, CA.Google Scholar
  159. Hiraki, J. (1995). Basic and applied studies on ε-polylysine. Journal of Antibacterial and Antifungal Agents, 23, 349–354.Google Scholar
  160. Hiraki, J. (2000). ε -Polylysine, its development and utilization. Fine Chemicals, 29, 18–25.Google Scholar
  161. Hiraki, J., Ichikawa, T., Ninomiya, S., Seki, H., Uohama, Kimura, S., Yanagimoto, Y., & Barnett, J. W. (2003). Use of ADMA studies to confirm the safety of ε-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 37, 328–340.Google Scholar
  162. Hocking, A. D. (2006). Aspergillus and related teleomorphs. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 451–487). Cambridge, UK: Woodhead Publishing.Google Scholar
  163. Holley, R. A. (1981). Prevention of surface mold growth on Italian dry sausage by natamycin and potassium sorbate. Applied and Environmental Microbiology, 41, 422–429.Google Scholar
  164. Holley, R. A., Guan, T.-Y., Peirson, M. Y., & Yost, C. K. (2002). Carnobacterium viridians sp. nov., an aliphatic, facultative anaerobe isolated from refrigerated, vacuum-packed bologna sausage. International Journal of Systematic and Evolutionary Microbiology, 52 1881–1885.Google Scholar
  165. Holzapfel, W. H., Schillinger, U., Geisen, R., & Lucke, F.-K. (2003). Starter and protective cultures. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 291–320). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  166. Hough Howard, G. A., & Slater, C. A. (1957). Bacteriostatic activities of hop resin materials. Journal of the Institute of Brewing, 63, 331–333.Google Scholar
  167. Huffman, R. D. (2002). Current and future technologies for the decontamination of carcasses and fresh meat. Meat Science, 62, 285–294.Google Scholar
  168. Institute of Medicine. (2003). Food Chemicals Codex (5th ed.). Washington, DC: National A cademies Press.Google Scholar
  169. International Commission on Microbiological Specifications for Foods (ICMSF). (1980). Microbial ecology of foods: Vol. 1. Factors affecting the life and death of microorganisms. New York: Academic.Google Scholar
  170. International Commission on Microbiological Specifications for Foods (ICMSF). (1996). Microorganisms in foods: Vol. 5. Characteristics of microbial pathogens. New York: Blackie Academic & Professional.Google Scholar
  171. International Food Information Council Foundation. (2006, December). Sugar alcohols fact sheet. Retrieved January 7, 2008, from http://www.ific.org/publications/factsheets/sugaralcoholfs.cfm
  172. International Programme on Chemical Safety. (n.d.). Quaternary ammonium. Retrieved January 7, 2008, from IPCS Inchem Web site: http://www.inchem.org/documents/pims/chemical/pimg022.htm
  173. Jay, J. M. (1982). Antimicrobial properties of diacetyl. Applied and Environmental Microbiology 44, 525–532.Google Scholar
  174. Jay, J. M. (2000). Modern food microbiology (5th ed.). New York: Chapman & HallGoogle Scholar
  175. Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology (7th ed.). New York: Springer Science + Business Media.Google Scholar
  176. Johnson, E. A., & Larson, A. E. (2005). Lysozyme. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 361–387). Boca Raton, FL: Taylor & Francis.Google Scholar
  177. Jones, S. D. M., & Robertson, W. M. (1988). The effect of spray-chilling carcasses on shrinkage and storage quality of beef. Meat Science, 24, 177–188.Google Scholar
  178. Jordan, S. L., Glover, J., Malcolm, L., Thomson-Carter, F. M., Booth, I. R., & Park, S. F. (1999). Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. Applied and Environmental Microbiology, 65, 1308–1311.Google Scholar
  179. Juneja, V. K., & Davidson, P. M. (1993). Influence of altered fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. Journal of Food Protection, 56, 302–305.Google Scholar
  180. Juneja, V. K., & Thippareddi, H. (2004). Control of Clostridium perfringens in a model roast beef by salts of organic acids during chilling. Journal of Food Safety, 24, 95–108.Google Scholar
  181. Jung, D.-S., Bodyfelt, F. W., & Daeschel, M. A. (1991). Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenesin fluid milk. Journal of Dairy Science, 75, 387–393.Google Scholar
  182. Kabara, J. J. (1993). Medium chain fatty acids and esters. In P. M. Davidson & A. L. Branen (Eds.), Antimicrobials in foods (pp. 307–342). New York: Marcel Dekker.Google Scholar
  183. Kabara, J. J., & Marshall D. L. (2005). Medium-chain fatty acids and esters. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 327–360). Boca Raton, FL: Taylor & Francis.Google Scholar
  184. Kaczur, J. J., & Caulfield, D. W. (1994). Chlorine oxygen acids and salts (ClO2, HClO2). In M Grayson (Ed.), Kirk-Othmer encylopedia of chemical technology: Vol. 5 (pp. 968–977). New York: Wiley.Google Scholar
  185. Kadner, R.J. (1996). Cytoplasmic membrane. In F. C. Niedhardt (Ed.), Escherichia coli and Salmonella : Cellular and molecular biology (2nd ed., pp. 58–87). Washington, DC: American Society for Microbiology.Google Scholar
  186. Kalachayanand, N., Sikes, A., Dunne, C. P., & Ray, B. (1998). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. Journal of Food Protection, 61, 425–431.Google Scholar
  187. Kang, D.-H., & Fung, D. Y. C. (1999). Effect of diacetyl on controlling Escherichia coli O157:H7 and Salmonella Typhimurium in the presence of starter culture in a laboratory medium and during meat fermentation. Journal of Food Protection, 62, 975–979.Google Scholar
  188. Karapinar, M., & Aktug, S. E. (1987). Inhibition of foodborne pathogens by thymol, eugenol, menthol, and anethole. International Journal of Food Microbiology, 4, 161–166.Google Scholar
  189. Keeton, J. T., Ricke, S., Anderson, R., Miller, D., & Azefor, N. N. L. (2006). Application of novel hurdle technologies to meat carcass trimmings for reduction of pathogens. (Final report, USDA-FSIS Non-Assistance Cooperative Agreement #FSIS-C-14-2004.) Retrieved January 7, 2008, from http://www.fsis.usda.gov/PDF/New_Technology_Final_Report_C-14.pdf
  190. Kemp, G. K., & Schneider, K. R. (2002). Reduction of Campylobacter contamination on broiler carcasses using acidified sodium chlorite. Dairy, Food and Environmental Sanitation, 22 599–606.Google Scholar
  191. Kemp, G. K., Aldrich, M. L., & Waldroup, A. L. (2000). Acidified sodium chlorite antimicrobial treatment of broiler carcasses. Journal of Food Protection, 63, 1087–1092.Google Scholar
  192. Khanna, N., & Naidu, A. S. (2000). Chloro-cides. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 739–781). Boca Raton, FL: CRC Press.Google Scholar
  193. Kim, C., Hung, Y.-C., & Brackett, R. E. (2000). Roles of oxidation—reduction potential in electro-lyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63, 19–24.Google Scholar
  194. Kim, C., Hung, Y.-C., & Russell, S. M. (2005). Efficacy of electrolyzed water in the prevention and removal of fecal material attachment and its microbiocidal effectiveness during simulated industrial poultry processing. Poultry Science, 84, 1778–1784.Google Scholar
  195. Kim, S., Ruengwilysup, C., & Fung, D. Y. C. (2004). Tea extracts on foodborne pathogens in laboratory medium and in a food model. Journal of Food Protection, 67, 2608–2612.Google Scholar
