Advertisement

References. A Deep Sea of Luminescent Ideas

Part of the Mathematics Education Library book series (MELI, volume 43)

Keywords

Word Problem Educational Study Algebraic Thinking School Algebra North American Chapter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References. A deep sea of luminescent ideas

  1. Abel, N. H. (1881). Œuvres Complètes. Tome I. Christiana: Grondahl & Son. [Reedición Sceaux: Éditions Jacques Gabay, 1992]Google Scholar
  2. Alarcón, J., Figueras, O., Filloy, E., Gispert, M., Lema, S., Parra, B. M., Recio, J., Rojano, T. and Zubieta, G. (1981-1982). Matemáticas 100 Horas, 1 y 2. México, Bogotá, Caracas, Santiago, San Juan y Panamá: Fondo Educativo Interamericano.Google Scholar
  3. al-Tûsî, S. (1986). ŒuvresMmathématiques, Algèbre et Géométrie au XIIe siècle. Tomes I et II. Texte établi et traduit par Roshdi Rashed. Paris: Les Belles Lettres.Google Scholar
  4. Anbouba, A. (1978). L’algèbre arabe aux IXe et Xe siècles. Aperçu général. Journal for the History of Arabic Science, 2, 66-100.Google Scholar
  5. Bachmann, H. (1955). Transfinite Zahlen. Berlin: Springer Verlag.Google Scholar
  6. Bednarz, N. and Janvier, B. (1996). Emergence and development of algebra as a problem-solving tool: Continuities and discontinuities with arithmetic. In N. Bednarz, C. Kieran, and L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 115-136). Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  7. Bednarz, N., Radford, L, Janvier, B., and Lapage, A. (1992). Arithmetical and algebraic thinking in problem solving. In W. Geeslin and K. Graham (Eds.), Proceedings of the 16th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 65-72). Durham, NH: PME Program Committee.Google Scholar
  8. Bell, A. W. (1996). Problem-solving approaches to algebra: Two aspects. In N. Bednarz, C. Kieran, and L. Lee (Eds.), Approaches to Algebra. Perspectives for Research and Teaching (pp. 167-186). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  9. Benacerraf, P. (1983). What numbers could not be. In P. Benacerraf and H. Putman (Eds.), Philosophy of Mathematics. Selected Readings (pp. 272-294). Cambridge, UK: Cambridge University Press.Google Scholar
  10. Boncompagni, B. (Ed.) (1857). Scritti di Leonardo Pisano Matematico del Secolo Decimoterzo. I. Il Liber Abbaci di Leonardo Pisano. Roma: Tipografia delle Scienze Matematiche e Fisiche.Google Scholar
  11. Boohan, R. (1994). Interpreting the world with numbers: An introduction to quantitative modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, and C. Tampsett (Eds.), Learning with Artificial Worlds (pp. 49-58). London: The Falmer Press.Google Scholar
  12. Booth, L. (1984). Algebra: Children’s Strategies and Errors. Windsor: NFER-Nelson.Google Scholar
  13. Bortolotti, E. (Ed.) (1966). R. Bombelli. L’Algebra. A cura di U. Forti e E. Bortolotti. Milano: Feltrinelli.Google Scholar
  14. Bourbaki, N. (1966). Éléments de Mathématique. Fascicule XVII. Théorie des Ensembles. Chapitre 1 et 2. Description de la Mathématique Formelle. Théorie des Ensembles. Paris: Hermann.Google Scholar
  15. Boyer, C. B. (1959). The History of the Calculus. New York: John Wiley.Google Scholar
  16. Boyer, C. B. (1968). A History of Mathematics. New York: John Wiley.Google Scholar
  17. Brousseau, G. (1996). Fondements et méthodes de la didactique des mathématiques. Recherches en Didactique des Mathématiques, 7, 33-115.Google Scholar
  18. Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dordrecht/Boston/ London: Kluwer Academic Publishers.Google Scholar
