The Role of Memory in Auditory Perception

  • Laurent Demany
  • Catherine Semal
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 29)


Auditory Cortex Pure Tone Interaural Time Difference Auditory Perception Frequency Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen J, Kraus N, Bradlow A (2000) Neural representation of consciously imperceptible speech sound differences. Percept Psychophys 62:1383–1393.PubMedGoogle Scholar
  2. Allik J, Dzhafarov EN, Houtsma AJM, Ross J, Versfeld HJ (1989) Pitch motion with random chord sequences. Percept Psychophys 46:513–527.PubMedGoogle Scholar
  3. Atienza M, Cantero JL, Dominguez-Marin E (2002) The time course of neural changes underlying auditory perceptual learning. Learn Mem 9:138–150.PubMedCrossRefGoogle Scholar
  4. Berliner JE, Durlach NI (1973) Intensity perception. IV. Resolution in roving-level discrimination. J Acoust Soc Am 53:1270–1287.PubMedCrossRefGoogle Scholar
  5. Bigand E, Poulin B, Tillmann B, Madurell F, d’Adamo DA (2003) Sensory versus cognitive components in harmonic priming. J Exp Psychol [Hum Percept Perform] 29:159–171.CrossRefGoogle Scholar
  6. Bland DE, Perrott DR (1978) Backward masking: Detection versus recognition. J Acoust Soc Am 63:1215–1217.PubMedCrossRefGoogle Scholar
  7. Bodner M, Kroger J, Fuster JM (1996) Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport 7:1905–1908.PubMedCrossRefGoogle Scholar
  8. Braun M (2001) Speech mirrors norm-tones: Absolute pitch as a normal but precognitive trait. Acoust Res Let Online 2:85–90.Google Scholar
  9. Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: MIT Press.Google Scholar
  10. Brosch M, Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cereb Cortex 10:1155–1167.PubMedCrossRefGoogle Scholar
  11. Brown M, Irvine DRF, Park VN (2004) Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cereb Cortex 14:952–965.PubMedCrossRefGoogle Scholar
  12. Burns EM, Houtsma AJM (1999) The influence of musical training on the perception of sequentially presented mistuned harmonics. J Acoust Soc Am 106:3564–3570.PubMedCrossRefGoogle Scholar
  13. Burns EM, Ward WD (1978) Categorical perception—phenomenon or epiphenomenon: Evidence from experiments in the perception of melodic musical intervals. J Acoust Soc Am 63:456–468.PubMedCrossRefGoogle Scholar
  14. Cansino S, Williamson SJ (1997) Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Res 764:53–66.PubMedCrossRefGoogle Scholar
  15. Clément S (2001) La mémoire auditive humaine: Psychophysique et neuroimagerie fonctionnelle. PhD thesis, Université Victor Segalen, Bordeaux, France.Google Scholar
  16. Clément S, Demany L, Semal C (1999) Memory for pitch versus memory for loudness. J Acoust Soc Am 106:2805–2811.PubMedCrossRefGoogle Scholar
  17. Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370.PubMedCrossRefGoogle Scholar
  18. Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol [Learn Mem Cogn] 19:909–921.CrossRefGoogle Scholar
  19. Czigler I, Csibra G, Csontos A (1992) Age and inter-stimulus interval effects on event-related potentials to frequent and infrequent auditory stimuli. Biol Psychol 33: 195–206.PubMedCrossRefGoogle Scholar
  20. Darwin CJ, Hukin RW (2000) Effectiveness of spatial cues, prosody, and talker characteristics in selective attention. J Acoust Soc Am 107:970–977.PubMedCrossRefGoogle Scholar
  21. Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689.PubMedCrossRefGoogle Scholar
  22. Demany L, Ramos C (2005) On the binding of successive sounds: Perceiving shifts in nonperceived pitches. J Acoust Soc Am 117:833–841.PubMedCrossRefGoogle Scholar
  23. Demany L, Ramos C (2007) A paradoxical aspect of auditory change detection. In: Kollmeier B, Klump G, Hohmann V, Mauermann M, Uppenkamp S, Verhey J (eds) Hearing: From Basic Research to Applications. Heidelberg: Springer, pp. 313–321.Google Scholar