  196. Kirov, S. M., Anderson, M. J., & McMeekin, T. A. (1990). A note on Aeromonas spp. from chickens as possible foodborne pathogens. Journal of Applied Bacteriology, 68, 327–334.Google Scholar
  197. Knabel, S. J., Walker, H. W., & Hartman, P. A. (1991). Inhibition of Aspergillus flavus and selected gram-positive bacteria by chelation of essential metal cations by polyphosphates. Journal of Food Protection, 54, 360–365.Google Scholar
  198. Knøchel, S. (1990). Growth characteristics of motile Aeromonas spp. isolated from different environments. International Journal of Food Microbiology, 10, 235–244.Google Scholar
  199. Koutsoumanis, K., & Sofos, J. N. (2004). Microbial contamination of carcasses and cuts. In W. K. Jensen, C. Devine, & M. Dikeman (Eds.), Encyclopedia of meat sciences (pp. 727–737). Amsterdam: Elsevier/Academic.Google Scholar
  200. Koutsoumanis, K. P, Geornaras, I., & Sofos, J. N. (2006). Microbiology of land animals. InY. H. Hui (Ed.), Handbook of food science, technology and engineering: Vol. 1 (pp. 52.1–52.43). Boca Raton, FL: CRC Press/Taylor & Francis.Google Scholar
  201. Kuby, J. (1997). Overview of the immune system. InD. Allen (Ed.), Immunology (3rd ed., pp. 3–24). New York: W. H. Freeman & Co.Google Scholar
  202. Kuntz, L. A. (1999, April). Ingredients to raise the microbial bar. Food Product Design. Retrieved January 7, 2008, from http://www.foodproductdesign.com/articles/462/462_0499ap.html
  203. Kurtzman, C. P., & James, S. A. (2006). Zygosaccharomyces and related genera. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 289–305). Cambridge, UK: Woodhead Publishing.Google Scholar
  204. Lacroix, M., Chiasson, F., Borsa, J., & Ouattara, B. (2004). Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds. Radiation Physics and Chemistry, 71 63–66.Google Scholar
  205. Lahti, E., Johansson, T., Honkenen-Buzalski, T., Hill, P., & Nurmi, E. (2001). Survival and detection of Escherichia coli O157:H7 and Listeria monocytogenes during the manufacture of dry sausage using two different starter cultures. Food Microbiology, 18, 75–85.Google Scholar
  206. Langeland, T., & Aas, K. (1987). Allergy to hen's egg white: Clinical and immunological aspects. In J. Brostoff & S. J. Challacombe (Eds.), Food allergy and intolerance (pp. 367–374). London: Baillière Tindall.Google Scholar
  207. Langworthy, T. A. (1978). Microbial life in extreme pH values. In D. J. Kushner (Ed.), Microbial life in extreme environments (pp. 279). New York: Academic.Google Scholar
  208. Larson, A. E., Yu, R. R. Y., Lee, O. A., Price, S., Haas, G. J., & Johnson, E. A. (1996). Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. International Journal of Food Microbiology, 33, 195–207.Google Scholar
  209. Leistner L., & Gould, G. W. (2002). Hurdle technologies. New York: Kluwer Academic.Google Scholar
  210. Leistner, L., Rödel, W. Y., & Krispien, K. (1981). Microbiology of meat products in high and intermediate moisture ranges. In L. B. Rockland & G. F. Stewart (Eds.), Water activity: Influences on food quality (pp. 855–916). New York: Academic.Google Scholar
  211. Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. Chemical Reviews, 71, 525–616.Google Scholar
  212. Leroy, F., & De Vuyst, L. (1999). Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin Sakacin K. Applied and Environmental Microbiology, 65, 974–981.Google Scholar
  213. Lewis, S. J., Velásquez, A., Cuppett, S. L., & McKee, S. R. (2002). Effect of electron beam irradiation on poultry meat safety and quality. Poultry Science, 81, 896–903.Google Scholar
  214. Lewus, C. B., Kaiser, A., & Montville, T. J. (1991). Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Applied and Environmental Microbiology, 57, 1683–1688.Google Scholar
  215. Lianou, A., Geonaras, I., Kendall, P. A., Belk, K. E., Scanga, J. A., Smith, G. C., & Sofos, J. N. (2007). Fate of Listeria monocytogenes in commercial ham, formulated with or without antimicrobials, under conditions simulating contamination in the processing or retail environment and during home storage. Journal of Food Protection, 70, 378–385.Google Scholar
  216. Liao, C.H. (2006). Pseudomonas and related genera. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 507–540). Cambridge, UK: Woodhead Publishing.Google Scholar
  217. Lillard, H. S. (1980). Effect on broiler chicken carcasses and water of treating chill water with chlorine and chlorine dioxide. Poultry Science, 59, 1761–1766.Google Scholar
  218. Lim, K., & Mustapha, A. (2004). Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. Journal of Food Protection, 67, 310–315.Google Scholar
  219. Lin, Y. S., Tsai, Y. J., Tsay, J. S., & Lin, J. K. (2003). Factors affecting the levels of tea polyphe-nols and caffeine in tea leaves. Journal of Agricultural and Food Chemistry, 51, 1864–1873.Google Scholar
  220. Lin, Y. T., Labbe, R. G., & Shetty, K. (2004). Inhibition of Listeria monocytogenes in fish and meat systems by use of oregano and cranberry phytochemical synergies. Applied and Environmental Microbiology, 70, 5672–5678.Google Scholar
  221. Lis-Balchin, M., & Deans, S. G. (1997). Bioactivity of selected plant essential oils against Listeria monocytogenes. Journal of Applied Microbiology, 82, 759–762.Google Scholar
  222. Luchansky, J. B., Call, J. E., Hristova, B., Rumery, L., Yoder, L., & Oser, A., (2005). Viability of Listeria monocytogenes on commercially-prepared hams surfaces treated with acidic calcium sulfate and lauric arginate and stored at 4°C. Meat Science, 71, 92–99.Google Scholar
  223. Lück, E. (1976). Sorbic acid as a food preservative. International Flavors and Food Additives, 7, 122–124, 127.Google Scholar
  224. Lueck, E. (1980). Antimicrobial food additives. New York: Springer.Google Scholar
  225. Madril, M. T., & Sofos, J. N. (1986). Interaction of reduced NaCl, sodium acid pyrophosphate and pH on the antimicrobial activity of comminuted meat products. Journal of Food Science, 51, 1147–1151.Google Scholar
  226. Madsen, H. L., & Bertelsen, G. (1995). Spices as antioxidants. Trends in Food Science and Technology, 6, 271–277.Google Scholar
  227. Malicki, A., Jarmoluk, A., & Bruzewicz, S. (2004). Effect of sodium lactate used alone or in combination with lysozyme on the physico-chemical and microbiological properties of steamed sausage stored under the refrigeration. Bulletin of the Veterinary Institute in Pulawy, 48, 47–51.Google Scholar
  228. Mangena, T., & Muyima, N. Y. O. (1999) Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana and Rosmarinus officinalis on selected bacteria and yeast str ains. Letters in Applied Microbiology, 28, 291–296.Google Scholar
  229. Marshall, D. L., Cotton, L. N., & Bal'a, F. A. (2000). Acetic acid. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 661–688). Boca Raton, FL: CRC Press.Google Scholar
  230. Marshall, R. T. (2003). Acids, pathogens, foods, and us. Food Protection Trends, 23, 882–886.Google Scholar
  231. Marth, E. H. (1998). Extended shelf life refrigerated foods: Microbiological quality and safety. Food Technology, 52, 57–62.Google Scholar
  232. Masaki, M. (1986). Ozonation. In A. Reife & H. S. Freeman (Eds.), Environmental chemistry of dyes and pigments (pp. 43–60). New York: Wiley.Google Scholar