  19. Brown, T. (2001). Mathematics Education and Language. Interpreting Hermeneutics and Post-Structuralism, revised second edition. Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  20. Carpenter, T., Moser, J. and Romberg, T. (Eds.) (1982). Addition and Subtraction: A Cognitive Perspective. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  21. Cerdán, F. (in preparation). Problemas verbales aritmético-algebraicos. El método de análisis y síntesis y el método cartesiano. Tesis doctoral. Universidad de Valencia.Google Scholar
  22. Clagett, M. (1959). The Science of Mechanics in the Middle Ages. Madison, Milwaukee and London: The University of Wisconsin Press.Google Scholar
  23. Clagett, M. (1968). Nicole Oresme and the Medieval Geometry of Qualities and Motions. Madison, Milwaukee and London: The University of Wisconsin Press.Google Scholar
  24. Colebrooke, H. T. (ed. and trans.) (1817). Algebra with Arithmetic and Mensuration from the Sanscrit. Brahmegupta and Bháscara. London: John Murray.Google Scholar
  25. Cuevas, G. J. and Yeatts, K. (2001). Navigating Through Algebra in Grades 3-5. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  26. Chevallard, Y. (1983). Le passage de l’arithmétique à l’algébrique dans l’enseignement des mathématiques au Collège. Petit X, 5, 51-94.Google Scholar
  27. Descartes, R. (1701). Opuscula Posthuma Physica et Mathematica. Amsterdam: Typographia P. and Blaev J.Google Scholar
  28. Descartes, R. (1826). Règles pour la Direction de l’Esprit. In Œuvres de Descartes, publiées par Victor Cousin. Tome onzième. Paris: Chez F. G. Levrault, libraire.Google Scholar
  29. Descartes, R. (1996). Regulæ ad Directionem Ingeni. In Œuvres de Descartes. Tome X. Édition de Charles Adam et Paul Tannery. Paris: Librairie Philosophique J. Vrin.Google Scholar
  30. Drouhard, J. P. (1992). Les Écritures Symboliques de l’Algèbre Élémentaire. Thèse de doctorat, Université Dénis Diderot, Paris 7.Google Scholar
  31. Duval, R. (1995). Sémiosis et Pensée Humaine. Registres sémiotiques et apprentissage intellectuels. Berne: Peter Lang.Google Scholar
  32. Eco, U. (1984). Semiotics and Philosophy of Language. London: The Macmillan Press.Google Scholar
  33. Edwards, C. (1979). The Historical Development of the Calculus. New York: Springer Verlag.Google Scholar
  34. Figueras, O., Filloy, E. and Valdemoros, M. (1985). The development of spatial imagination abilities and contextualisation atrategies: Models sased on the teaching of fractions. In L. Streefland (Ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 328-333). Noordwijkerhout, The Netherlands.Google Scholar
  35. Figueras, O., Filloy, E. and Valdemoros, M. (1986). Some considerations on the graphic representation of fractions and their interpretation. In G. Lapan and E. Ruhama (Eds.), Proceedings of the Eighth Annual Meeting of the PME-NA (pp. 78-83). East Lansing, Michigan.Google Scholar
  36. Filloy, E. (1980). Álgebra del nivel medio y análisis epistemológico: de Bombelli a Vieta. Actas del V Congreso Nacional de Profesores. México.Google Scholar
  37. Filloy, E. (1990). PME algebra research. A working perspective. In G. Booker et-al (Eds.), Proceedings of the Fourteenth Annual Conference for the Psychology of Mathematics Education (Vol. 1, pp. PII 1-PII 33). Oaxtepec, Morelos, México.Google Scholar
  38. Filloy, E. (1991). Cognitive tendencies and abstraction processes in algebra learning. In F. Furinghetti (Ed.), Proceedings of the Fifteenth Annual Conference for the Psychology of Mathematics Education (Vol. 2, pp. 48-55). Assisi, Italia.Google Scholar
  39. Filloy, E. (1993a). El libro de los cuadrados de Leonardo de Pisa. In E. Filloy, L. Puig, and T. Rojano (Eds.), Memorias del Tercer Simposio Internacional sobre Investigación en Educación Matemática. Historia de las Ideas Algebraicas (pp. 11-30). México, DF: CINVESTAV/PNFAPM.Google Scholar
  40. Filloy, E. (1993b) Tendencias cognitivas y procesos de abstracción en el aprendizaje del álgebra y de la geometría. Enseñanza de las ciencias, 11(2), 160-166.Google Scholar
  41. Filloy, E. and Lema, S. (1996). El Teorema de Thales: significado y sentido en un sistema matemático de signos. In F. Hitt (ed.), Investigaciones en Matemática Educativa (pp. 55-75). México, DF: Grupo Editorial Iberoamérica.Google Scholar
  42. Filloy, E. and Rojano, T. (1983). Movimiento de la Incógnita, Terminación de la Aritmética? México: SME.Google Scholar
  43. Filloy, E. and Rojano, T. (1984). From an arithmetical to an algebraic thought (a clinical study with 12-13 year olds). In J. Moser (ed.), Proceedings of the Sixth Annual Meeting for the Psychology of Mathematics Education, North American Chapter (pp. 51-56). Madison, WI, USA.Google Scholar
  44. Filloy, E. and Rojano, T. (1985a). Obstructions to the acquisition of elemental algebraic concepts and teaching strategies. In L. Streefland (ed.), Proceedings of the Ninth Annual Conference for the Psychology of Mathematics Education (pp. 154-158). Utrecht, Holanda.Google Scholar
  45. Filloy, E. and Rojano, T. (1985b). Operating the unknown and models of teaching (a clinical study with 12-13 year olds with a high proficiency in Pre-Algebra). In S. K. Damarin and M. Shelton (eds.), Proceedings of the Seventh Annual Meeting for the Psychology of Mathematics Education, North American Chapter (pp. 75-79). Columbus, OH.Google Scholar
  46. Filloy, E. and Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19-25.Google Scholar
  47. Filloy, E. and Rojano, T. (2001). Algebraic syntax and word problems solution: First steps. In M. van den Heuvel-Panhuizen (ed.), Proceedings of the Twenty-fifth Annual Conference for the Psychology of Mathematics Education (Vol. 2, pp. 417-424). Utrecht, The Netherlands.Google Scholar
  48. Filloy, E. and Rubio, G. (1991). Unknown and variable in analytical methods for solving word arithmetic/algebraic problems. In R. G. Underhill (ed.), Proceedings of the Thirteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 64-69). Blacksburg, VA.Google Scholar
  49. Filloy, E. and Rubio, G. (1993a). Didactic models, cognition and competence in the solution of arithmetic and algebra word problems. In I. Hirabayashi, N. Nohda, K. Shigematsu, and F. Lin (eds.), Proceedings of the Seventeenth International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 154-161).Tsukuba, Ibaraki, Japan.Google Scholar
  50. Filloy, E. and Rubio, G. (1993b). Family of arithmetical and algebraic word problems, and the tensions between the different uses of algebraic expressions. In J. R. Becker and B. J. Pence (eds.), Proceedings of the Fifteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 142-148). Pacific Grove, CA.Google Scholar
  51. Filloy, E. and Sutherland, R. (1996). Designing curricula for teaching and learning algebra. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick and C. Laborde (eds.), International Handbook of Mathematics Education (Vol. 1, pp. 139-160). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  52. Filloy, E., Rojano, T. and Rubio, G. (2001). Propositions concerning the resolution of arithmetical-algebraic problems. In R. Sutherland, T. Rojano, A. Bell, and R. Lins (eds.), Perspectives on School Algebra (pp.155-176). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  53. Filloy, E., Rojano, T. and Solares, A. (2002). Cognitive tendencies: The interaction between semantics and algebraic syntax in the production of syntactic errors. In A. Cockburn and E. Nardi (eds.), Proceedings of the Twenty-sixth Annual Conference for the Psychology of Mathematics Education (Vol. 4, pp. 129-136). Norwich, UK.Google Scholar
  54. Filloy, E., Rojano, T. and Solares, A. (2004). Arithmetic/algebraic problem-solving and the representation of two unknown quantities. In M. Johnsen Høines, and A. B. Fuglestad (Eds.), Proceedings of the Twenty-eighth Annual Conference for the Psychology of Mathematics Education (Vol. 2, pp. 391-398). Bergen, Norway.Google Scholar
  55. Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht: Reidel.Google Scholar
  56. Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht: Reidel.Google Scholar
  57. Fridman, L. M. (1990). Los grafos trinomiales como metalenguaje de los problemas. Matemáticas. Revista del Departamento de Matemáticas de la Universidad de Sonora, 17-18, 51-59.Google Scholar
  58. Friel, S., Rachlin, S. and Doyle, D. (2001). Navigating Through Algebra in Grades 6-8. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  59. Fuson, K. (1998). Children’s Counting and Concept of Number. New York: Springer Verlag.Google Scholar
  60. Galois, É. (1846). Œuvres mathématiques d’Évariste Galois. Le Journal de Liouville, XI, 381-444. [Reedición Œuvres Mathématiques, Publiées en 1846 dans le Journal de Liouville, Suivies d’une étude par Sophus Lie. Sceaux: Éditions Jacques Gabay, 1989.]Google Scholar
  61. Ginsburg, H., Inoue, N. and Seo, K. (1999). Young children doing mathematics: Observations of everyday sctivities. In J. V. Copley (ed.), Mathematics in the Early Years (pp. 88-99). Reston, Va.: National Council of Teachers of Mathematics, and Washington, D.C.: National Association for the Education of Young Children.Google Scholar
  62. Glassner, J.-J. (2000). Écrire à Sumer. L’Invention du Cunéiforme. Paris: Seuil.Google Scholar
  63. Grant, E. (1969). Nicole Oresme, De Proportionibus and Pauca Respicientes. Madison, Milwaukee and London: The University of Wisconsin Press.Google Scholar
  64. Grant, E. (1971). Nicole Oresme and the Kinematics of Circular Motions. Madison, Milwaukee and London: The University of Wisconsin Press.Google Scholar
  65. Greenes, C., Cavanagh, M., Dacey, L., Findell, C. and Small, M. (2001). Navigating Through Algebra in Prekindergarten-Grade 2. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  66. Hamilton, N. and Landin, J. (1961). Set Theory and The Structure of Arithmetic. Boston: Allyn and Bacon, Inc.Google Scholar
  67. Heath, Th.(1921). A History of Greek Mathematics.2 vols. Oxford: Clarendon Press. [Reprinted in New York: Dover, 1981.]Google Scholar
  68. Høyrup, J. (1985). Varieties of mathematical discourse in pre-modern socio-cultural contexts: Mesopotamia, Greece, and the Latin Middle Ages. Science and Society, XLIX, 4-41.Google Scholar
  69. Høyrup, J. (1986). Al-Khwârizmî, Ibn Turk, and the Liber Mensurationum: On the origins of Islamic algebra. ERDEM, 2, 445-484.Google Scholar
  70. Høyrup, J. (1987). The formation of ‘Islamic Mathematics’. Sources and conditions. Science in Context, 1, 281-329.Google Scholar
  71. Høyrup, J.(1991).‘Oxford’ and‘Cremona’: On the relations between two versions of al-Khwârizmî’s Algebra. Filosofi og videnskabsteori på Roskilde Universitetcenter.3. Række: Preprint og Reprints nr. 1.Google Scholar
  72. Høyrup, J. (1999a). The founding of Italian vernacular algebra. Filosofi og videnskabsteori på Roskilde Universitetcenter. 3. Række: Preprint og Reprints 1999 nr. 2.Google Scholar
  73. Høyrup, J. (1999b). VAT. LAT. 4826. Jacopo da Firenze, Tractatus algorismi. Preliminari transcription of the manuscript, with occasional commentaries. Filosofi og videnskabsteori på Roskilde Universitetcenter. 3. Række: Preprint og Reprints 1999 nr. 3.Google Scholar
  74. Høyrup, J. (2002a). Lengths, Widths, Surfaces. A Portrait of Old Babylonian Algebra and Its Kin. New York: Springer-Verlag.Google Scholar
  75. Høyrup, J. (2002b). Pre-Modern “Algebra”: A concise survey of that which was shaped into the technique and discipline we know, Quaderni di Ricerca in Didattica G.R.I.M., 11, http://math.unipa.it/∼grim/quaderno11.htm.
  76. Hughes, B. (1981). Jordanus de Nemore. De Numeris Datis, Berkeley, CA: University of California Press.Google Scholar
  77. Hughes, B. (1986). Gerard of Cremona’s translation of al-Khwârizmî’s al-jabr: A critical edition. Mediaeval Studies, 48, 211-263.Google Scholar
  78. Ifrah, G. (1994). Histoire Universelle des Chiffres. L’Intelligence des Hommes Racontée par les Nombres et le Calcul. Paris: Robert Laffont.Google Scholar
  79. Isbell, J. R. (1960). A definition of ordinal numbers. American Mathematical Monthly, 67(1), 51-52.Google Scholar
  80. Iwasaki, H. and Yamaguchi, T. (1997). The cognitive and symbolic analysis of the generalization process: the comparison of algebraic signs with geometric figures. In E. Pehkonen (ed.), Proceedings of the Twenty First Annual Conference for the Psychology of Mathematics Education (Vol. 3, pp. 105-112). Lahti, Finland.Google Scholar
  81. Jones, C. V. (1978). On the Concept of One as a Number. Doctoral dissertation, University of Toronto.Google Scholar
  82. Kalmykova, Z. I. (1975). Processes of analysis and synthesis in the solution of arithmetic problems. In J. Kilpatrick, I. Wirszup, E. G. Begle, and J. W. Wilson. (eds.), Soviet Studies in the Psychology of Learning and Teaching Mathematics. Vol. XI. Analysis and Synthesis as Problem Solving Methods (pp. 1-171). Stanford, CA: NCTM.Google Scholar
  83. Kaput, J. J. (1987). Representations systems and mathematics. In C. Janvier (ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 19-26). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  84. Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner and C. Kieran (Eds.), Research Issues in the Learning and Teaching of Algebra (Vol. 4, pp. 167-194). Hillsdale, NJ/Reston, VA: Lawrence Erlbaum Associates/National Council of Teachers of MathematicsGoogle Scholar
  85. Kasir, D. S. (1931). The Algebra of Omar Khayyam. New York, NY: Bureau of Publications Teacher College of Columbia University.Google Scholar
  86. Kieran, C. (1980). . In R. Karplus (ed.), Proceedings of the Fourth Conference of the International Group for the Psychology of Mathematics Education (pp. 163-169). Berkeley, CA, University of California,.Google Scholar
  87. Kieran, C. (1981). . Educational Studies in Mathematics, 12, 317-326.Google Scholar
  88. Kieran, C. and Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva psicológica. Enseñanza de las Ciencias, 7, 229-240.Google Scholar
  89. Kieran, C. and Sfard, A. (1999). Seeing through symbols: The case of equivalent expressions. Focus on Learning Problems in Mathematics, 21(1), 1-17.Google Scholar
  90. Kirshner, D. (1987). The Grammar of Symbolic Elementary Algebra. Doctoral dissertation, University of British Columbia, Vancouver.Google Scholar
  91. Klein, J. (1968). Greek Mathematical Thought and the Origins of Algebra. Cambridge, MA: MIT Press. [Reprinted in New York: Dover, 1992.]Google Scholar
  92. Krutetskii, V. D. (1976). The Psychology of Mathematical Abilities in School Children. Chicago: The University of Chicago Press.Google Scholar
  93. Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.Google Scholar
  94. Lagrange, J. L. de. (1899). Œuvres. Publiées par les soins de J.-A. Serret. Tome troisième. Paris: Gauthier-Villars. [Reprinted in Hildesheim and New York: Georg Olms Verlag, 1973.]Google Scholar
  95. Lakatos, I. (1976). Proofs and Refutations. Cambridge, UK: Cambridge University Press.Google Scholar
  96. Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran and L. Lee (eds.), Approaches to Algebra. Perspectives for Research and Teaching (pp. 87-106). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  97. Levey, M. (ed.) (1966). The Algebra of Abû Kâmil, in a Commentary by Mordecai Finzi. Hebrew text and translation, and commentary. Madison, WI: The University of Wisconsin Press.Google Scholar
  98. Malara, N. and Navarra, G. (2003). ArAl Projec. Atrithmetic Pathways Towards Favouring Pre-algebraic Thinking. Bologna: Pitagora Editrice.Google Scholar
  99. Marre, A. (1880). Notice sur Nicolas Chuquet et son Triparty en la science des nombres. Bulletino di Bibliografia e Storia delle Scienze Matematice e Fisice, 13, 555--659 and 693-814.Google Scholar
  100. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran and L. Lee (Eds.), Approaches to Algebra. Perspectives for Research and Teaching (pp. 65-86). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  101. Matz, M. (1982). Towards a process model for high school algebra errors. In D. Seeman and J. S. Brown (eds.), Intelligent Tutoring Systems (pp. 25-50). New York: Academic Press.Google Scholar
  102. Mazzinghi, M. A. di. (1967). Trattato di Fioretti. (Arrighi, G. Ed.) Pisa: Domus Galileana.Google Scholar
  103. Nassar, A. (2001). El Efecto de Enseñar Algunas Estrategias de Resolución de Problemas en la Actuación de los Alumnos del Nivel 3º de Secundaria al Resolver Problemas Verbales Algebraicos en Gaza (Palestina), Tesis doctoral. Universitat de València.Google Scholar
  104. Nemirovsky, R. (1996). Mathematical narratives, modeling and algebra. In N. Bednarz, C. Kieran and L. Lee (eds.), Approaches to Algebra. Perspectives for Research and Teaching (pp. 197-220). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  105. Neugebauer, O. (1969). The Exact Sciences in Antiquity. New York: Dover.Google Scholar
  106. Peirce, C. S. (1931-58). Collected Papers of Charles Sanders Peirce. Edited by Charles Hartshorne and Paul Weiss (vols. 1-6) and by Arthur Burks (vols. 7-8). Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  107. Peirce, C. S. (1982). Writings of Charles S. Peirce: A Chronological Edition, 6 vols. to date. Edited by Edward C. Moore, Max Fisch, Christian J. W. Kloesel et-al. Bloomington: Indiana University Press.Google Scholar
  108. Pimm, D. (1987). Speaking Mathematically. Comunication in Mathematics Classrooms. London: Routledge.Google Scholar
  109. Polya, G. (1957). How to Solve It. 2nd. edition. Princeton, NJ: Princeton University Press.Google Scholar
  110. Polya, G. (1966). Mathematical Discovery. 2 vols. New York: John Wiley and Sons.Google Scholar
  111. Puig, L. (1994). El De Numeris Datis de Jordanus Nemorarius como sistema matemático de signos. Mathesis, 10(1), 47-92.Google Scholar
  112. Puig, L. (1996). Elementos de Resolución de Problemas. Granada: Comares, col. Mathema.Google Scholar
  113. Puig, L. (1997). Análisis fenomenológico. In L. Rico (Ed.), La Educación Matemática en la Enseñanza Secundaria (pp. 61-94). Barcelona: ICE/Horsori.Google Scholar
  114. Puig, L. (1998). Componentes de una historia del álgebra. El texto de al-Khwârizmî restaurado. In F. Hitt (Ed.), Investigaciones en Matemática Educativa II (pp. 109-131). México, DF: Grupo Editorial Iberoamérica.Google Scholar
  115. Puig, L. and Cerdán, F. (1988). Problemas Aritméticos Escolares. Madrid: Ed. Síntesis.Google Scholar
  116. Puig, L. and Cerdán, F. (1990). Acerca del carácter aritmético o algebraico de los problemas verbales. In E. Filloy, and T. Rojano (Eds.), Memorias del Segundo Simposio Internacional sobre Investigación en Educación Matemática (pp. 35-48). Cuernavaca, Morelos: PNFAPM.Google Scholar
  117. Puig, L. and Rojano, T. (2004). The history of algebra in mathematics education. In K. Stacey, H. Chick, and M. Kendal (eds.), The Teaching and Learning of Algebra: The 12th ICMI study (pp. 189-224). Boston/Dordrecht/New York/London: Kluwer Academic Publishers.Google Scholar
  118. Radford, L. (2000a). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell, and R. Lins (Eds.), Perspectives on School Algebra (pp. 13-36). Dordrecht/Boston/ London: Kluwer Academic Publishers.Google Scholar
  119. Radford, L. (2000b). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis, Educational Studies in Mathematics, 42(3), 237-268.Google Scholar
  120. Radford, L. (2003). On the epistemological limits of language. Mathematical knowledge and social practice in the Renaissance. Educational Studies in Mathematics, 52(2), 123-150.Google Scholar
  121. Radford, L. (2004). The Cultural-Epistomological Conditions of the Emergence of Algebraic Symbolism. Paper presented at the 2004 History and Pedagogy of Mathematics Conference, Uppsala, Sweden.Google Scholar
  122. Rashed, R. (ed.) (1984). Diophante. Tome III. Les Arithmétiques. Livre IV, et Tome IV, Livres V, VI et VII. Texte de la traduction arabe de Qustâ ibn Lûqâ établi et traduit par Roshdi Rashed. Paris: Les Belles Lettres.Google Scholar
  123. Rashed, R. and Vahebzadeh, B. (1999). Al-Khayyâm mathématicien. Paris: Librairie Scientifique et Technique Albert Blanchard.Google Scholar
  124. Rojano, T. (1985). De la artimética al álgebra: un estudio clínico con niños de 12 a 13 años de edad. Unpublished Doctoral dissertation, Centro de Investigación y de Estudios Avanzados del IPN, D.F., México.Google Scholar
  125. Rosen, F. (1831). The Algebra of Mohammed Ben Musa. London: Oriental Translation Fund. Rotman, B. (1988). Toward a semiotics of mathematics. Semiotica, 72, 1-35.Google Scholar
  126. Rotman, B. (1993). Ad Infinitum… The Ghost in Turing’s Machine. Stanford, CA: Stanford University Press.Google Scholar
  127. Rotman, B. (2000). Mathematics as Sign. Writing, Imagining, Counting. Stanford, CA: Stanford University Press.Google Scholar
  128. Russell, B. (1973). Is mathematics purely linguistic? In D. Lackey (Ed.), Essays in Analysis by Bertrand Russell (pp. 295-306). London: George Allen and Unwin Ltd.Google Scholar
  129. Schmandt-Besserat, D. (1992). Before Writing. I. From Counting to Cuneiform. Austin: University of Texas Press.Google Scholar
  130. Sesiano, J. (ed.) (1982). Books IV to VII of Diophantus’ Arithmetica in the Arabic Translation attributed to Qustâ ibn Lûqâ. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  131. Verlag. Sesiano, J. (1993). La version latine médiévale de l’Algèbre d’Abû Kâmil. In M. Folkerts, and J. P. Hogendijk (Eds.), Vestigia Mathematica. Studies in Medieval and Early Modern Mathematics in Honour of H. L. L. Busard (pp. 315-452). Amsterdam and Atlanta, GA: Editions Rodopi B. V.Google Scholar
  132. Sigler, L. E. (1987). Leonardo Pisano Fibonacci. The Book of Squares. An annotated translation into modern English by L. E. Sigler. Orlando, FL: Academic Press.Google Scholar
  133. Sigler, L. E. (2002). Fibonacci’s Liber Abaci. A Translation into Modern English of Leonardo Pisano’s Book of Calculation. Translated by Laurence E. Sigler. New York/Berlin/ Heidelberg: Springer Verlag.Google Scholar
  134. Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 42(3), 379-402.Google Scholar
  135. Stevin, S. (1634). Les Œuvres Mathématiques de Simon Stevin de Bruges, edited by Girard. Leyden: Elzevirs.Google Scholar
  136. Szabó, Á. (1977). Les débuts des mathématiques grecques. Paris: Vrin.Google Scholar
  137. Taisbak, C. M. (2003). Euclid’s Data. The Importance of Being Given. Copenhagen: Museum Tusculanum Press.Google Scholar
  138. Talens, J. and Company, J. M. (1984). The textual space: On the notion of text. The Journal of the Midwest Modern Language Association, 17(2), 24-36.Google Scholar
  139. Tannery, P. (Ed.) (1893). Diophanti Alexandrini Opera Omnia cum Graecis Commentariis. Edidit et latine interpretatus est Paulus Tannery. 2 vols. Stuttgart: B. G. Teubner. [Reprinted in 1974.]Google Scholar
  140. Thorndike, E. L. et al. (1923). The Psychology of Algebra. New York: The Macmillan Company.Google Scholar
  141. Usiskin, Z. (1999). Conceptions of school algebra and uses of variables. In B. Moses (ed.), Algebraic Thinking, Grades K-12: Readings from NCTM’s School-Based Journals and Other Publications (pp. 7-13).Google Scholar
  142. Reston, VA: National Council of Teachers of Mathematics. Vallejo, J. M. (1841). Tratado Elemental de Matemáticas, Escrito de Orden de S. M. para Uso de los Caballeros Seminaristas del Seminario de Nobles de Madrid y Demás Casas de Educación del Reino. Cuarta Edición Corregida y Considerablemente Aumentada. Tomo I. Parte primera, que contiene la Aritmética y Álgebra. Madrid: Imprenta Garrasayaza.Google Scholar
  143. Van Der Waerden, B. L. (1954). Science Awakening I: Egyptian, Babylonian & Greek Mathematics. Groningen: Noordhoff.Google Scholar
  144. Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D. and Verschaffel, L. (2003). The illusion of linearity: Expanding the evidence towards probabilistic reasoning. Educational Studies in Mathematics, 53, 113-138.Google Scholar
  145. Van Egmond, W. (1980). Practical mathematics in the Italian renaissance. (A Catalog of Italian Abacus Manuscripts and Printed Books to 1600). Firenze, Italy: Annali dell’Instituto e Museo di. Storia della Scienza, fascicolo 1, Instituto e Museo di Storia della Scienza.Google Scholar
  146. Van Schooten, F. (1646). Francisci Vietæ Opera Mathematica. Lugduni Batavorum: Ex Officinâ Bonaventuræ & Abrahami Elzeviriorum.Google Scholar
  147. Ver Eecke, P. (1952). Leonard de Pise. Le Livre des Nombres Carrés. Traduit pour la première fois du latin médiéval en Français, avec une introduction et des notes par Paul Ver Eecke. Paris: Albert Blanchard.Google Scholar
  148. Ver Eecke, P. (1959). Diophante d’Alexandrie. Les Six Livres d’Arithmétiques et le Livre des Nombres Polygones. Traduit du grec, avec une introduction et des notes par Paul Ver Eecke. Paris: Albert Blanchard.Google Scholar
  149. Ver Eecke, P. (1973). Leonardo de Pisa. El Libro de los Números Cuadrados. Traducción de la versión francesa de Paul Ver Ecke de Pastora Sofía Nogués Acuna. Buenos Aires: Editorial Universitaria de Buenos Aires.Google Scholar
  150. Vergnaud, G. (1981). L’Enfant la Mathématique et la Réalité. Berne: Peter Lang.Google Scholar
  151. Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T. P. Carpenter, J. M. Moser, and T. A. Romberg (eds.), Addition and Subtraction: A Cognitive Perspective (pp. 39-59). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  152. Verschaffel, L., Greer, B. and De Corte, E. (2000). Making Sense of Word Problems. Lisse: Swets & Zeitlinger.Google Scholar
  153. Von Neumann, J.(1923). Zur Einführung der transfiniten Zahlen. Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephine, Sectio Scientiarum Mathematicarum, 1, 199-208. [Translated as “On the Introduction of Transfinite Numbers” by J. Van Heijenoort. In J. van Heijenoort (Ed.), (1967). From Frege to Gödel. A Source Book in Mathematical Logic,1879-1931(pp.346-354). Cambridge, MA: Harvard University Press.]Google Scholar
  154. Vuillemin, J. (1962). La Philosophie de l’Algèbre. Paris: Presses Universitaires de France.Google Scholar
  155. Witmer, T. R. (ed.) (1983). François Viète. The Analytic Art. Kent, OH: The Kent State University Press.Google Scholar
  156. Wittgenstein, L. (1956). Remarks on the Foundations of Mathematics. Edited by G. H. von Wright, R. Rhees, and G. E. M. Anscombe. Oxford: Basil Blackwell. [Wittgenstein, L. (1984). Bemerkungen über die Grundlagen der Mathematik. Herausgegeben von G. H. von Wright, R. Rhees, and G. E. M. Anscombe. Suhrkamp:Frankfurt am Main.]Google Scholar
  157. Zazkis, R. and Liljeddahl, P. (2001). Exploring multiplicative and additive structure of arithmetic sequences. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the Twenty Fifth Annual Conference for the Psychology of Mathematics Education (Vol. 4, pp. 439-446). Utrecht, The Netherlands.Google Scholar
  158. Zazkis, R. and Liljeddahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49(3), 379-402.Google Scholar
  159. Zermelo, E. (1909). Sur les ensembles finis et le principe de l’induction complète. Acta Mathematica, 32, 185-193.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations