Advertisement

Fermentation and Acidification Ingredients

  • Frédéric Leroy
  • Luc De Vuyst

Introduction

The distinct sensory qualities and remarkable shelf-life characteristics of fermented sausages, as compared to cooked sausages, are largely due to acidification of the meat batter. Traditionally, acidification of the raw meat is the result of a microbial fermentation process, i.e. lactic acid production by lactic acid bacteria (LAB). Acidification is generally combined with protection from oxygen (stuffing into casings), extensive salting, and curing (Chap. 1), and with an ageing stage for product maturation. The latter stage can be absent, short, or long, depending on the type of product, and leads to drying, resulting in a lower water activity, as well as to a complex and desired flavor formation (Campbell-Platt & Cook, 1995 ; Lücke, 1998). Sometimes, smoking or heating is applied as a last step in the manufacturing process. Heating is common in the United States, where regulations require a core temperature of 58.3°C before selling the end-product (Lücke, 1998). The...

Keywords

Lactic Acid Bacterium Conjugate Linoleic Acid Starter Culture Gluconic Acid Bacteriocin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge financial support from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT), in particular the STWW project Functionality of Novel Starter Cultures in Traditional Fermentation Processes. This work was also supported by the Research Council of the Vrije Universiteit Brussel (OZR, BOF, and IOF projects), the Fund for Scientific Research–Flanders (FWO), and different food companies. FL was supported by a postdoctoral fellowship of the FWO.

References

  1. Aasen, I. M., Markussen, S., Møretrø, T., Katla, T., Axelsson, L., & Naterstad, K. (2003). Interactions of the bacteriocins sakacin P and nisin with food constituents.International Journal of Food Microbiology,87, 35–43.CrossRefGoogle Scholar
  2. Alonso, L., Cuesta, E. P., & Gilliland, S. E. (2003). Production of conjugated linoleic acid byLactobacillus acidophilusandLactobacillus caseiof human intestinal origin.Journal of Dairy Science,86, 1941–1946.CrossRefGoogle Scholar
  3. Ammon, A., Petersen, L. R., & Karch, H. (1999). A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain ofEscherichia coliO157:H7.Journal of Infectious Diseases,179, 1274–1277.CrossRefGoogle Scholar
  4. Ananou, S., Garriga, M., Hugas, M., Maqueda, M., Martinez-Bueno, M., Galvez, A., & Valdivia, E. (2005). Control ofListeria monocytogenesin model sausages by enterocin AS-48.International Journal of Food Microbiology,103, 179–190.CrossRefGoogle Scholar
  5. Andlauer, W., & Fürst, P. (2002). Nutraceuticals: A piece of history, present status and outlook.Food Research International,35, 171–176.CrossRefGoogle Scholar
  6. Andrighetto, C., Zampese, L., & Lombardi, A. (2001). RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy).Letters in Applied Microbiology,33, 26–30.CrossRefGoogle Scholar
  7. Ansorena, D., Gimeno, O., Astiasarán, I., & Bello, J. (2001). Analysis of volatile compounds by GC-MS of a dry fermented sausage: Chorizo de Pamplona.Food Research International,34, 67–75.CrossRefGoogle Scholar
  8. Ansorena, D., Montel, M. C., Rokka, M., Talon, R., Eerola, S., Rizzo, A., Raemaekers, M., & Demeyer, D. (2002). Analysis of biogenic amines in northern and southern European sausages and role of flora in amine production.Meat Science,61, 141–147.CrossRefGoogle Scholar
  9. Arihara, K. (2006). Strategies for designing novel functional meat products.Meat Science,74, 219–229.CrossRefGoogle Scholar
  10. Arihara, K., Ota, H., Itoh, M., Kondo, Y., Sameshima, T., Yamanaka, H., Akimoto, M., Kanai, S., & Miki, T. (1998).Lactobacillus acidophilusgroup lactic acid bacteria applied to meat fermentation.Journal of Food Science,63, 544–547.CrossRefGoogle Scholar
  11. Aymerich, M. T., Garriga, M., Monfort, J. M., Nes, I., & Hugas, M. (2000). Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: Characterization of bacteriocins.Food Microbiology,17, 33–45.CrossRefGoogle Scholar
  12. Barbut, S. (2006). Fermentation and chemical acidification of salami-type products — Effect on yield, texture and microstructure.Journal of Muscle Foods,17, 34–42.CrossRefGoogle Scholar
  13. Baruzzi, F., Matarante, A., Caputo, L., & Morea, M. (2006). Molecular and physiological characterization of natural microbial communities isolated from a traditional Southern Italian processed sausage.Meat Science,72, 261–269.CrossRefGoogle Scholar
  14. Beck, H. C., Hansen, A. M., & Lauritsen, F.R. (2004). Catabolism of leucine to branched-chain fatty acids inStaphylococcus xylosus.Journal of Applied Microbiology,96, 1185–1193.CrossRefGoogle Scholar
  15. Belury, M. A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action.Annual Review in Nutrition,22, 505–531.CrossRefGoogle Scholar
  16. Benito, M. J., Rodríguez, M. Martín, A., Aranda, E., & Córdoba, J. J. (2004). Effect of the fungal protease EPg222 on the sensory characteristics of dry fermented sausage “salchichón” ripened with commercial starter cultures.Meat Science,67, 497–505.CrossRefGoogle Scholar
  17. Benkerroum, N., Daoudi, A., & Kamal, M. (2003). Behaviour ofListeria monocytogenesin raw sausages (merguez) in presence of a bacteriocin-producing lactococcal strain as a protective culture.Meat Science,63, 479–484.CrossRefGoogle Scholar
  18. Benkerroum, N., Daoudi, A., Hamraoui, T., Ghalfi, H., Thiry, C., Duroy, M., Evrart, P., Roblain, D., & Thonart, P. (2005). Lyophilized preparations of bacteriocinogenicLactobacillus curvatusandLactococcus lactissubsp.lactisas potential protective adjuncts to controlListeria monocytogenesin dry-fermented sausages.Journal of Applied Microbiology,98, 56–63.CrossRefGoogle Scholar
  19. Benoit, V., Mathis, R., & Lefebvre, G. (1994). Characterization of brevicin 27, a bacteriocin syn-thetized byLactobacillus brevisSB27.Current Microbiology,28, 53–61.CrossRefGoogle Scholar
  20. Beriain, M. J., Lizaso, G., Chasco, J. (2000). Free amino acids and proteolysis involved in ‘salchichon’ processing.Food Control,11, 41–47.CrossRefGoogle Scholar
  21. Berry, E. D., Liewen, M. B., Mandigo, R. W., & Hutkins, R. W. (1990). Inhibition ofListeria monocytogenesby bacteriocin-producingPediococcusduring the manufacture of fermented semidry sausage.Journal of Food Protection,53, 194–197.Google Scholar
  22. Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M., & Vidal-Carou, M. C. (2000). Reduction of biogenic amine formation using a negative amino acid-decarboxylase starter culture for fermentation of Fuet sausages.Journal of Food Protection,63, 237–243.Google Scholar
  23. Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M. C. (2000). Mixed starter cultures to control biogenic amine production in dry fermented sausages.Journal of Food Protection,63, 1556–1562.Google Scholar
  24. Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M. C. (2001). Effectiveness of aLactobacillus sakeistarter culture in the reduction of biogenic amine accumulation as a function of the raw material quality.Journal of Food Protection,64, 367–373.Google Scholar
  25. Bremer, V., Leitmeyer, K., Jensen, E., Metzel, U., Meczulat, H., Weise, E., Werber, D., Tschaepe, H., Kreienbrock, L., Glaser, S., & Ammon, A. (2004). Outbreak ofSalmonellaGoldcoast infections linked to consumption of fermented sausage, Germany 2001.Epidemiology and Infection,132, 881–887.CrossRefGoogle Scholar
  26. Bruna, J. M., Fernández, M., Hierro, E. M., Ordóñez, J. A., & de la Hoz, L. (2000). Improvement of the sensory properties of dry fermented sausages by the superficial inoculation and/or the addition of intracellular extracts ofMucor racemosus.Journal of Food Science,65, 731–738.CrossRefGoogle Scholar
  27. Bruna, J. M., Hierro, E. M., de la Hoz, L., Mottram, D. S., Fernández, M., & Ordóñez, J. A. (2001). The contribution ofPenicillium aurantiogriseumto the volatile composition and sensory quality of dry fermented sausages.Meat Science,59, 97–107.CrossRefGoogle Scholar
  28. Bruna, J. M., Hierro, E. M., de la Hoz, L., Mottram, D. S., Fernández, M., & Ordóñez, J. A. (2003). Changes in selected biochemical and sensory parameters as affected by the superficial inoculation ofPenicillium camembertion dry fermented sausages.Meat Science,85, 111–125.Google Scholar
  29. Buncic, S., Paunovic, L., Teodorovic, V., Radisic, D., Vojinovic, G., Smiljanic, D., & Baltic, M. (1993). Effects of glucono-delta-lactone andLactobacillus plantarumon the production of histamine and tyramine in fermented sausages.International Journal of Food Microbiology,17, 303–309.CrossRefGoogle Scholar
  30. Callewaert, R., Hugas, M., & De Vuyst, L. (2000). Competitiveness and bacteriocin production ofEnterococciin the production of Spanish-style dry fermented sausages.International Journal of Food Microbiology,57, 33–42.CrossRefGoogle Scholar
  31. Campanini, M., Pedrazzoni, I., Barbuti, S., & Baldini, P. (1993). Behaviour ofListeria monocytogenesduring the maturation of naturally and artificially contaminated salami: Effect of lactic acid bacteria starter cultures.International Journal of Food Microbiology,20, 169–175.CrossRefGoogle Scholar
  32. Campbell-Platt, G., & Cook, P. E. (1995).Fermented meats. London: Blackie Academic and Professional.Google Scholar
  33. Cavadini, C, Hertel, C., & Hammes, W. P. (1996). Stable expression of the lysostaphin gene in meat lactobacilli by introducing deletions within the prosequence.Systematic and Applied Microbiology,19, 21–27.Google Scholar
  34. Cavadini, C, Hertel, C., & Hammes, W. P. (1998). Application of lysostaphin-producing lactoba-cilli to control staphylococcal food poisoning in meat products.Journal of Food Protection,61, 419–424.Google Scholar
  35. Claeys, E., De Smet, S., Balcaen, A., Raes, K., & Demeyer, D. (2004). Quantification of fresh meat peptides by SDS-PAGE in relation to ageing time and taste intensity.Meat Science,67, 281–288.CrossRefGoogle Scholar
  36. Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation.International Journal of Food Microbiology,71, 1–20.CrossRefGoogle Scholar
  37. Coakley, M., Ross, R. P., Nordgren, M., Fitzgerald, G., Devery, R., & Stanton, C. (2003). Conjugated linoleic acid biosynthesis by human-derivedBifidobacteriumspecies.Journal of Applied Microbiology,94, 138–145.CrossRefGoogle Scholar
  38. Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., & Comi, G. (2006). Dynamics and characterization of yeasts during natural fermentation of Italian sausages.FEMS Yeast Research,6, 692–701.CrossRefGoogle Scholar
  39. Code of Federal Regulations. (2006). Glucono delta-lactone.21 C.F.R. § 184.1318. Washington, DC: U.S. Government Printing Office. Retrieved April 8, 2007, fromhttp://a257.g.akamaitech.net/7/257/2422/10apr20061500/edocket.access.gpo.gov/cfr_2006/aprqtr/pdf/21cfr184.1318.pdf
  40. Coffey, A., Ryan, M., Ross, R. P., Hill, C., Arendt, E., & Schwarz, G. (1998). Use of a broad-host-range bacteriocin-producingLactococcus lactistransconjugant as an alternative starter for salami manufacture.International Journal of Food Microbiology,43, 231–235.CrossRefGoogle Scholar
  41. Colak, H., Hampikyan, H., Ulusoy, B., & Bingol E. B. (2007). Presence ofListeria monocytogenesin Turkish style fermented sausage (sucuk).Food Control,18, 30–32.CrossRefGoogle Scholar
  42. Comi, G., Urso, R., Iacumin, L., Rantsiou, K., Cattaneo, P., Cantoni, C., & Cocolin, L. (2005). Characterisation of naturally fermented sausages produced in the North East of Italy.Meat Science,69, 381–392.CrossRefGoogle Scholar
  43. Coppola, R., Giagnacovo, B., Iorizzo, M., & Grazia, L. (1998). Characterization of lactobacilli involved in the ripening of soppressata molisana, a typical southern Italy fermented sausage.Food Microbiology,15, 347–353.CrossRefGoogle Scholar
  44. Coventry, J., & Hickey, M. W. (1991). Growth-characteristics of meat starter cultures.Meat Science,30, 41–48.CrossRefGoogle Scholar
  45. Coventry, J., & Hickey, M. W. (1993). The effect of spices and manganese on meat starter culture activity.Meat Science,33, 391–399.CrossRefGoogle Scholar
  46. De Martinis, E. C. P., & Franco, B. D. G. M. (1998). Inhibition ofListeria monocytogenesin a pork product by aLactobacillus sakestrain.International Journal of Food Microbiology,42, 119–126.CrossRefGoogle Scholar
  47. De Martinis, E. C. P., Alves, V. F., & Franco, B. D. G. M. (2002). Fundamentals and perspectives for the use of bacteriocins produced by lactic acid bacteria in meat products.Food Reviews International,18, 191–208.CrossRefGoogle Scholar
  48. Dicks, L. M. T., Mellet, F. D., & Hoffman, L. C. (2004). Use of bacteriocin-producing starter cultures ofLactobacillus plantarumandcurvatusin production of ostrich meat salami.Meat Science,66, 703–708.CrossRefGoogle Scholar
  49. Enan, G., El Essawy, A. A., Uyttendaele, M., & Debevere, J. (1996). Antibacterial activity ofLactobacillus plantarumUG1 isolated from dry sausage: Characterization, production and bactericidal action of plantaricin UG1.International Journal of Food Microbiology,30, 189–215.CrossRefGoogle Scholar
  50. Encinas, J. P., Sanz, J. J., García-López, M. L., & Otero, A. (1999). Behaviour ofListeriaspp. in naturally contaminated chorizo (Spanish fermented sausage).International Journal of Food Microbiology,46, 167–171.CrossRefGoogle Scholar
  51. Engelvin, G., Feron, G., Perrin, C., Mollet, D. & Talon, R. (2000). Identification of β-oxidation and thioesterase activities inStaphylococcus carnosus833 strain.FEMS Microbiology Letters,190, 115–120.Google Scholar
  52. Ennahar, S., Sonomoto, K., & Ishizaki, A. (1999). Class IIa bacteriocins from lactic acid bacteria:Antibacterial activity and food preservation.Journal of Bioscience and Bioengineering,87705–716.CrossRefGoogle Scholar
  53. Erkkilä, S., & Petäjä, E. (2000). Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use.Meat Science,55, 297–300.CrossRefGoogle Scholar
  54. Erkkilä, S., Petäjä, E., Eerola, S., Lilleberg, L., Mattila-Sandholm, T., & Suihko, M.-L. (2001). Flavour profiles of dry sausages fermented by selected novel meat starter cultures.Meat Science,58, 111–116.CrossRefGoogle Scholar
  55. Erkkilä, S., Suihko, M.-L., Eerola, S., Petäjä, E., & Mattila-Sandholm, T. (2001). Dry sausage fermented byLactobacillus rhamnosusstrains.International Journal of Food Microbiology,64, 205–210.CrossRefGoogle Scholar
  56. European Parliament and Council (2006).Directive No. 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners(consolidated version of August 15, 2006; pp. 1–57). Retrieved May 16, 2007, from European Union Law Web Site:http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1995/L/01995L0002—20060815-en.pdf
  57. Fadda, S., Vignolo, G., & Oliver, G. (2001). Tyramine degradation and tyramine/histamine production by lactic acid bacteria andKocuriastrains.Biotechnology Letters,23, 2015–2019.CrossRefGoogle Scholar
  58. Fadda, S., Lebert, A., Leroy-Sétrin, S., & Talon, R. (2002). Decarboxylase activity involved in methyl ketone production byStaphylococcus carnosus833, a strain used in sausage fermentation.FEMS Microbiology Letters,210, 209–214.CrossRefGoogle Scholar
  59. Farber, J. M., Daley, E., Holley, R., & Usborne, W. R. (1993). Survival ofListeria monocytogenesduring the production of uncooked German, American and Italian-style fermented sausages.Food Microbiology,10, 123–132.CrossRefGoogle Scholar
  60. Ferreira, V., Barbosa, J., Silva, J., Felicio, M. T., Mena, C., Hogg, T., Gibbs, P., & Teixeira, P. (2007). Characterisation of alheiras, traditional sausages produced in the North of Portugal, with respect to their microbiological safety.Food Control,18, 436–440.CrossRefGoogle Scholar
  61. Flores, M., Durá, M.-A., Marco, A., & Toldrá, F. (2004). Effect ofDebaryomycesspp. on aroma formation and sensory quality of dry-fermented sausages.Meat Science,68, 439–446.CrossRefGoogle Scholar
  62. Foegeding, P. M., Thomas, A. B., Pilkington, D. H., & Klaenhammer, T. R. (1992). Enhanced control ofListeria monocytogenesby in situ-produced pediocin during dry fermented sausage production.Applied and Environmental Microbiology,58, 884–890.Google Scholar
  63. Fontan, M. C. G., Lorenzo, J. M., Parada, A., Franco, I., & Carballo, J. (2007). Microbiological characteristics of “androlla”, a Spanish traditional pork sausage.Food Microbiology, 24, 52–58.CrossRefGoogle Scholar
  64. Food and Agriculture Organization/World Health Organization. (2001).Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Retrieved May 25, 2007, from World Health Organization Web Site:http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf
  65. Gahan, C. G. M., O'Driscoll, B., & Hill, C. (1996). Acid adaptation ofListeria monocytogenescan enhance survival in acidic foods and during milk fermentation.Applied and Environmental Microbiology,62, 3128–3132.Google Scholar
  66. Gaier, W., Vogel, R. F., & Hammes, W. P. (1992). Cloning and expression of the lysostaphin gene inBacillus subtilisandLactobacillus casei.Letters in Applied Microbiology,14, 72–76.CrossRefGoogle Scholar
  67. Gänzle, M. G., & Vogel, R. F. (2003). Studies on the mode of action of reutericyclin.Applied and Environmental Microbiology,69, 1305–1307.CrossRefGoogle Scholar
  68. García, M. L., Casas, C., Toledo, V. M, & Selgas, M. D. (2001). Effect of selected mould strains on the sensory properties of dry fermented sausages.European Food Research and Technology,212, 287–291.CrossRefGoogle Scholar
  69. García-Varona, M., Santos, E. M., Jaime, I., & Rovira, J. (2000). Characterisation ofMicrococcaceaeisolated from different varieties of chorizo.International Journal of Food Microbiology,54, 189–195.CrossRefGoogle Scholar
  70. Gardini, F., Suzzi, G., Lombardi, A., Galgano, F., Crudele, M. A., Andrighetto, C., Schirone, M., & Tofalo, R. (2001). A survey of yeasts in traditional sausages of southern Italy.FEMS Yeast Research,1, 161–167.CrossRefGoogle Scholar
  71. Gardini, F., Matruscelli, M., Crudele, M. A., Paparella, A., & Suzzi, G. (2002). Use ofStaphylococcus xylosusas a starter culture in dried sausages: Effect on biogenic amine content.Meat Science,61, 275–283.CrossRefGoogle Scholar
  72. Garriga, M., Hugas, M., Aymerich, T., & Monfort, J. M. (1993). Bacteriocinogenic activity of lactobacilli from fermented sausages.Journal of Applied Bacteriology,75, 142–148.Google Scholar
  73. Garriga, M., Hugas, M., Gou, P., Aymerich, M. T., Arnau, J., & Monfort, J. M. (1996). Technological and sensorial evaluation ofLactobacillusstrains as starter cultures in fermented sausages.International Journal of Food Microbiology,32, 173–183.CrossRefGoogle Scholar
  74. Geisen, R., Ständner, L., & Leistner, L. (1990). New mould starter cultures by genetic modification.Food Biotechnology,4, 497–503.CrossRefGoogle Scholar
  75. Gianfranceschi, M., Gattuso, A., Fiore, A., D'Ottavio, M. C., Casale, M., Palumbo, A., & Aureli, P. (2006). Survival ofListeria monocytogenesin uncooked Italian dry sausage (Salami).Journal of Food Protection,69, 1533–1538.Google Scholar
  76. González-Fernández, C., Santos, E. M., Jaime, I., & Rovira, J. (2003). Influence of starter cultures and sugar concentrations on biogenic amine contents in chorizo dry sausage.Food Microbiology,20, 275–284.CrossRefGoogle Scholar
  77. González-Fernández, C., Santos, E. M., Jaime, I., Rovira, J., & Jaime, I. (2006). Effect of sugar concentration and starter culture on instrumental and sensory textural properties of chorizo-Spanish dry-cured sausage.Meat Science,74, 467–475.CrossRefGoogle Scholar
  78. Hammes, W. P., & Hertel, C. (1998). New developments in meat starter cultures.Meat Science,49, Suppl. 1, 125–138.CrossRefGoogle Scholar
  79. Herranz, B., Fernández, M., Hierro, E., Bruna J. M., Ordóñez, J. A., & de la Hoz, L. (2004). Use ofLactococcus lactissubsp.cremorisNCDO 763 and α-ketoglutarate to improve the sensory quality of dry fermented sausages.Meat Science,66, 151–163.CrossRefGoogle Scholar
  80. Holzapfel, W. H. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries.International Journal of Food Microbiology,75, 197–212.CrossRefGoogle Scholar
  81. Hugas, M. (1998). Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products.Meat Science,49, Suppl. 1, 139–150.CrossRefGoogle Scholar
  82. Hugas, M., & Monfort, J. M. (1997). Bacterial starter cultures for meat fermentation.Food Chemistry,59, 547–554.CrossRefGoogle Scholar
  83. Hugas, M., Garriga, M., Aymerich, M. T., & Monfort, J. M. (1995). Inhibition ofListeriain dry fermented sausages by the bateriocinogenicLactobacillus sakeiCTC 494.Journal of Applied Bacteriology,79, 322–330.Google Scholar
  84. Hugas, M., Neumeyer, B., Pagés, F., Garriga, M., & Hammes, W. P. (1996). Antimicrobial activity of bacteriocin-producing cultures in meat products: 2. Comparison of bacteriocin-producing lactobacilli onListeriagrowth in fermented sausages.Fleischwirtschaft,76, 649–652.Google Scholar
  85. Hugas, M., Garriga, M., Pascual, M., Aymerich, M. T., & Monfort, J. M. (2002). Enhancement of sakacin K activity againstListeria monocytogenesin fermented sausages with pepper or manganese as ingredients.Food Microbiology,19, 519–528.CrossRefGoogle Scholar
  86. Hugas, M., Garriga, M. & Aymerich, T. (2003). Functionality of enterococci in meat products.International Journal of Food Microbiology,88, 223–233.CrossRefGoogle Scholar
  87. Hugenholtz, J., Sybesma, W., Groot, M. N., Wisselink, W., Ladero, V., Burgess, K., van Sinderen, D., Piard, J. C., Eggink, G., Smid, E. J., Savoy, G., Sesma, F., Jansen, T., Hols, P., & Kleerebezem, M. (2002). Metabolic engineering of lactic acid bacteria for the production of neutraceuticals.Antonie Van Leeuwenhoek,82, 217–235.CrossRefGoogle Scholar
  88. Incze, K. (1998). Dry fermented sausages.Meat Science,49, Suppl. 1, 169–177.CrossRefGoogle Scholar
  89. Jahreis, G., Vogelsang, H., Kiessling, G., Schubert, R., Bunte, C., & Hammes, W. P. (2002). Influence of probiotic sausage (Lactobacillus paracasei) on blood lipids and immunological parameters of healthy volunteers.Food Research International,35, 133–138.CrossRefGoogle Scholar
  90. Jiang, J., Bjorck, L., & Fondén, R. (1998). Production of conjugated linoleic acid by dairy starter cultures.Journal of Applied Microbiology,85, 95–102.CrossRefGoogle Scholar
  91. Jiménez-Colmenero, F., Carballo, J., & Cofrades, S. (2001). Healthier meat and meat products: Their role as functional foods.Meat Science,59, 5–13.CrossRefGoogle Scholar
  92. Kenneally, P. M., Leuschner, R. G., & Arendt, E. K. (1998). Evaluation of the lipolytic activity of starter cultures for meat fermentation purposes.Journal of Applied Microbiology,84, 839–846.CrossRefGoogle Scholar
  93. Klingberg, T. D., & Budde, B. B. (2006). The survival and persistence in the human gastrointestinal tract of five potential probiotic lactobacilli consumed as freeze-dried cultures or as probiotic sausage.International Journal of Food Microbiology,109, 157–159.CrossRefGoogle Scholar
  94. Klingberg, T. D., Axelsson, L., Naterstad, K., Elsser, D.,& Budde, B. B. (2005). Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages.International Journal of Food Microbiology,105, 419–431.CrossRefGoogle Scholar
  95. Klingberg, T. D., Pedersen, M. H., Cencic, A., & Budde, B. B. (2005). Application of measurements of transepithelial electrical resistance of intestinal epithelial cell monolayers to evaluate probiotic activity.Applied and Environmental Microbiology 71, 7528–7530.CrossRefGoogle Scholar
  96. Knorr, D. (1998). Technology aspects related to microorganisms in functional foods.Trends in Food Science and Technology 9, 295–306.CrossRefGoogle Scholar
  97. Komprda, T., Smělá, D., Pechová, P., Kalhotka, L., Štencl, J.,& Klejdus, B. (2004). Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages.Meat Science. 67, 607–616.CrossRefGoogle Scholar
  98. Kröckel, L. (2006). Use of probiotic bacteria in meat products.Fleischwirtschaft 86, 109–113.Google Scholar
  99. Kulea an, H.,& Çakmakçi, M. L. (2002). Effect of reuterin produced byLactobacillus reuterion the surface of sausages to inhibit the growth ofListeria monocytogenesandSalmonellaspp.Nahrung/Food 46, 408–410.CrossRefGoogle Scholar
  100. Lahti, E., Johansson, T., Honkanen-Buzalski, T., Hill, P.,& Nurmi, E. (2001). Survival and detection of Escherichia coli O157:H7 and Listeria monocytogenes during the manufacture of dry sausage using two different starter cultures. Food Microbiology.18, 75–85.CrossRefGoogle Scholar
  101. Laich, F., Fierro, F., Cardoza, R. E., & Martin, J. F. (1999). Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Applied and Environmental Microbiology, 65, 1236–1240.Google Scholar
  102. Larrouture, C., Ardaillon, V., Pépin, M., & Montel, M. C. (2000). Ability of meat starter cultures to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiology 17, 563–570.CrossRefGoogle Scholar
  103. Larrouture-Thiveyrat, C., & Montel, M. C. (2003). Effects of environmental factors on leucine catabolism by Carnobacterium piscicola International Journal of Food Microbiology 25 177–184.CrossRefGoogle Scholar
  104. Leroy, F., & De Vuyst, L. (1999a). Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Applied and Environmental Microbiology 65, 974–981.Google Scholar
  105. Leroy, F., & De Vuyst, L. (1999b). The presence of salt and curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Applied and Environmental Microbiology 65, 5350–5356.Google Scholar
  106. Leroy, F., & De Vuyst, L. (2000). Chapter 22 — Sakacins. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 589–610). Boca Raton, FL: CRC Press LLC.Google Scholar
  107. Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food industry. Trends in Food Science and Technology 15, 67–78.CrossRefGoogle Scholar
  108. Leroy, F., & De Vuyst, L. (2005). Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. International Journal of Food Microbiology 100, 141–152.CrossRefGoogle Scholar
  109. Leroy, F., Verluyten, J., Messens, W., & De Vuyst, L. (2002). Modelling contributes to the understanding of the different behaviour of bacteriocin-producing strains in a meat environment. International Dairy Journal 12, 247–253.CrossRefGoogle Scholar
  110. Leroy, F., Lievens, K., & De Vuyst, L. (2005a). Modeling bacteriocin resistance and inactivation of Listeria innocua LMG 13568 by Lactobacillus sakei CTC 494 under sausage fermentation conditions. Applied and Environmental Microbiology 71, 7567–7570.CrossRefGoogle Scholar
  111. Leroy, F., Lievens, K., & De Vuyst, L. (2005b). Interactions of meat-associated bacteriocin-pro-ducing Lactobacilli with Listeria innocua under stringent sausage fermentation conditions. Journal of Food Protection 68, 2078–2084.Google Scholar
  112. Leroy, F., Verluyten J., & De Vuyst, L. (2006). Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology 106, 270–285.CrossRefGoogle Scholar
  113. Leuschner, R. G. K., & Hammes, W. P. (1998). Tyramine degradation by Micrococci during ripening of fermented sausages. Meat Science 49, 289–296.CrossRefGoogle Scholar
  114. Lin, M. Y., & Young, C. M. (2000). Folate levels in cultures of lactic acid bacteria. International Dairy Journal 10, 409–413.CrossRefGoogle Scholar
  115. Lopes, M. D. S., Cunha, A. E., Clemente, J. J., Carrondo, M. J. T., & Crespo, M. T. B. (1999). Influence of environmental factors on lipase production by Lactobacillus plantarum Applied Microbiology and Biotechnology 51, 249–254.CrossRefGoogle Scholar
  116. López-Díaz, T. M., Santos, J. A., García-López, M. L., & Otero, A. (2001). Surface mycoflora of a Spanish fermented meat sausage and toxigenicity of Penicillium isolates. International Journal of Food Microbiology 68, 69–74.CrossRefGoogle Scholar
  117. Lücke, F.-K. (1998). Fermented sausages. In B. J. B. Wood (Ed.), Microbiology of fermented foods (pp. 441–483). London: Blackie Academic and Professional.Google Scholar
  118. Lücke, F.-K. (2000). Utilization of microbes to process and preserve meat. Meat Science 56 105–115.CrossRefGoogle Scholar
  119. Maijala, R. L., Eerola, S. H., Aho, M. A., & Hirn, J. A. (1993). The effect of GdL-induced pH decrease on the formation of biogenic amines in meat.Journal of Food Protection 56 125–129.Google Scholar
  120. Martuscelli, M., Crudele, M. A., Gardini, F., & Suzzi, G. (2000). Biogenic amine formation and oxidation by Staphylococcus xylosus from artisanal fermented sausages. Letters in Applied Microbiology 31, 228–232.CrossRefGoogle Scholar
  121. Masson, F., Hinrichsen, L., Talon, R., & Montel, M. C. (1999). Factors influencing leucine catabo-lism by a strain of Staphylococcus carnosus International Journal of Food Microbiology 49 173–178.CrossRefGoogle Scholar
  122. Mataragas, M., Metaxopoulos, J., & Drosinos, E. H. (2002). Characterization of two bacteriocins produced by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausage. World Journal of Microbiology and Biotechnology 18, 847–856.CrossRefGoogle Scholar
  123. Mataragas, M., Metaxopoulos, J., Galiotou, M., & Drosinos, E. H. (2003). Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science 64, 265–271.CrossRefGoogle Scholar
  124. McMullen, L. M., & Stiles, M. E. (1996). Potential for use of bacteriocin-producing lactic acid bacteria in the preservation of meats. Journal of Food Protection, Suppl., 64–71.Google Scholar
  125. Messens, W., Verluyten, J., Leroy, F., & De Vuyst, L. (2003). Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. International Journal of Food Microbiology 81, 41–52.CrossRefGoogle Scholar
  126. Messi, P., Bondi, M., Sabia, C., Battini, R., & Manicardi, G. (2001). Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. International Journal of Food Microbiology 64, 193–198.CrossRefGoogle Scholar
  127. Moller, J. K. S, Jensen, J. S., Skibsted, L. H., & Knochel, S. (2003). Microbial formation of nitrite-cured pigment, nitrosylmyoglobin, from metmyoglobin in model systems and smoked fermented sausages by Lactobacillus fermentum strains and a commercial starter culture. European Food Research and Technology 216, 463–469.Google Scholar
  128. Molly, K., Demeyer, D., Civera, T., & Verplaetse, A. (1996). Lipolysis in a Belgian sausage: Relative importance of endogenous and bacterial enzymes.Meat Science 43, 235–244.CrossRefGoogle Scholar
  129. Montel, M. C., Reitz, J., Talon, R., Berdagué, J. L., & Rousset-Akrim, S. (1996). Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiology 13, 489–499.CrossRefGoogle Scholar
  130. Morishita, T., Tamura, N., Makino, T., & Kudo, S. (1999). Production of menaquinones by lactic acid bacteria. Journal of Dairy Science 82, 1897–1903.CrossRefGoogle Scholar
  131. Muthukumarasamy, P., & Holley, R. A. (2007). Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria.Food Microbiology 24, 82–88.CrossRefGoogle Scholar
  132. Nightingale, K. K., Thippareddi, H., Phebus, R. K., Marsden, J. L., & Nutsch, A. L. (2006). Validation of a traditional Italian-style salami manufacturing process for control of Salmonella and Listeria monocytogenes Journal of Food Protection 69, 794–800.Google Scholar
  133. Niku-Paavola, M.-L., Laitila, A., Mattila-Sandholm, T., & Haikara, A. (1999). New types of antimicrobial compounds produced by Lactobacillus plantarum Journal of Applied Microbiology 86, 29–35.CrossRefGoogle Scholar
  134. Normanno, G., Dambrosio, A., Parisi, A., Quaglia, N. C., Laporta, L., & Celano, G. (2002).Survival of Escherichia coli O157:H7 in a short ripened fermented sausage. Italian Journal of Food Science 14, 181–185.Google Scholar
  135. Olesen, P. T., & Stahnke, L. H. (2000). The influence of Debaryomyces hansenii and Candida utilis on the aroma formation in garlic spiced fermented sausages and model minces. Meat Science 56, 357–368.CrossRefGoogle Scholar
  136. Olesen, P. T., & Stahnke, L. H. (2003). The influence of precultivation parameters on the catabo-lism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus.Food Microbiology 20, 621–629.CrossRefGoogle Scholar
  137. Olesen, P. T., & Stahnke, L. H. (2004). The influence of environmental parameters on the catabo-lism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus.Food Microbiology 21, 43–50.CrossRefGoogle Scholar
  138. Olesen, P. T., Meyer, A. S., & Stahnke, L. H. (2004). Generation of flavour compounds in fermented sausages — The influence of curing ingredients, Staphylococcus starter culture and ripening time.Meat Science 66, 675–687.CrossRefGoogle Scholar
  139. Ordóñez, J. A., Hierro, E. M., Bruna, J. M., & de la Hoz, L. (1999). Changes in the components of dry-fermented sausages during ripening.Critical Reviews in Food Science and Nutrition 39, 329–367.CrossRefGoogle Scholar
  140. Papamanoli, E., Kotzekidou, P., Tzanetakis, N., & Litopoulou-Tzanetaki, E. (2002).Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiology 19, 441–449.CrossRefGoogle Scholar
  141. Papamanoli,E.,Tzanetakis,N., Litopoulou-Tzanetaki, E., Kotzekidou,P.(2003).Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties.Meat Science 65, 859–867.CrossRefGoogle Scholar
  142. Parente, E., Grieco, S., & Crudele, M. A. (2001). Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy).Journal of Applied Bacteriology.90, 943–952.Google Scholar
  143. Pennacchia, C., Ercolini, D., Blaiotta, G., Pepe, O., Mauriello, G., & Villani, F. (2004). Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics.Meat Science 67, 309–317.CrossRefGoogle Scholar
  144. Pennacchia, C., Vaughan, E. E., & Villani, F. (2006). Potential probiotic Lactobacillus strains from fermented sausages: Further investigations on their probiotic properties.Meat Science 73 90–101. Pichner, R., Hechelmann, H., Gareis, M., & Steinruck, H. (2006). Shigatoxin producing Escherichia coli (STEC) in conventionally and organically produced salami products Fleischwirtschaft 86, 112–114.CrossRefGoogle Scholar
  145. Pichner, R., Hechelmann, H., Gareis, M., & Steinruck, H. (2006). Shigatoxin producing Escherichia coli (STEC) in conventionally and organically produced salami products Fleischwirtschaft 86, 112–114.Google Scholar
  146. Pidcock, K., Heard, G. M., & Henriksson, A. (2002). Application of nontraditional meat starter cultures in production of Hungarian salami.International Journal of Food Microbiology.76 75–81.CrossRefGoogle Scholar
  147. Rantsiou, K., Drosinos, E. H., Gialitaki, M., Urso, R., Krommer, J., Gasparik-Reichardt, J., Tóth,S., Metaxopoulos, I., Comi, G., & Cocolin, L. (2005). Molecular characterization of Lactobacillus species isolated from naturally fermented sausages produced in Greece,Hungary and Italy.Food Microbiology.22, 19–28.CrossRefGoogle Scholar
  148. Rebecchi, A., Crivori, S., Sarra, P. G., & Cocconcelli, P. S. (1998). Physiological and molecular techniques for the study of bacterial community development in sausage fermentation.Journal of Applied Microbiology.84, 1043–1049.CrossRefGoogle Scholar
  149. Rekhif, N., Atrih, A., & Lefebvre, G. (1995). Activity of plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum.SA6 isolated from fermented sausage.Journal of Applied Bacteriology 78, 349–358.Google Scholar
  150. Rosa, C. M., Franco, B. D. G. M., Montville, T. J., & Chikindas, M. L. (2002). Purification and mechanistic action of a bacteriocin produced by a Brazilian sausage isolate, Lactobacillus sake 2a. Journal of Food Safety 22, 39–54.CrossRefGoogle Scholar
  151. Ross, R. P., Morgan, S., & Hill, C. (2002). Preservation and fermentation: Past, present and future.International Journal of Food Microbiology 79, 3–16.CrossRefGoogle Scholar
  152. Sabia, C., de Niederhäusern, S., Messi, P., Manicardi, G., & Bondi, M. (2003). Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages (“cacciatore”). International Journal of Food Microbiology 87, 173–179.CrossRefGoogle Scholar
  153. Samelis, J., Roller, S., & Metaxopoulos, J. (1994). Sakacin B, a bacteriocin produced by Lactobacillus sake isolated from Greek dry fermented sausage.Journal of Applied Bacteriology 76, 475–486.Google Scholar
  154. Samelis, J., Metaxopoulos, J., Vlassi, M., & Pappa, A. (1998). Stability and safety of traditional Greek salami — A microbiological ecology study. International Journal of Food Microbiology 44, 69–82.CrossRefGoogle Scholar
  155. Sameshima, T., Magome, C., Takeshita, K., Arihara, K., Itoh, M., & Kondo, Y. (1998). Effect of intestinalLactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausage. International Journal of Food Microbiology 41, 1–7.CrossRefGoogle Scholar
  156. Santos, E. M., Gonz ález-Fern ández, C., Jaime, I., & Rovira, J. (1998). Comparative study of lactic acid bacteria house flora isolated in different varieties of,chorizo'.International Journal of Food Microbiology 39, 123–128.CrossRefGoogle Scholar
  157. Sauer, C. J., Majkowski, J., Green, S., & Eckel, R. (1997). Foodborne illness outbreak associated with a semi-dry fermented sausage product.Journal of Food Protection 60, 1612–1617.Google Scholar
  158. Scannell, A. G. M., Schwarz, G., Hill, C., Ross, R. P., & Arendt, E. K. (2001). Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. International Journal of Food Microbiology 64, 151–159.CrossRefGoogle Scholar
  159. Schillinger, U., Kaya, M., & Lücke, F.-K. (1991). Behaviour of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake Journal of Applied Bacteriology 70, 473–478.Google Scholar
  160. Sebranek, J. G. (2004). Semidry fermented sausages. In Y. H. Hui, L. Meunier-Goddik, A. S. Hansen, J. Josephsen, W. K. Nip, P. S. Stanfield, & F. Toldr á (Eds.), Handbook of food and beverage fermentation technology (pp. 385–396). New York: Marcel Dekker.Google Scholar
  161. Selgas, M. D., Trigueros, G., Casas, C., Ordóñez, J. A., & García, M. L. (1995). Potential technological interest of a Mucor strain to be used in dry fermented sausage production.Food Research International 28, 77–82.CrossRefGoogle Scholar
  162. Selgas, M. D., Casas, C., Toledo, V. M., & García, M. L. (1999). Effect of selected mould strains on lipolysis in dry fermented sausages.European Food Research and Technology 209 360–365.CrossRefGoogle Scholar
  163. Sieber, R., Collomb, M., Aeschlimann, A., Jelen, P., & Eyer, H. (2004). Impact of microbial cultures on conjugated linoleic acid in dairy products — A review.International Dairy Journal 14, 1–15.CrossRefGoogle Scholar
  164. Siriken, B., Pamuk, S., Ozakin, C., Gedikoglu, S., & Eyigor, M. A. (2006). Note on the incidences of Salmonella spp., Listeria spp. and Escherichia coli O157:H7 serotypes in Turkish sausage (Soujouck). Meat Science 72, 177–181.CrossRefGoogle Scholar
  165. Sjögren, J., Magnusson, J., Broberg, A., Schnürer, J., & Kenne, L. (2003). Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Applied and Environmental Microbiology 69, 7554–7557.CrossRefGoogle Scholar
  166. Sobrino, O. J., Rodríguez, J. M., Moreira, W. L., Fern ández, M. F., Sanz, B., & Hern ández, P. E. (1991). Antibacterial activity of Lactobacillus sake isolated from dry fermented sausages. International Journal of Food Microbiology 13, 1–10.CrossRefGoogle Scholar
  167. Stahnke, L. H. (1995). Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels — Part II. Volatile components. Meat Science,2 193–209.CrossRefGoogle Scholar
  168. Stahnke, L. H. (1999a). Volatiles produced by Staphylococcus xylosus and Staphylococcus carno-sus during growth in sausage minces — Part I. Collection and identification. Lebensmitteln-Wissenschaft und—Technologie 32, 357–364.CrossRefGoogle Scholar
  169. Stahnke, L. H. (1999b). Volatiles produced by Staphylococcus xylosus and Staphylococcus carno-sus during growth in sausage minces — Part II. The influence of growth parameters. Lebensmitteln-Wissenschaft und—Technologie 32, 365–371.CrossRefGoogle Scholar
  170. Stahnke, L. H., Holck, A., Jensen, A., Nilsen, A., & Zanardi, E. (2002). Maturity acceleration of Italian dried sausage by Staphylococcus carnosus — Relationship between maturity and flavor compounds. Journal of Food Science 67, 1914–1921.CrossRefGoogle Scholar
  171. Stiles, M. E., & Hastings, J. W. (1991). Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation.Trends in Food Science and Technology 2, 247–251.CrossRefGoogle Scholar
  172. Ström, K., Sjögren, J., Broberg, A., & Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid.Applied and Environmental Microbiology 68, 4322–4327.CrossRefGoogle Scholar
  173. Sudirman, I., Mathieu, F., Michel, M., & Lefebvre, G. (1993). Detection and properties of cur-vaticin 13, a bacteriocin-like substance produced by Lactobacillus curvatus SB13. Current Microbiology 27, 35–40.CrossRefGoogle Scholar
  174. Sunesen, L. O., & Stahnke, L. H. (2003). Mould starter cultures for dry sausages — Selection, application and effects. Meat Science 65, 935–948.CrossRefGoogle Scholar
  175. Sunesen, L. O., Trihaas, J., & Stahnke, L. H. (2004). Volatiles in a sausage surface model — Influence of Penicillium nalgiovense, Pediococcus pentosaceus, ascorbate, nitrate and temperature. Meat Science 66, 447–456.CrossRefGoogle Scholar
  176. Suzzi, G., & Gardini, F. (2003). Biogenic amines in dry fermented sausages: A review. International Journal of Food Microbiology 88, 41–54.CrossRefGoogle Scholar
  177. Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M. H. N., & Hugenholtz, J. (2003). Effects of cultivation conditions on folate production by lactic acid bacteria.Applied and Environmental Microbiology 69, 4542–4548.CrossRefGoogle Scholar
  178. Tantillo, M. G., Di Pinto, A., & Novello, L. (2002). Bacteriocin-producing Lactobacillus sake as starter culture in dry sausages. Microbiologica 25, 45–49.Google Scholar
  179. Thevenot, D., Delignette-Muller, M. L., Christieans, S., & Vernozy-Rozand, C. (2005). Fate of Listeria monocytogenes in experimentally contaminated French sausages.International Journal of Food Microbiology 101, 189–200.CrossRefGoogle Scholar
  180. Tichaczek, P. S., Nissen-Meyer, J., Nes, I. F., Vogel, R. F., & Hammes, W. P. (1992). Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH 1174 and sakacin P from L. sake LTH 673. Systematic and Applied Microbiology 15, 460–468.Google Scholar
  181. Tjener, K., Stahnke, L. H., Andersen, L., & Martinussen, J. (2004a). A fermented meat model system for studies of microbial aroma formation.Meat Science 66, 211–218.CrossRefGoogle Scholar
  182. Tjener, K., Stahnke, L. H., Andersen, L., & Martinussen, J. (2004b). Growth and production of volatiles by Staphylococcus carnosus in dry sausages: Influence of inoculation level and ripening time.Meat Science 67, 447–452.CrossRefGoogle Scholar
  183. Totosaus, A., Gault, N.F.S., & Guerrero, I. (2000). Dynamic rheological behaviour of meat proteins during acid-induced gelation.International Journal of Food Properties 3, 465–472.CrossRefGoogle Scholar
  184. Työppönen, S., Markkula, A., Petäjä, E., Suihko, M.-L., & Mattila-Sandholm, T. (2003). Survival of Listeria monocytogenes in North European type dry sausages fermented by bioprotective meat starter cultures.Food Control 14, 181–185.CrossRefGoogle Scholar
  185. Työppönen, S., Petäjä, E., & Mattila-Sandholm, T. (2003). Bioprotectives and probiotics for dry sausages.International Journal of Food Microbiology 83, 233–244.CrossRefGoogle Scholar
  186. United States Department of Agriculture, Food Safety and Inspection Service. (1995).Processing inspectors' calculations handbook (FSIS Directive 7620.3). Retrieved March 17, 2007, from http://www.fsis.usda.gov/OPPDE/rdad/FSISDirectives/7620–3.pdfGoogle Scholar
  187. Urso, R., Rantsiou, K., Cantoni, C., Comi, G., & Cocolin, L. (2006). Technological characterization of a bacteriocin-producing Lactobacillus sakei and its use in fermented sausages production. International Journal of Food Microbiology 110, 232–239.CrossRefGoogle Scholar
  188. Valerio, F., Lavemicocca, P., Pascale, M., & Visconti, A. (2004). Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters 233, 289–295.CrossRefGoogle Scholar
  189. Verluyten, J., Messens, W., & De Vuyst, L. (2003). The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions.Applied Environmental Microbiology 69, 3833–3839.CrossRefGoogle Scholar
  190. Verluyten, J., Leroy, F., & De Vuyst, L. (2004). Effects of different spices used in the production of fermented sausages on growth of and curvacin A production by Lactobacillus curvatus LTH 1174. Applied and Environmental Microbiology 70, 4807–4813.CrossRefGoogle Scholar
  191. Vignolo, G. M., Suriani, F., de Ruiz Holgado, A. P., & Oliver, G. (1993). Antibacterial activity of Lactobacillus strains isolated from dry fermented sausage. Journal of Applied Bacteriology 75, 344–349.Google Scholar
  192. Villani, F., Sannino, L., Moschetti, G., Mauriello, G., Pepe, O., Amodio-Cocchieri, R., & Coppola, S. (1997). Partial characterization of an antagonistic substance produced by Staphylococcus xylosus 1E and determination of the effectiveness of the producer strain to inhibit Listeria monocytogenes in Italian sausages. Food Microbiology 14, 555–566.CrossRefGoogle Scholar
  193. Xiraphi, N., Georgalaki, M., Van Driessche, G., Devreese, B., Van Beeumen, J., Tsakalidou, E., Metaxopoulos, J., & Drosinos, E. H. (2006). Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Antonie van Leeuwenhoek 89 19–26.CrossRefGoogle Scholar
  194. Zaika, L. L., & Kissinger, J. C. (1984). Fermentation enhancement by spices: Identification of active component. Journal of Food Science 49, 5–9.CrossRefGoogle Scholar
  195. Zuber, A. D., & Horvat, M. (2007). Influence of starter cultures on the free fatty acids during ripening in Tea sausages. European Food Research and Technology 224, 511–517.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Frédéric Leroy
    • 1
  • Luc De Vuyst
    • 1
  1. 1.Research Group of Industrial Microbiology and Food Biotechnology (IMDO)Department of Applied Biological Sciences and EngineeringBrusselsBelgium

Personalised recommendations