  233. Maxcy, R. B., Tiwari, N. P., & Soprey, P. R. (1971). Changes in Escherichia coli associated with acquired tolerance for quaternary ammonium compounds. Applied and Environmental Microbiology, 22, 229–232Google Scholar
  234. Mbandi, E., Brywig, M., & Shelef, L. A. (2004). Antilisterial effects of free fatty acids and mon-olaurin in beef emulsions and hot dogs. Food Microbiology, 21, 815–818.Google Scholar
  235. McClure, P. J., Beaumont, A. L., Sutherland, J. P., & Roberts, T. A. (1997). Predictive modeling of growth of Listeria monocytogenes : The effects on growth of NaCl, pH, storage temperature, and NaNO2. International Journal of Food Microbiology, 34, 221–232.Google Scholar
  236. McDonnell, A. G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.Google Scholar
  237. McGrath, S., Fitzgerald, G. F., & Van Sinderen, D. (2002). Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Molecular Microbiology, 43, 509–520.Google Scholar
  238. McKellar, R. C. (1993). Effect of preservatives and growth factors on secretion of listeriolysin O by Listeria monocytogenes. Journal of Food Protection, 56, 380–384.Google Scholar
  239. McKnight, G. M., Duncan, C. W., Leifert, C., & Golden, M. H. (1999). Dietary nitrate in man: Friend or foe? British Journal of Nutrition, 81, 349–358.Google Scholar
  240. McWilliam Leitch, E. C., & Stewart, C. S. (2002). Escherichia coli O157 and non-O157 isolates are more susceptible to L-lactate than to D-lactate. Applied and Environmental Microbiology, 68, 4676–4678.Google Scholar
  241. Mead, G. C., Hudson, W. R., & Hinton, M. H. (1995). Effect of changes in processing to improve hygiene control on contamination of poultry carcasses with Campylobacter Epidemiology and Infection, 115, 495–500.Google Scholar
  242. Meat Industry Services. (2006). Activated lactoferrin. Retrieved January 7, 2008, from Food Science Australia Web Site: www.meatupdate.csiro.au/new/Activated%20Lactoferrin.pdf
  243. Messina, M. C., Ahmad, H. A., Marchelo, J. A., Gerba, C. P., & Paquette, M. W. (1988). The effect of liquid smoke on Listeria monocytogenes. Journal of Food Protection, 31, 629–631.Google Scholar
  244. Miller, A. J., Call, J. E., & Whiting, R. C. (1993). Comparison of organic acid salts for Clostridium botulinum control in an uncured turkey product. Journal of Food Protection, 56, 958–962.Google Scholar
  245. Millis, J. R., & Schendel, M. I. (1994). Inhibition of food pathogens by hop acids. U.S. Patent No. 5,286,506. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  246. Mionix. (n.d.). Home page. Retrieved January 7, 2008, from http://www.mionix.com/products-information/RTE03.htm
  247. Mizuba, S., & Sheikh, W. (1987). Antimicrobial efficacy of potassium salts of four parabens. Journal of Industrial Microbiology and Biotechnology, 1, 363–369.Google Scholar
  248. Moerman, P. C. (1972). Schimmelweing op vleeswaren door Pimaricine. Voedingsmiddelen-Technologie, 3, 261–264.Google Scholar
  249. Moir, C. J., & Eyles, M. J. (1992). Inhibition, injury, and inactivation of four psychrotropic food-borne bacteria by the preservatives methyl ρ-hydroxybenzoate and potassium sorbate. Journal of Food Protection, 55, 360–366.Google Scholar
  250. Monk, J. D., Beuchat, L. R., & Hathcox, A. K. (1996). Inhibitory effects of sucrose monolaurate, alone and in combination with organic acids. Journal of Applied Bacteriology, 81, 7–18.Google Scholar
  251. Moore, G., Griffith, C., & Peters, A. (2000). Bactericidal properties of ozone and its potential application as a terminal disinfectant. Journal of Food Protection, 63, 1100–1106.Google Scholar
  252. Moore, M. R., Pryor, M., Fields, B., Lucas, C., Phelan, M., & Besser, R. E. (2006). Introduction of monochloramine into a municipal water system: Impact on colonization of buildings by Legionella spp. Applied and Environmental Microbiology, 72, 378–383.Google Scholar
  253. Moss, M. O. (2006). General characteristics of moulds. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 401–413). Cambridge, UK: Woodhead Publishing.Google Scholar
  254. Mountney, G. J., & Gould, W. A. (1988). Practical food microbiology and technology. New York: Van Nostrand Reinhold.Google Scholar
  255. Murphy, R. Y., Hanson, R. E., Johnson, N. R., Scott, L. L., Feze, N., & Chappa, K. (2005). Combining antimicrobial and steam treatments in a vacuum- packaging system to control Listeria monocytogenes on ready-to-eat franks. Journal of Food Science, 70, 138–140.Google Scholar
  256. Muthukumarappan, K., Halaweish, F., & Naidu, A. S. (2000). Ozone. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 783–800). Boca Raton, FL: CRC Press.Google Scholar
  257. Muthukumarasamy, P., Han, J. H., & Holley, R. A. (2003). Bactericidal effects of Lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. Journal of Food Protection, 66, 2038–2044.Google Scholar
  258. Naidu, A. S. (2000). Lactoferrin. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 17–102). Boca Raton, FL: CRC Press.Google Scholar
  259. Naidu, A. S. (2002). Activated lactoferrin — A new approach to meat safety. Food Technology, 56 40–45.Google Scholar
  260. Naidu, A. S. (2003). Antimicrobials from animals. In S. Roller (Ed.), Natural antimicrobials for the minimal processing of foods (pp. 133–158). New York: CRC Press.Google Scholar
  261. Naidu, A. S., & Arnold, R. R. (1994). Lactoferrin interaction with salmonoellae potentiates antibiotic susceptibility in vitro. Diagnostic Microbiology and Infectious Disease, 20, 69–75.Google Scholar
  262. Nattress, F. M., Yost, C. K., & Baker, L. P. (2001). Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. International Journal of Food Microbiology, 70 111–119.Google Scholar
  263. Nelson, K. A., Busta, F. F., Sofos, J. N., & Allen, M. A. (1983). Effect of polyphosphates in combination with nitrite-sorbate or sorbate on Clostridium botulinum growth and toxin production in chicken frankfurter emulsions. Journal of Food Protection, 46, 846–850.Google Scholar
  264. Nieman, C. (1954). Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriological Reviews, 18, 147–163.Google Scholar
  265. Nuñez de Gonzalez, M. T., Keeton, J. T., Acuff, G. R., Ringer, L. J., & Lucia, L. M. (2004). Effectiveness of acetic calcium sulfate with propionic and lactic acid and lactates as postprocessing dipping solutions to control Listeria monocytogenes on frankfurters with or without potassium lactate and stored vacuum packaged at 4.5°C. Journal of Food Protection, 67 915–921.Google Scholar
  266. Nychas, G.-J. E., Marshall, D. L., & Sofos, J. N. (2007). Meat, poultry and seafood spoilage. In M. P. Doyle & L. R. Beuchat (Eds.), Food microbiology: Fundamentals and frontiers (3rd ed., pp. 105–140). Washington, DC: ASM Press.Google Scholar
  267. Oh, D. H., & Marshall, D. L. (1992). Effect of pH of minimum inhibitory effect of monolaurin against Listeria monocytogenes. Journal of Food Protection, 55, 449–450.Google Scholar
  268. Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 36, 448–451.Google Scholar
  269. Osmanagauoglu, O., Gündüz, U., Beyatli, Y., & Çökmus, C. (1998). Purification and characterization of pediocin F, a bacteriocin produced by Pediococcus acidilactici. F Turkish Journal of Biology, 22, 217–228.Google Scholar
  270. Oyarzabal, O. A. (2005). Reduction of Campylobacter spp. by commercial antimicrobials applied during the processing of broiler chickens: A review from the United States perspective. Journal of Food Protection, 68, 1752–1760.Google Scholar
  271. Padilla-Zakour, O. (1998). Chemical food preservatives: Propionates and parabens. Venture, the Newsletter of the New York State Food Venture Center, 1. Retrieved January 7, 2008, from New York State Agricultural Experiment Station Web Site: http://www.nysaes.cornell.edu/necfe/pubs/pdf/Venture/venture3_chemical.html
  272. Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2, 161–173.Google Scholar
  273. Park, C. M., & Beuchat, L. R. (1999). Evaluation of sanitizers for killing Escherichia coli O157:H7, Salmonella and naturally occurring microorganisms on cantaloupes, honeydew melons and asparagus. Dairy Food and Environmental Sanitation, 19, 842–847.Google Scholar
  274. Park, H., Hung, Y.-C., & Brackett, R. E. (2002). Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing, International Journal of Food Microbiology, 72, 77–83.Google Scholar
  275. Park, H., Hung, Y.-C., & Kim, C. (2002). Effectiveness of electrolyzed water as a sanitizer for treating different surfaces. Journal of Food Protection, 65, 1276–1280.Google Scholar
  276. Pelroy, G., Peterson, M., Paranjpye, R., Almond, J., & Eklund, M. (1994). Inhibition of Listeria monocytogenes in cold processed (smoked) salmon by sodium nitrite and packaging method. Journal of Food Protection, 57, 114–119.Google Scholar
  277. Perigo, J. A., Whiting, E., & Bashford, T. E. (1967). Observations on the inhibition of vegetative cells of Clostridium sporogenes by nitrite which has been autoclaved in a laboratory medium, discussed in the context of sublethally processed cured meats. Journal of Food Technology, 2 377–397.Google Scholar
  278. Peterson, D. J., Kaleta, N. W., & Kingston, L. W. (1992). Calcium compounds (calcium sulfate). In J. I. Kroschwitz, M. Howe-Grant, & D. F. Othmer (Eds.), Kirk-Othmer encyclopedia of chemical technology: Vol. 4 (pp. 812–826). New York: Wiley.Google Scholar
  279. Podolak, R. K. J., Zayas, J. F., Kastner, C. L., & Fung, D. Y. C. (1996). Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 on beef by application of organic acids. Journal of Food Protection, 59, 370–373.Google Scholar
  280. Pohlman, F. W., Stivarius, M. R., McElyea, K. S., Johnson, Z. B., & Johnson M. G. (2002). Reduction of microorganisms in ground beef using multiple intervention technology. Meat Science, 61, 315–322.Google Scholar
  281. Pohlman, F. W., Stivarius, M. R., McElyea, K. S., & Waldroup, A. L. (2002). Reduction of Escherichia coli, Salmonella Typhimurium, coliforms, aerobic bacteria, and improvement of ground beef color using trisodium phosphate or cetylpyridinium chloride before grinding. Meat Science, 60, 349–356.Google Scholar
  282. Pordesimo, L. O., Wilkerson, E. G., Womac, A. R., & Cutter, C. N. (2002). Process engineering variables in the spray washing of meat and produce. Journal of Food Protection, 65, 222–237.Google Scholar
  283. Poysky, F. T., Paranjpye, R. N., Peterson, M. E., Pelroy, G. A., Guttman, A. E., & Eklund, M.W. (1997). Inactivation of Listeria monocytogenes on hot-smoked salmon by the interaction of heat and smoke or liquid smoke. Journal of Food Protection, 60, 649–654.Google Scholar
  284. Prakash, A. (2000). Polyphosphates. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 725–738). Boca Raton, FL: CRC Press.Google Scholar
  285. Prasai, R. K., Acuff, G. R., Lucia, L. M., Hale, D. S., Savell, J. W., & Morgan J. B. (1991). Microbiological effects of acid decontamination of beef carcasses at various locations in processing. Journal of Food Protection, 45, 868–872.Google Scholar
  286. Prasai, R. K., Kastner, C. L., Kenney, P. B., Kropf, D. H., Fung, D. Y. C., Mease, L. E., Vogt, L. R., & Johnson, D. E. (1997). Micobiological quality of beef subprimals as affected by lactic acid sprays applied at various points during vacuum storage. Journal of Food Protection, 60 795–798.Google Scholar
  287. Proctor, V. A., & Cunningham, F. E. (1989). The chemistry of lysozyme and its use as a food preservative and pharmaceutical. Critical Reviews in Food Science and Nutrition, 26 359–395.Google Scholar
  288. Ramirez, A. J., Acuff, G. R., Lucia, L. M., & Savell, J. W. (2001). Lactic acid and trisodium phosphate treatment of lamb breast to reduce bacterial contamination. Journal of Food Protection, 64, 1439–1441.Google Scholar
  289. Ransom, J. R., Belk, K. E., Sofos, J. N., Stopforth, J. D., Scanga, J. A., & Smith, G. C. (2003). Comparison of intervention technologies for reducing Escherichia coli O157:H7 on beef cuts and trimmings. Food Protection Trends, 23, 24–34.Google Scholar
  290. Ray, B. (1993). Sublethal injury, bacteriocins and food microbiology. ASM News, 59 285–291.Google Scholar
  291. Ray, B., & Daeshel, M. A. (1992). Food biopreservatives of microbial origin. Boca Raton, FL: CRC Press.Google Scholar
  292. Ray, B., & Miller, K. W. (2000). Pediocin. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 525–610). Boca Raton, FL: CRC Press.Google Scholar
  293. Rayman, M. K., Aris, B., & Hurst, A. (1981). Nisin: A possible alternative or adjunct to nitrite in the preservation of meats. Applied and Environmental Microbiology, 41, 375–380.Google Scholar
  294. Reagan, J. O., Acuff, G. R., Buege, D. R., Buyck, M. J., Dickson, J. S., Kastner, C. L., Marsden, J. L., Morgan, J. B., Nickelson II, R., Smith, G. C., & Sofos, J. N. (1996). Trimming and washing of beef carcasses as a method of improving the microbiological quality of meat. Journal of Food Protection, 59, 751–756.Google Scholar
  295. Red Arrow Products Company LLC. (2007). Home page. Retrieved January 7, 2008, from http:// www.redarrowusa.comGoogle Scholar
  296. Restaino, L., Frampton, E. W., Hemphill, J. B., & Palnikar, P. (1995). Efficacy of ozonated water against various food-related microorganisms. Applied and Environmental Microbiology, 61 3471–3475.Google Scholar
  297. Robbins, J. B., Fisher, C. W., Moltz, A. G., & Martin, S. E. (2005). Elimination of Listeria mono-cytogenes biofilms by ozone, chlorine, and hydrogen peroxide. Journal of Food Protection, 68 494–498.Google Scholar
  298. Roberts, T. A., & Ingram, M. (1966). Effect of sodium chloride, potassium nitrate and sodium nitrite n the recovery of heated bacterial spores. Journal of Food Technology, 1 147–163.Google Scholar
  299. Rogers, L. A., & Whittier, E. O. (1928). Limiting factors in lactic fermentation. Journal of Bacteriology, 16, 211–229.Google Scholar
  300. Romans J. R., Costello, W. J., Carlson, C. W., Greaser, M. L., & Jones, K. W. (2001). The meat we eat (14th ed.). Danville, IL: Interstate Publishers.Google Scholar
  301. Rombouts, F. M., Notermans, S. H. W., & Abee, T. (2003). Food preservation — Future prospects. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (2nd ed., pp. 348–367). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  302. Rudrapatnam, T. N., & Farooqahmed, K. S. (2003). Chitin — The undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43, 61–87.Google Scholar
  303. Russell, A., & Chopra, I. (1996). Understanding antibacterial action and resistance (2nd ed.). London: Ellis Horwood.Google Scholar
  304. Russell, S. M., & Axtell, S. P. (2005). Monochloramine versus sodium hypochlorite as antimicrobial agents for reducing populations of bacteria on broiler chicken carcasses. Journal of Food Protection, 68, 758–763.Google Scholar
  305. Safe Foods Corporation. (2008). Is your beef or pork product Cecure? Retrieved January 7, 2008, from http://www.safefoods.net/cecure/cecure_beef.htm
  306. Sagoo, S. K., Board, R., & Roller, S. (2002). Chitosan potentiates the antimicrobial action of sodium benzoate on spoilage yeasts. Letters in Applied Microbiology, 34, 168–172.Google Scholar
  307. Samelis, J. (2006). Managing microbial spoilage in the meat industry. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 213–286). Cambridge, UK: Woodhead Publishing.Google Scholar
  308. Samelis, J., & Sofos, J. N. (2003). Strategies to control stress-adapted pathogens and provide safe foods. In A. E. Yousef & V. K. Juneja (Eds.), Microbial adaptation to stress and safety of new-generation foods (pp. 303–351). Boca Raton, FL: CRC Press.Google Scholar
  309. Samelis, J., Bedie, G. K., Sofos, J. N., Belk, K. E., Scanga, J. A., & Smith, G. C. (2005). Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at 4°C in vacuum packages. Lebensmittel-Wissenschaft und Technologie, 38, 21–28.Google Scholar
  310. Sarasua, S., & Savitz, D. A. (1994). Cured and broiled meat consumption in relation to childhood cancer: Denver, Colorado (United States). Cancer Causes and Control, 5, 141–148.Google Scholar
  311. Savic, I. V. (1985). Small-scale sausage production (Animal Production and Health Paper No. 52). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  312. Sax, N. I., & Lewis, R. J. Sr. (1989). Dangerous properties of industrial materials: Vol. 2 (7th ed.). New York: Van Nostrand Reinhold.Google Scholar
  313. Scannell, A. G. M., Hill, C., Buckley, D. J., & Arendt, E. K. (1997). Determination of the influence of organic acids and nisin on shelf-life and microbiological safety aspects of fresh pork sausages. Journal of Applied Microbiology, 83, 407–412.Google Scholar
  314. Schaubschlager, W. W., Becker, W. M., Schade, U., Zabel, P., & Schlaak, M. (1991). Release of mediators from human gastric mucosa and blood in adverse reactions to benzoate. International Archives of Allergy and Applied Immunology 96, 97–101.Google Scholar
  315. Schillinger, U., & Holzapfel, W. H. (2006). Lactic acid bacteria. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 541–578). Cambridge, UK: Woodhead Publishing.Google Scholar
  316. Schlyter, J. H., Glass, K. A., Loeffelholz, J., Degnan, A. J., & Luchansky, J. B. (1993). The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytogenes in turkey slurries. International Journal of Food Microbiology 19, 271–281.Google Scholar
  317. Schmidt, G. R., Mawson, R. F., & Siegel, D. G. (1981). Functionality of a protein matrix in comminuted meat products. Food Technology 35, 235–237.Google Scholar
  318. Schumb, W. C., Satterfield, C. N., & Wentworth, R. L. (1955). Hydrogen peroxide (1st ed.). New York: Van Nostrand.Google Scholar
  319. Science Applications International Corporation. (2002, November). The use of chlorine dioxide as an antimicrobial agent in poultry processing in the United States (Report prepared for U.S. Department of Agriculture, Foreign Agricultural Service and Food Safety and Inspection Service, Office of International Affairs, under Task Order No. 43-3A94-2-0223). Author.Google Scholar
  320. Segner, W. P., Schmidt, C. F., & Boltz, J. K. (1966). Effect of sodium chloride and pH on outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures. Applied Microbiology 14, 49–54.Google Scholar
  321. Seiler, D. A. L., & Russell, N. J. (1991). Ethanol as a food preservative. In N. J. Russell & G. W. Gould (Eds.), Food peservatives (pp. 153–171). London: Blackie & Son, Ltd.Google Scholar
  322. Seman, D. L., Borger, A. C., Meyer, J. D., Hall, P. A., & Milkowski, A. L. (2002). Modeling the growth of Listeria monocytogenes in cured ready-to-eat processed meat by manipulation of sodium chloride, sodium diacetate, potassium lactate and product moisture content. Journal of Food Protection 65, 651–658.Google Scholar
  323. Seydim, A. C., Guzel-Seydim, Z. P., Acton, J. C., & Dawson, P. L. (2006). Effects of rosemary extract and sodium lactate on quality of vacuum-packaged ground ostrich meat. Journal of Food Science 71, 71–76.Google Scholar
  324. Shahidi, F., & Wanasundara P. K. J. P. D. (2003). Antioxidants. In J. Smith & L. Hong-Shum (Eds.), Food additives handbook (pp. 75–118). Oxford, UK: Blackwell Science.Google Scholar
  325. Shahidi, F., Arachchi J. K. V., & Jeon, Y.-J. (1999). Food applications of chitin and chitosans. Trends in Food Science and Technology 10, 37–51.Google Scholar
  326. Shapero, M., Nelson, D. A., & Labuza, T. P. (1978). Ethanol inhibition of Staphylococcus aureus at limited water activity. Journal of Food Science, 43, 1467–1469.Google Scholar
  327. Sharma, R. K. (2000). Citric acid. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 689–702). Boca Raton, FL: CRC Press.Google Scholar
  328. Shelef, L. A. (1994). Antimicrobial effects of lactates: A review. Journal of Food Protection, 57 445–450.Google Scholar
  329. Shelef, L. A., & Addala, L. (1994). Inhibition of Listeria monocytogenes and other bacteria by sodium diacetate. Journal of Food Safety, 14, 103–115.Google Scholar
  330. Shelef, L. A. & Seiter, J. (1993). Indirect antimicrobials. In P. M. Davidson & A. L. Branen (Eds.) Antimicrobials in foods (pp. 539–570). New York: Marcel Dekker.Google Scholar
  331. Shelef, L. A. & Seiter, J. (2005). Indirect and miscellaneous antimicrobials. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 573–598). Boca Raton, FL: Taylor & Francis.Google Scholar
  332. Shepherd, R. (2003). Polysaccharides. In J. Smith & L. Hong-Shum (Eds.), Food additives handbook (pp. 659–728). Oxford, UK: Blackwell Science.Google Scholar
  333. Shih, I.-L., Shen, M.-H., & Van, Y.-T. (2006). Microbial synthesis of poly(ε-lysine) and its various applications. Biosource Technology, 97, 1148–1159.Google Scholar
  334. Shima, S., Fukuhara, Y., & Sakai, H. (1982). Inactivation of bacteriophages by ε-polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 46, 1917–1919.Google Scholar
  335. Shima, S., Matsuoka, H., Iwamoto, T., & Sakai, H. (1984). Antimicrobial action of ε-poly-L-lysine. Journal of Antibiotics, 37, 1449–1455.Google Scholar
  336. Shin, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M., Otsuka, Y., & Yamzaki, S. (1998). Antibacterial activity of bovine lactoferrin and its peptides against enterohemorrhagic Escherichia coli O157:H7. Letters in Applied Microbiology, 26, 407–411.Google Scholar
  337. Shirahata, S. (2001). Reduced water for prevention of diseases. Animal and Cell Technology, Basic and Applied Aspects, 12, 25–31.Google Scholar
  338. Silliker, J. H., Greenberg, R. A., & Schack, W. R. (1958). Effect of individual curing ingredients on the shelf stability of canned comminuted meats. Food Technology 12, 551–554.Google Scholar
  339. Simpson, C. A., Ransom, J. R., Scanga, J. A., Belk, K. E., Sofos, J. N., & Smith, G. C. (2006). Changes in microbiological populations on beef carcass surfaces exposed to air- or spray-chilling and characterization of hot box practices. Food Protection Trends, 26, 226–235.Google Scholar
  340. Singh, M., Gill, V. S., Thippareddi, H., Phebus, R. K., Marsden, J. L., Herald, T. J., & Nutsch, A. L. (2005). Cetylpyridinium chloride treatment of ready-to-eat polish sausage: Effects on Listeria monocytogenes populations and quality attributes. Foodborne Pathogens and Disease, 2, 233–241.Google Scholar
  341. Singleton, P. (2004). Bacteria in biology, biotechnology and medicine (6th ed.). Chichester: Wiley.Google Scholar
  342. Smith, C. D, Belk, K. E., Sofos, J. N., Scanga, J. A., Kain, M. L., & Smith, G. C. (2001). Effects of activated ozone as a decontamination intervention when applied to hides, carcasses, and to ground beef during blending (Meat Science & Food Safety Research Articles). Fort Collins, CO: Colorado State University. Retrieved May 3, 2007, from Colorado State University, Department of Animal Science Web Site: http://ansci.colostate.edu/files/meat_science/cds011.pdf
  343. Smith, G. N., & Stroker, C. (1949). Inhibition of crystalline lysozyme. Archives of Biochemistry and Biophysiology, 21, 383–394.Google Scholar
  344. Smith, J. (2003). Preservatives. In J. Smith & L. Hong-Shum (Eds.), Food additives handbook (pp. 731–814). Oxford, UK: Blackwell Science.Google Scholar
  345. Smith, J. & Hong-Shum L. (2003). Gases. In J. Smith & L. Hong-Shum (Eds.), Food additives handbook (pp. 559–570). Oxford, UK: Blackwell Science.Google Scholar
  346. Smith, L., Mann, J. E., Harris, K., Miller, M. F., & Brashears, M. M. (2005). Reduction of Escherichia coli O157:H7 and Salmonella in ground beef using lactic acid bacteria and the impact on sensory properties. Journal of Food Protection, 68, 1587–1592.Google Scholar
  347. Smith-Palmer, A., Stewart, J., & Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26, 118–122.Google Scholar
  348. Snyder, O. P. (1997). Antimicrobial effects of herbs and spices. St. Paul, MN: Hospitality Institute of Technology and Management. Retrieved December, 31, 2007, from http://www.hi-tm.com/Documents/Spices.html
  349. Sofos, J. N. (1984). Antimicrobials effects of sodium and other ions in foods: A review. Journal Food Safety, 6, 45–78.Google Scholar
  350. Sofos, J. N. (1986). Use of phosphates in low sodium meat products. Food Technology, 40, 52, 54–58, 60, 62, 64, 66, 68–69.Google Scholar
  351. Sofos, J. N. (1989). Sorbate food preservatives. Boca Raton, FL: CRC Press.Google Scholar
  352. Sofos, J. N. (1994). Antimicrobial agents. In A. T. Tu & J. A. Maga (Eds.), Handbook of toxicology: Vol. 1. Food additive toxicology (pp. 501–529). New York: Marcel Dekker.Google Scholar
  353. Sofos, J. N. (2000). Sorbic acid. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 637–659). Boca Raton, FL: CRC Press.Google Scholar
  354. Sofos, J. N. (2002). Approaches to pre-harvest food safety assurance. In F. J. M. Smulders & J. D. Collins (Eds.), Food safety assurance and veterinary public health: Vol. 1 (pp. 23–48). Wageningen, Netherlands: Wageningen Academic Publishers.Google Scholar
  355. Sofos, J. N. (2004). Pathogens in animal products: sources and control. In W. Pond & A. Bell (Eds.), Encyclopedia of animal science (pp. 701–703). New York: Marcel Dekker.Google Scholar
  356. Sofos, J. N. (2005a). Improving the safety of fresh meat. Cambridge, UK: CRC/Woodhead Publishing.Google Scholar
  357. Sofos, J. N. (2005b, November). Establishing antimicrobial hurdles. Meat Processing Magazine, 3.Google Scholar
  358. Sofos, J. N., & Busta, F. F. (1980). Alternatives to the use of nitrite as an antibotulinal agent. Food Technology, 34, 244–251.Google Scholar
  359. Sofos, J. N., & Busta, F. F. (1981). Antimicrobial activity of sorbate. Journal of Food Protection, 44, 614–622.Google Scholar
  360. Sofos, J. N., & Busta, F. F. (1991). Chemical food preservatives. In A. D. Russell, W. B. Hugo, & G. A. J. Ayecliffe (Eds.), Principles and practice of disinfection, preservation and sterilization (2nd ed., pp. 351–397). Oxford, UK: Blackwell Scientific.Google Scholar
  361. Sofos, J. N., & Busta. F. F. (1993). Sorbic acid and sorbates. In P. M. Davidson & A. L. Branen (Eds.), Antimicrobials in foods (2nd ed., pp. 49–94). New York: Marcel Dekker.Google Scholar
  362. Sofos, J. N., & Smith, G. C. (1998). Evaluation of various treatments to reduce contamination on carcass tissue. In Proceedings of the 44th International Congress of Meat Science and Technology (pp. 316–317); Barcelona, Spain.Google Scholar
  363. Sofos, J. N., Busta, F. F., & Allen, C. E. (1979a). Botulism control by nitrite and sorbate in cured meats: A review. Journal of Food Protection, 42, 739–700.Google Scholar
  364. Sofos, J. N., Busta, F. F., & Allen, C. E. (1979b). Effects of sodium nitrite on Clostridium botulinum toxin production in frankfurter emulsions formulation with meat and soy proteins. Journal of Food Science, 44, 1267–1271.Google Scholar
  365. Sofos, J. N., Busta, F. F., & Allen, C. E. (1979c). Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse. Applied and Environmental Microbiology, 37, 1103–1109.Google Scholar
  366. Sofos, J. N., Maga, J. A., & Boyle, D. L. (1988). Effect of ether extracts from condensed wood smokes on the growth of Aeromonas hydrophila and Staphylococcus aureus Journal of Food Science, 53, 1840–1843.Google Scholar
  367. Sofos, J. N., Beuchat, L. R., Davidson, P. M., & Johnson, E. A. (1998). Naturally occurring antimicrobials in food (Task Force Report No. 132). Ames, IA: Council for Agricultural Science and Technology.Google Scholar
  368. Sofos, J. N., Belk, K. E., & Smith, G. C. (1999). Processes to reduce contamination with pathogenic microorganisms in meat. In Proceedings of the 45th International Congress of Meat Science and Technology (pp. 596–605); Yokohama, Japan.Google Scholar
  369. Sofos, J. N., Kochevar, S. L., Bellinger, G. R., Buege, D. R., Hancock, D. D., Ingham, S. C., Morgan, J. B., Reagan, J. O., & Smith, G. C. (1999). Sources and extent of microbiological contamination of beef carcasses in seven United States slaughtering plants. Journal of Food Protection, 62, 140–145.Google Scholar
  370. Sofos, J. N., Kochevar, S. L., Reagan, J. O., & Smith, G. S. (1999). Extent of beef carcass contamination with Escherichia coli and probabilities of passing U.S. regulatory criteria. Journal of Food Protection, 62, 234–238.Google Scholar
  371. Sofos, J. N., Simpson, C. A., Belk, K. E., Scanga, J. A., & Smith, G. C. (2006). Salmonella interventions for beef. In Proceedings of the 59th Reciprocal Meat Conference. Savoy, IL: American Meat Science Association.Google Scholar
  372. Søltoft-Jensen, J. & Hansen, F. (2005). New chemical and biochemical hurdles. In D.-W. Sun (Ed.), Emerging technologies for food processing. London: Elsevier/Academic.Google Scholar
  373. Somers, E. B., Schoeni, J. L., & Wong, A. C. L. (1994). Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocy-togenes and Salmonella Typhimurium. International Journal of Food Microbiology, 22, 269–276.Google Scholar
  374. Soni, M. G., Burdock, G. A., Taylor, S. L., & Greenberg, N. A. (2001). Safety assessment of propyl paraben: A review of the published literature. Food Chemical Toxicology, 39 513–532.Google Scholar