  24. Demany L, Semal C (1990) Harmonic and melodic octave templates. J Acoust Soc Am 88:2126–2135.PubMedCrossRefGoogle Scholar
  25. Demany L, Semal C (2002) Learning to perceive pitch differences. J Acoust Soc Am 111:1377–1388.PubMedCrossRefGoogle Scholar
  26. Demany L, Semal C (2005) The slow formation of a pitch percept beyond the ending time of a short tone burst. Percept Psychophys 67:1376–1383.PubMedGoogle Scholar
  27. Demany L, Semal C, Carlyon RP (1991) On the perceptual limits of octave harmony and their origin. J Acoust Soc Am 90:3019–3027.CrossRefGoogle Scholar
  28. Demany L, Clément S, Semal C (2001) Does auditory memory depend on attention? In: Breebart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R (eds) Physiological and Psychophysical Bases of Auditory Function. Maastricht, the Netherlands: Shaker, pp. 461–467.Google Scholar
  29. Demany L, Montandon G, Semal C (2004) Pitch perception and retention: Two cumulative benefits of selective attention. Percept Psychophys 66:609–617.PubMedGoogle Scholar
  30. Demany L, Montandon G, Semal C (2005) Internal noise and memory for pitch. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds) Auditory Signal Processing: Physiology, Psychoacoustics, and Models. New York: Springer, pp. 230–236.Google Scholar
  31. Deutsch D (1991) The tritone paradox: An influence of language on music perception. Music Percept 8:335–347.Google Scholar
  32. Deutsch D (1999) The processing of pitch combinations. In: Deutsch D (ed) The Psychology of Music. New York: Academic Press, pp. 349–411.Google Scholar
  33. Deutsch D, Feroe J (1975) Disinhibition in pitch memory. Percept Psychophys 17:320–324.Google Scholar
  34. Deutsch D, Henthorn T, Dolson M (2004) Absolute pitch, speech, and tone language: Some experiments and a proposed framework. Music Percept 21:339–356.CrossRefGoogle Scholar
  35. Dewar K, Cuddy L, Mewhort J (1977) Recognition memory for single tones with and without context. J Exp Psychol [Hum Learn Mem Cogn] 3:60–67.CrossRefGoogle Scholar
  36. Dowling WJ, Harwood DL (1986) Music Cognition. Orlando: Academic Press.Google Scholar
  37. Durlach NI, Braida LD (1969) Intensity perception. I. Preliminary theory of intensity resolution. J Acoust Soc Am 46:372–383.PubMedCrossRefGoogle Scholar
  38. Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224.PubMedCrossRefGoogle Scholar
  39. Fitzgerald MB, Wright BA (2005) A perceptual learning investigation of the pitch elicited by amplitude-modulated noise. J Acoust Soc Am 118:3794–3803.PubMedCrossRefGoogle Scholar
  40. Fraisse P (1967) Psychologie du Temps. Paris: Presses Universitaires de France.Google Scholar
  41. Francés R (1988) The Perception of Music (JW Dowling, trans). Hillsdale, NJ: Lawrence Erlbaum. Original work: La Perception de la Musique. Paris: Vrin, 1958.Google Scholar
  42. Frey HP, Kaernbach C, König P (2003) Cats can detect repeated noise stimuli. Neurosci Lett 346:45–48.PubMedCrossRefGoogle Scholar
  43. Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223.PubMedCrossRefGoogle Scholar
  44. Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Näätänen R (1995) Separate representations of stimulus frequency, intensity, and duration in auditory sensory memory. J Cogn Neurosci 7:133–143.Google Scholar
  45. Gold JM, Murray RF, Sekuler AB, Bennett PJ, Sekuler R (2005) Visual memory decay is deterministic. Psychol Sci 16:769–774.PubMedCrossRefGoogle Scholar
  46. Goldinger SD (1996) Words and voices: Episodic traces in spoken word identification and recognition memory. J Exp Psychol [Learn Mem Cogn] 22:1166–1183.CrossRefGoogle Scholar
  47. Gottlieb Y, Vaadia E, Abeles M (1989) Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp Brain Res 74:139–148.PubMedCrossRefGoogle Scholar
  48. Green DM, Swets JA (1974) Signal Detection Theory and Psychophysics. Huntington, NY: Krieger.Google Scholar
  49. Grimault N, Micheyl C, Carlyon RP, Collet L (2002) Evidence for two pitch encoding mechanisms using a selective auditory training paradigm. Percept Psychophys 64:189–197.PubMedGoogle Scholar
  50. Guttman N, Julesz B (1963) Lower limits of auditory periodicity analysis. J Acoust Soc Am 35:610.CrossRefGoogle Scholar
  51. Hafter ER, Bonnel AM, Gallun E (1998) A role for memory in divided attention between two independent stimuli. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 228–236.Google Scholar
  52. Hall JW, Peters RW (1982) Change in the pitch of a complex tone following its association with a second complex tone. J Acoust Soc Am 71:142–146.PubMedCrossRefGoogle Scholar
  53. Harris JD (1952) The decline of pitch discrimination with time. J Exp Psychol 43:96–99.PubMedCrossRefGoogle Scholar
  54. Hartmann WM, Johnson D (1991) Stream segregation and peripheral channeling. Music Percept 9:155–184.Google Scholar
  55. Hawkey DJC, Amitay S, Moore DR (2004) Early and rapid perceptual learning. Nat Neurosci 7:1055–1056.PubMedCrossRefGoogle Scholar
  56. Hawkins HL, Presson JC (1977) Masking and preperceptual selectivity in auditory recognition. In: Dornic S (ed) Attention and Performance VI. Hillsdale: Lawrence Erlbaum, pp. 195–211.Google Scholar
  57. Hirsh IJ (1959) Auditory perception of temporal order. J Acoust Soc Am 31:759–767.CrossRefGoogle Scholar
  58. Hofman PM, van Riswick JGA, van Opstal AJ (1998) Relearning sound localization with new ears. Nat Neurosci 1:417–421.PubMedCrossRefGoogle Scholar
  59. Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51:1885–1894.PubMedCrossRefGoogle Scholar
  60. Houtgast T, van Veen TM (1980) Suppression in the time domain. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 183–188.Google Scholar
  61. Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–6814.PubMedCrossRefGoogle Scholar
  62. Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727.PubMedCrossRefGoogle Scholar
  63. Kaernbach C (1993) Temporal and spectral basis of the features perceived in repeated noise. J Acoust Soc Am 94:91–97.PubMedCrossRefGoogle Scholar
  64. Kaernbach C (2004) The memory of noise. Exp Psychol 51:240–248.PubMedGoogle Scholar
  65. Kaernbach C, Schulze H (2002) Auditory sensory memory for random waveforms in the Mongolian gerbil. Neurosci Lett 329:37–40.PubMedCrossRefGoogle Scholar
  66. Kallman HJ, Massaro DW (1979) Similarity effects in backward recognition masking. J Exp Psychol [Hum Percept Perform] 5:110–128.CrossRefGoogle Scholar
  67. Kinchla RA, Smyzer F (1967) A diffusion model of perceptual memory. Percept Psychophys 2:219–229.Google Scholar
  68. Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230:545–548.PubMedCrossRefGoogle Scholar
  69. Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Cogn Brain Res 25:161–168.CrossRefGoogle Scholar
  70. Kropotov JD, Alho K, Näätänen R, Ponomarev VA, Kropotova OV, Anichkov AD, Nechaev VB (2000) Human auditory-cortex mechanisms of preattentive sound discrimination. Neurosci Lett 280:87–90.PubMedCrossRefGoogle Scholar
  71. Krumhansl CL, Iverson P (1992) Perceptual interactions between musical pitch and timbre. J Exp Psychol [Hum Percept Perform] 18:739–751.CrossRefGoogle Scholar
  72. Kubovy M, Howard FP (1976) Persistence of a pitch–segregating echoic memory. J Exp Psychol [Hum Percept Perform] 2:531–537.CrossRefGoogle Scholar
  73. Levitin DJ (1994) Absolute memory for musical pitch: Evidence from the production of learned melodies. Percept Psychophys 56:414–423.PubMedGoogle Scholar
  74. Linkenhoker BA, Knudsen EI (2002) Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419:293–296.PubMedCrossRefGoogle Scholar
  75. Lynch MP, Eilers RE, Oller DK, Urbano RC (1990) Innateness, experience, and music perception. Psychol Sci 1:272–276.CrossRefGoogle Scholar
  76. Massaro DW (1970a) Preperceptual auditory images. J Exp Psychol 85:411–417.CrossRefGoogle Scholar
  77. Massaro DW (1970b) Retroactive interference in short-term recognition memory for pitch. J Exp Psychol 83:32–39.CrossRefGoogle Scholar
  78. Massaro DW (1972) Preperceptual images, processing time, and perceptual units in auditory perception. Psychol Rev 79:124–145.PubMedCrossRefGoogle Scholar
  79. Massaro DW, Idson WL (1977) Backward recognition masking in relative pitch judgments. Percept Mot Skills 45:87–97.PubMedGoogle Scholar
  80. Massaro DW, Loftus GR (1996) Sensory and perceptual storage. In: Bjork EL, Bjork RA (eds) Memory. San Diego: Academic Press, pp. 67–99.Google Scholar
  81. McAdams S (1993) Recognition of sound sources and events. In McAdams S, Bigand E (eds) Thinking in Sound: The Cognitive Psychology of Human Audition. Oxford: Clarendon Press, pp. 146–198.Google Scholar
  82. McClelland JL, Elman, JL (1986) The TRACE model of speech perception. Cogn Psychol 18:1–86.CrossRefPubMedGoogle Scholar
  83. McKenna TM, Weinberger NM, Diamond DM (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res 481:142–153.PubMedCrossRefGoogle Scholar
  84. Meddis R, O’Mard LO (2005) A computer model of the auditory-nerve response to forward-masking stimuli. J Acoust Soc Am 117:3787–3798.PubMedCrossRefGoogle Scholar
  85. Menning H, Roberts LE, Pantev C (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport 11:817–822.PubMedCrossRefGoogle Scholar
  86. Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551.PubMedCrossRefGoogle Scholar
  87. Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Rev 125:826–859.Google Scholar
  88. Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329.CrossRefGoogle Scholar
  89. Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4:503–506.PubMedCrossRefGoogle Scholar
  90. Opitz B, Schröger E, von Cramon DY (2005) Sensory and cognitive mechanisms for preattentive change detection in auditory cortex. Eur J Neurosci 21:531–535.PubMedCrossRefGoogle Scholar
  91. Paavilainen P, Simola J, Jaramillo M, Näätänen R, Winkler I (2001) Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN). Psychophysiology 38:359–365.PubMedCrossRefGoogle Scholar
  92. Peters RW, Moore BCJ, Glasberg BR (1983) Pitch of components of complex tones. J Acoust Soc Am 73:924–929.PubMedCrossRefGoogle Scholar
  93. Philibert B, Collet L, Vesson JF, Veuillet E (2005) The auditory acclimatization effect in sensorineural hearing-impaired listeners: Evidence for functional plasticity. Hear Res 205:131–142.PubMedCrossRefGoogle Scholar
  94. Phillips WA (1974) On the distinction between sensory storage and short-term visual memory. Percept Psychophys 16:283–290.Google Scholar
  95. Purushotaman G, Bradley DC (2005) Neural population code for fine perceptual decisions in area MT. Nat Neurosci 8:99–106.CrossRefGoogle Scholar
  96. Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13:87–103.PubMedGoogle Scholar
  97. Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591.PubMedCrossRefGoogle Scholar
  98. Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: The need for attention to perceive changes in scenes. Psychol Sci 8:368–373.CrossRefGoogle Scholar
  99. Robinson K, Summerfield AQ (1996) Adult auditory learning and training. Ear Hear 17: 51S–65S.PubMedCrossRefGoogle Scholar
  100. Ronken DA (1972) Changes in frequency discrimination caused by leading and trailing tones. J Acoust Soc Am 51:1947–1950.PubMedCrossRefGoogle Scholar
  101. Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N (2005) Auditory training improves neural timing in the human brainstem. Behav Brain Res 156:95–103.PubMedCrossRefGoogle Scholar
  102. Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory trace persists about 10 sec: Neuromagnetic evidence. J Cogn Neurosci 5:363–370.CrossRefGoogle Scholar
  103. Schacter DL, Church B (1992) Auditory priming: Implicit and explicit memory for words and voices. J Exp Psychol [Learn Mem Cogn] 18:915–930.CrossRefGoogle Scholar
  104. Scharf B (1978) Loudness. In: Carterette EC, Friedman MP (eds) Handbook of Perception, IV: Hearing. New York: Academic Press, pp. 187–242.Google Scholar
  105. Schellenberg EG, Trehub SE (1996) Natural musical intervals: Evidence from infant listeners. Psychol Sci 7:272–277.CrossRefGoogle Scholar
  106. Schröger E (1995) Processing of auditory deviants with changes in one vs. two stimulus dimensions. Psychophysiology 32:55–65.PubMedCrossRefGoogle Scholar
  107. Schröger E (1997) On the detection of auditory deviations: A pre-attentive activation model. Psychophysiology 34:245–257.PubMedCrossRefGoogle Scholar
  108. Schröger E (2005) The mismatch negativity as a tool to study auditory processing. Acta Acust 91:490–501.Google Scholar
  109. Schwartz DA, Howe CQ, Purves D (2003) The statistical structure of human speech sounds predicts musical universals. J Neurosci 23:7160–7168.PubMedGoogle Scholar
  110. Semal C, Demany L (1991) Dissociation of pitch from timbre in auditory short-term memory. J Acoust Soc Am 89:2404–2410.PubMedCrossRefGoogle Scholar
  111. Semal C, Demany L (1993) Further evidence for an autonomous processing of pitch in auditory short-term memory. J Acoust Soc Am 94:1315–1322.PubMedCrossRefGoogle Scholar
  112. Semal C, Demany L, Ueda K, Hallé PA (1996) Speech versus nonspeech in pitch memory. J Acoust Soc Am 100:1132–1140.PubMedCrossRefGoogle Scholar
  113. Shamma S, Klein D (2000) The case of the missing pitch templates: How harmonic templates emerge in the early auditory system. J Acoust Soc Am 107:2631–2644.PubMedCrossRefGoogle Scholar
  114. Shannon RV (1990) Forward masking in patients with cochlear implants. J Acoust Soc Am 88:741–744.PubMedCrossRefGoogle Scholar
  115. Shepard RN, Jordan DS (1984) Auditory illusions demonstrating that tones are assimilated to an internalized musical scale. Science 226:1333–1334.PubMedCrossRefGoogle Scholar
  116. Shinn-Cunningham BG (2000) Adapting to remapped auditory localization cues: A decision-theory model. Percept Psychophys 62:33–47.PubMedGoogle Scholar
  117. Simons DJ, Levin DT (1997) Change blindness. Trends Cogn Sci 1:261–267.CrossRefGoogle Scholar
  118. Sparks DW (1976) Temporal recognition masking—or interference? J Acoust Soc Am 60:1347–1353.PubMedCrossRefGoogle Scholar
  119. Starr GE, Pitt MA (1997) Interference effects in short-term memory for timbre. J Acoust Soc Am 102:486–494.PubMedCrossRefGoogle Scholar
  120. Summerfield Q, Sidwell A, Nelson T (1987) Auditory enhancement of changes in spectral amplitude. J Acoust Soc Am 81:700–708.PubMedCrossRefGoogle Scholar
  121. Tanner WP (1961) Physiological implications of psychophysical data. Ann NY Acad Sci 89:752–765.PubMedCrossRefGoogle Scholar
  122. Terhardt E (1971) Pitch shifts of harmonics, an explanation of the octave enlargement phenomenon. In: Proceedings of the 7th International Congress on Acoustics (Budapest) 3:621–624.Google Scholar
  123. Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55:1061–1069.PubMedCrossRefGoogle Scholar
  124. Tervaniemi M, Maury S, Näätänen R (1994) Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity. NeuroReport 5:844–846.PubMedCrossRefGoogle Scholar
  125. Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92.PubMedCrossRefGoogle Scholar
  126. Tillmann B, Bharucha JJ, Bigand E (2000) Implicit learning of tonality: A self-organizing approach. Psychol Rev 107:885–913.PubMedCrossRefGoogle Scholar
  127. Tremblay K, Kraus N, Carrell TD, McGee T (1997) Central auditory system plasticity: Generalization to novel stimuli following listening training. J Acoust Soc Am 102:3762–3773.PubMedCrossRefGoogle Scholar
  128. Turner CW, Zeng FG, Relkin EM, Horwitz AR (1992) Frequency discrimination in forward and backward masking. J Acoust Soc Am 92:3102–3108.PubMedCrossRefGoogle Scholar
  129. Turner CW, Relkin EM, Doucet J (1994) Psychophysical and physiological forward masking studies: Probe duration and rise-time effects. J Acoust Soc Am 96:795–800.PubMedCrossRefGoogle Scholar
  130. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398.PubMedCrossRefGoogle Scholar
  131. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453.PubMedCrossRefGoogle Scholar
  132. van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. PhD Thesis, Technische Hogeschool Eindhoven, the Netherlands.Google Scholar
  133. Viemeister NF (1980) Adaptation of masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 190–198.Google Scholar
  134. Viemeister NF, Bacon SP (1982) Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am 71:1502–1507.PubMedCrossRefGoogle Scholar
  135. Vurpillot E (1975) La perception de l’espace. In: Fraisse P, Piaget J (eds) Traité de Psychologie Expérimentale, vol. VI: La Perception. Paris: Presses Universitaires de France, pp. 113–198.Google Scholar
  136. Ward WD (1954) Subjective musical pitch. J Acoust Soc Am 26:369–380.CrossRefGoogle Scholar
  137. Ward WD (1999) Absolute pitch. In: Deutsch D (ed) The Psychology of Music. San Diego: Academic Press, pp. 265–298.Google Scholar
  138. Warren RM (1982) Auditory Perception: A New Synthesis. New York: Pergamon.Google Scholar
  139. Watson CS, Kelly WJ, Wroton HW (1976) Factors in the discrimination of tonal patterns. II. Selective attention and learning under various levels of stimulus uncertainty. J Acoust Soc Am 60:1176–1186.PubMedCrossRefGoogle Scholar
  140. Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18:129–158.PubMedCrossRefGoogle Scholar
  141. Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5:279–290.PubMedCrossRefGoogle Scholar
  142. Wilson JP (1970) An auditory after-image. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, the Netherlands: Sijthoff, pp. 303–318.Google Scholar
  143. Wojtczak M, Viemeister NF (2005) Mechanisms of forward masking. J Acoust Soc Am 115: 2599.Google Scholar
  144. Wright BA, Fitzgerald MB (2001) Different patterns of human discrimination learning for two interaural cues to sound-source location. Proc Natl Acad Sci USA 98:2307–12312.Google Scholar
  145. Wright BA, McFadden D, Champlin CA (1993) Adaptation of suppression as an explanation of enhancement effects. J Acoust Soc Am 94:72–82.PubMedCrossRefGoogle Scholar
  146. Wright BA, Buonomano DV, Mahncke HW, Merzenich MM (1997) Learning and generalization of auditory temporal-interval discrimination in humans. J Neurosci 17:3956–3963.PubMedGoogle Scholar
  147. Yost WA, Berg K, Thomas GB (1976) Frequency recognition in temporal interference tasks: A comparison among four psychophysical procedures. Percept Psychophys 20:353–359.Google Scholar
  148. Young PT (1928) Auditory localization with acoustical transposition of the ears. J Exp Psychol 11:399–429.CrossRefGoogle Scholar
  149. Zatorre RJ, Samson S (1991) Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain 114:2403–2417.PubMedCrossRefGoogle Scholar
  150. Zheng W, Knudsen EI (1999) Functional selection of adaptive auditory space map by GABAA–mediated inhibition. Science 284:962–965.PubMedCrossRefGoogle Scholar
  151. Zwislocki J, Pirodda E, Rubin H (1959) On some poststimulatory effects at the threshold of audibility. J Acoust Soc Am 31:9–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laurent Demany
  • Catherine Semal

There are no affiliations available

Personalised recommendations