  375. Soni, M. G., Taylor, S. L., Greenberg, N. A., & Burdock, G. A. (2002). Evaluation of the health aspects of methyl paraben: A review of the published literature. Food Chemical Toxicology, 40, 1335–1373.Google Scholar
  376. Sopher, C. D., Graham, D. M., Rice, R. G., & Strasser, J. H. (2002). Studies on the use of ozone in production agriculture and food processing. In Proceedings of the International Ozone Association, Pan American Group. Retrieved January 7, 2008, from ClearWater Tech, LLC Web Site: www.cwtozone.com/files/articles/Food_Produce/Studies%20on%20the%20Use%20 of%20Ozone%20in%20Agriculture.pdfGoogle Scholar
  377. Souza, V., Castillo, A., & Equiarte, L. E. (2002). The evolutionary ecology of Escherichia coli. American Scientist, 90, 332–341.Google Scholar
  378. Stark, J. & Tan, H. S. (2003). Natamycin. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (2nd ed., pp. 179–193). New York: Kluwer/Academic/Plenum Publishers.Google Scholar
  379. Stoll, A., & Seebeck, E. (1951). Chemical investigation of alliin, the specific principle of garlic Advances in Enzymology, 11, 377–400.Google Scholar
  380. Stopforth J. D., & Sofos, J. N. (2006). Recent advances in pre- and post-slaughter intervention strategies for control of meat contamination. In V. J. Juneja, J. P. Cherry, & M. H.Tunick (Eds.), Advances in microbial food safety (pp. 66–86). Washington, DC: Oxford University Press.Google Scholar
  381. Stopforth, J. D., Samelis, J., Sofos, J. N., Kendall, P. A., & Smith, G. C. (2002). Biofilm formation by Listeria monocytogenes in fresh beef decontamination washings. In Proceedings of the 48th International Congress of Meat Science and Technology (pp. 202–203); Rome, Italy.Google Scholar
  382. Stopforth, J. D., Samelis, J., Sofos, J. N., Kendall, P. A., & Smith, G. C. (2003a). Influence of extended acid stressing in fresh beef decontamination runoff fluids on sanitizer resistance of acid-adapted Escherichia coli O157:H7 in biofilms. Journal of Food Protection, 66 2258–2266.Google Scholar
  383. Stopforth, J. D., Samelis, J., Sofos, J. N., Kendall, P. A., & Smith, G. C. (2003b). Influence of organic acid concentration on survival of Listeria monocytogenes and Escherichia coli O157:H7 in beef carcass wash water and on model equipment surfaces. Food Microbiology, 20, 651–660.Google Scholar
  384. Stopforth, J. D., Yoon, Y., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., & Sofos, J.N. (2004). Effect of simulated spray chilling with chemical solutions on acid-habituated and non-acid-habituated Escherichia coli O157:H7 cells attached to beef carcass tissue. Journal of Food Protection, 67, 2099–2106.Google Scholar
  385. Stopforth, J. D., Skandamis, P. N., Davidson, P. M., & Sofos, J. N. (2005). Naturally occurring compounds—Animal sources. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 453–505). Boca Raton, FL: Taylor & Francis.Google Scholar
  386. Stopforth. J. D., Sofos, J. N., & Busta, F. F. (2005). Sorbic acid and sorbates. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 49–90). Boca Raton, FL: Taylor & Francis.Google Scholar
  387. Stratford, M., & Eklund, T. (2003). Organic acids and esters. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 48–84). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  388. Summers, W. C. (2001). Bacteriophage therapy. Annual Review of Microbiology, 55, 437–451.Google Scholar
  389. Takikawa, A., Abe, K., Yamamoto, M., Ishimaru, S., Yasui, M., Okubo, Y., & Yokoigawa, K. (2002). Antimicrobial activity of nutmeg against Escherichia coli O157. Journal of Bioscience and Bioengineering, 94, 315–320.Google Scholar
  390. Tatsaguchi, K., Kuwamoto, S., Ogomori M., Ide, T., & Watanabe, T. (1991). Membrane disorders of Escherichia coli cells and liposomes induced by p-hydroxybenzoic acid esters: The antimicrobial action of p-hydroxybenzoic acid esters. Journal of the Food Hygienic Society of Japan, 32, 121–127.Google Scholar
  391. Taylor, J. H., Rogers, S. J., & Holah, J. T. (1999). A comparison of the bactericidal efficacy of 18 disinfectants used in the food industry against Escherichia coli O157:H7 Pseudomonas aeru-ginosa at 10 and 20°C. Journal of Applied Microbiology, 87, 718–725.Google Scholar
  392. Testa, U. (2002). Lactoferrin. In U. Testa (Ed.), Proteins of iron metabolism (pp. 143–222). Boca Raton, FL: CRC Press.Google Scholar
  393. Thomas, A. H. (1986). Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. Journal of Antimicrobial Therapy, 17, 269–279.Google Scholar
  394. Thomas, L. V., & Delves-Broughton, J. (2005). Nisin. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 237–274). Boca Raton, FL: Taylor & Francis.Google Scholar
  395. Thomas, L. V., Clarkson, M. R., & Delves-Broughton, J. (2000). Nisin. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 463–524). Boca Raton, FL: CRC Press.Google Scholar
  396. Ting, H. Y., Ishizaki, S., & Tanaka, M. (1999). -Polylysine improves the quality of surimi products. Journal of Muscle Foods, 10, 279–294.Google Scholar
  397. Tompkin, R. B. (2005). Nitrite. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (3rd ed., pp. 169–236). Boca Raton, FL: Taylor & Francis.Google Scholar
  398. Tompkin, R. B., Christiansen, L. N., & Shaparis, A. B. (1978). Enhancing nitrite inhibition of Clostridium botulinum with isoascorbate in perishable canned cured meat. Applied and Environmental Microbiology, 35, 59–61.Google Scholar
  399. Troller, J. (1980). Influence of water activity on microorganism in foods. Food Technology, 34, 76–80, 82.Google Scholar
  400. United States Department of Agriculture, Food Safety and Inspection Service. (1996). Pathogen reduction: Hazard Analysis and Critical Control Point (HACCP) systems. Final Rule. 61 Fed. Reg. 38805–38989 (to be codified at 9 C.F.R. pt. 304).Google Scholar
  401. United States Department of Agriculture, Food Safety and Inspection Service. (2003a). Food ingredients and sources of radiation listed or approved for use in the production of meat and poultry products. Final Rule. 64 Fed. Reg. 72167–72194 (to be codified at 9 CFR Parts 9 CFR Parts 310, 318, 319, 381 and 424). Retrieved January 7, 2008, from http://www.fsis.usda.gov/ OPPDE/rdad/FRPubs/88-026F.htmGoogle Scholar
  402. United States Department of Agriculture, Food Safety and Inspection Service. (2003b). Control of Listeria monocytogenes in post-lethality exposed ready-to-eat products. Final Rule. 68 Fed. Reg. 34207–34254 (to be codified at 9 CFR Part 430).Google Scholar
  403. United States Department of Agriculture, Food Safety and Inspection Service. (2007). Safe and suitable ingredients used in the production of meat and poultry products (FSIS Directive 7120.1, Amendment 13). Retrieved January 7, 2008, from: http://www.fsis.usda.gov/OPPDE/ rdad/FSISDirectives/7120.1Amend13.pdfGoogle Scholar
  404. United States Department of Agriculture, Food Safety and Inspection Service. (2008). FSIS Directives index. 7,000 series: Processed products. Retrieved January 7, 2008, from http:// www.fsis.usda.gov/Regulations_&_Policies/7000_Series-Processed_Products/index.aspGoogle Scholar
  405. Vasseur, C., Rigaud, N., Hebraud, M., & Labadie, J. (2001). Combined effects of NaCl, NaOH, and biocides (monolaurin or lauric acid) on inactivation of Listeria monocytogenes and Pseudomonas spp. Journal of Food Protection, 64, 1442–1445.Google Scholar
  406. Venkitanarayanan, K. S., Ezeike, G. O., Hung, Y. -C., & Doyle, M. P. (1999). Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes. Applied and Environmental Microbiology, 65, 4276–4279.Google Scholar
  407. Venkitanarayanan, K. S., Ezeike, G. O, Zhao, T., & Doyle, M. P. (1999). Inactivation of Escherichia coli O157:H7 by combinations of GRAS chemicals and temperature. Food Microbiology, 16, 75–82.Google Scholar
  408. Verhamme, I., Storck, J., Racchelli, L., & Lauwers, A. (1988). Lysozyme (N-acetylmuramyl-β(14)glycanohydrolase EC 3.21.17). International Pharmacy Journal, 2, 129–132.Google Scholar
  409. Vignolo, G., Fadda, S., de Kairuz, M. N., der Holgado, A. P., & Oliver, G. (1998). Effects of curing additives in the control of Listeria monocytogenes by lactocin 705 in meat slurry. Food Microbiology, 15, 259–264.Google Scholar
  410. Vote, D. J., Platter, W. J., Tatum, J. D., Schmidt, G. R., Belk, K. E., Smith, G. C., & Speer, N.C. (2000). Injection of beef strip loins with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride to enhance palatability. Journal of Animal Science, 78, 952–957.Google Scholar
  411. Wagner, M. K., & Busta, F. F. (1983). Effect of sodium pyrophosphate in combination with sodium nitrite or sodium nitrite/potassium sorbate on Clostridium botulinum growth and toxin production in beef/pork frankfurter formulations. Journal of Food Science, 48, 990–991.Google Scholar
  412. Wang, L.-L., & Johnson, E. A. (1997). Control of Listeria monocytogenes by monoglycerides in foods. Journal of Food Protection, 60, 131–138.Google Scholar
  413. Ward, S. M., Delaquis, P. J., Holley, R. A., & Mazza, G. (1998). Inhibition of spoilage and pathogenic bacteria on n agar and pre-cooked roast beef by volatile horseradish distillates. Food Research International, 31, 19–26.Google Scholar
  414. Warf, C. C., & Kemp, G. K. (2001). The chemistry and mode of action of acidified sodium chlorite. Paper presented at the Annual Meeting of the Institute of Food Technologists, New Orleans, LA.Google Scholar
  415. Warth, A. D. (1988). Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Applied and Environmental Microbiology, 54, 2091–2095.Google Scholar
  416. Wederquist, H. J., Sofos, J. N., & Schmidt, G. R. (1994). Listeria monocytogenes inhibition in refrigerated vacuum packaged turkey bologna by chemical additives. Journal of Food Science, 59, 498–500.Google Scholar
  417. Weiner, M. L. (1992). An overview of the regulatory status and of the safety of chitin and chitosan as food and pharmaceutical ingredients. In C. J. Brine, P. A. Sandford, & J. P. Kikakis (Eds.), Advances in chitin and chitosan (pp. 663–670). London: Elsevier.Google Scholar
  418. West, P., Kim, J., Huang, T. S., Carter, M., Weese, J. S., & Wei, C. I. (2001). Bactericidal activity of electrolyzed oxidizing water against Escherichia coli, Listeria monocytogenes and Salmonella Enteritidis inoculated on beef and chicken. Paper presented at the Annual Meeting of the Institute of Food Technologists, New Orleans, LA.Google Scholar
  419. White, G. C. (1992). The handbook of chlorination and alternative disinfectants (3rd ed.). New York: Van Nostrand Reinhold.Google Scholar
  420. Whiting, R. C. (1993). Modeling bacterial survival in unfavorable environments. Journal of Industrial Microbiology, 12, 240–246.Google Scholar
  421. Whiting, R. C., & Masana, M. O. (1994). Listeria monocytogenes survival model validated in simulated uncooked-fermented meat products for effects of nitrite and pH. Journal of Food Science, 59, 760–762.Google Scholar
  422. Whitmore, B. B., & Naidu, A. S. (2000). Thiosulfinates. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 265–380). Boca Raton, FL: CRC Press.Google Scholar
  423. Wicklund, S. E., Stetzer, A. J., Tucker, E. M., Nicolalde, C. L., & Brewer, M. S. (2005). Microbiological characteristics of enhancement solutions. Journal of Food Science, 70, 296–300.Google Scholar
  424. Williams-Campbell, A. M., & Jay, J. M. (2002). Effects of diacetyl and carbon dioxide on spoilage microflora in ground beef. Journal of Food Protection, 65, 523–527.Google Scholar
  425. Wills, E. D. (1956). Enzyme inhibition by allicin, the active principle of garlic. Biochemistry, 63, 514–520.Google Scholar
  426. Wong, A. C. L. (1998). Biofilms in food processing environments. Journal of Dairy Science, 81, 2765–2770.Google Scholar
  427. World Health Organization. (2004). Evaluation of certain food additives. (63rd Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Reports Series No. 928.) Geneva, Switzerland: Author. Retrieved January 7, 2008, from http://whqlibdoc.who.int/trs/WHO_TRS_928.pdf.
  428. Yamanaka, S. (1995). Hygiene control technology utilizing electrolyzed oxidizing water. Food Processing Technology, 15, 7–16.Google Scholar
  429. Yang, P. P. W., & Chen, T. C. (1979). Stability of ozone and its germicidal properties on poultry meat microorganisms in liquid phase. Journal of Food Science, 44, 501–504.Google Scholar
  430. Yang, P. P. W., & Johnson, M. G. (2001). Survival and death of Salmonella Typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. Journal of Food Protection, 64, 770–776.Google Scholar
  431. Yates, A., Schlicker, S., & Suitor, C. (1998). Dietary reference intakes: The new basis of recommendations for calcium and related nutrients, B vitamins and choline. Journal of the American Dietetic Association, 98, 699–706.Google Scholar
  432. Yoshida, T., & Nagasawa, T. (2003). ε-poly-L-lysine: Microbial production, biodegradation and application potential. Applied Microbiology and Biotechnology, 62, 21–26.Google Scholar
  433. Zaika, L. L. (1988) Spices and herbs: Their antimicrobial activity and its determination. Journal of Food Safety, 9, 97–118.Google Scholar
  434. Zaika, L. L., & Kim, A. H. (1993). Effect of sodium polyphosphates on growth of Listeria mono-cytogenes Journal of Food Protection, 56, 577–580.Google Scholar
  435. Zhang, S., & Mustapha, A. (1999). Reduction of Listeria monocytogenes and Escherichia coli O157:H7 numbers on vacuum-packaged fresh beef treated with nisin or nisin combined with EDTA. Journal of Food Protection, 62, 1123–1127.Google Scholar
  436. Zhao, T., Doyle, M. P., Kemp, M. C., Howell, R. S., & Zhao, P. (2004). Influence of freezing and freezing plus acidic calcium sulfate and lactic acid addition on thermal inactivation of Escherichia coli O157:H7 in ground beef. Journal of Food Protection, 67, 1760–1764.Google Scholar
  437. Zhu, M., Du, M., Cordray, J., & Ahn, D. U. (2005). Control of Listeria monocytogenes contamination in ready-to-eat meat products. Comprehensive Reviews in Food Science and Food Safety, 4, 34–42.Google Scholar
  438. Zivanovic, S., Chi, S., & Draughton, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70 45–51.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Catherine A. Simpson
    • 1
  • John N. Sofos
    • 1
  1. 1.Center for Meat Safety & Quality, Department of Animal ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations