Genomics of Coffee One of the World’s Largest Traded Commodities

  • Philippe Lashermes
  • Alan Carvalho Andrade
  • Hervé Etienne
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)


Coffee is one of the world’s most valuable agricultural export commodities. In particular, coffee is a key export and cash crop in numerous tropical and subtropical countries having a generally favorable impact on the social and physical environment.While coffee species belong to the Rubiaceae family, one of the largest tropical angiosperm families, commercial production relies mainly on two species, Coffea arabica L. and Coffea canephora Pierre, known as Robusta. Although a considerable genetic diversity is potentially available, coffee breeding is still a long and difficult process. Nevertheless, genomic approaches offer feasible strategies to decipher the genetic and molecular bases of important biological traits in coffee tree species that are relevant to the growers, processors, and consumers. This knowledge is fundamental to allow efficient use and preservation of coffee genetic resources for the development of improved cultivars in terms of quality and reduced conomic and environmental costs. This review focuses on the recent progress of coffee genomics in relation to crop improvement.


Somatic Embryo Coffee Berry Coffee Plant Restriction Fragment Length Polymorphism Coffea Arabica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuňa R, Bassüner R, Beillinson V, Cortina H, Cadena-Gómez G, et al. (1999) Coffee seeds contain 11S storage proteins. Physiol Plant 105:122–131Google Scholar
  2. Aga E, Bryngelsson T (2006) Inverse sequence-tagged repeat (ISTR) analysis of genetic variability in forest coffee (Coffea arabica L.) from Ethiopia. Genetic Res Crop Evol 53:721–728Google Scholar
  3. Aga E, Bryngelsson T, Bekele E, Salomon B (2003) Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia revealed by random amplified polymorphic DNA (RAPD) analysis. Hereditas 138:36–46PubMedGoogle Scholar
  4. Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, et al. (2007) Identification, characterization and utilization of EST-derived genetic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372PubMedGoogle Scholar
  5. Alba R, Fei Z, Payton P, Liu Y, Moore SL, et al. (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714PubMedGoogle Scholar
  6. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, et al. (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965PubMedGoogle Scholar
  7. Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls A-C, et al. (2006a) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967Google Scholar
  8. Alpizar E, Dechamp E, Bertrand B, Lashermes P, Etienne H (2006b) Transgenic roots for functional genomics of coffee resistance genes to root-knot nematodes. Proc Intl Sci Colloquium on Coffee 21:653–659, ASIC ( Scholar
  9. Anthony F, Berthaud J, Guillaumet JL, Lourd M (1987) Collecting wild Coffea species in Kenya and Tanzania. Plant Genet Res Newsl 69:23–29Google Scholar
  10. Anthony F, Bertrand B, Quiros O, Wilches A, Lashermes P, et al. (2001) Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 118:53–65Google Scholar
  11. Anthony F, Combes MC, Astorga C, Bertrand B, Graziosi G, et al. (2002) The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theor Appl Genet 104:894–900PubMedGoogle Scholar
  12. Barre P, Layssac M, D’Hont A, Louarn J, Charrier A, et al. (1998) Relationship between parental chromosomic contribution and nuclear DNA content in the coffee interspecific hybrid: C. pseudozanguebariae x C. liberica var. dewevrei. Theor Appl Genet 96:301–305Google Scholar
  13. Barton CR, Adams TL, Zarowitz M (1991) Stable transformation of foreign DNA into Coffea arabica plants. Proc Intl Conf Coffee Sci 14:460–464Google Scholar
  14. Baruah A, Naik V, Hendre PS, Rajkumar R, Rajendrakumar P, et al. (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica L., showing widecross-species amplifications. Mol Ecol Notes 3:647–650Google Scholar
  15. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176Google Scholar
  16. Berthouly M, Etienne H (2000) Somatic embryogenesis of coffee. In: Coffee biotechnology and quality. Proc Intl Seminar Biotechnology Coffee Agro-industry 13:71–90Google Scholar
  17. Bhat PR, Krishnakumar V, Hendre PS, Rajendrakumar P,Varshney RK, et al. (2005) Identification and characterization of gene-derived EST–SSR markers from robusta coffee variety ‘CxR’ (an interspecific hybrid of Coffea canephora and Coffea congensis). Mol Ecol Notes 5:80–83Google Scholar
  18. Bouharmont J (1959) Recherches sur les affinités chromosomiques dans le genre Coffea. 77:94 pGoogle Scholar
  19. Bremer B, Jansen RK (1991) Comparative restriction site mapping of chloroplast DNA implies new phylogenetic relationships within Rubiaceae. Am J Bot 78:198–213Google Scholar
  20. Bridson D (1982) Studies in Coffea and Psilanthus (Rubiaceae subfam. Cinchonoideae) for Part 2 of ’Flora of Tropical East Africa’: Rubiaceae. Kew Bull 36:817–859Google Scholar
  21. Bridson D, Verdcourt B (1988) Coffea. In: Polhill RM (ed) Flora of Tropical East Africa. Rubiaceae (Part 2). A.A. Balkema, Rotterdam, pp 703–727Google Scholar
  22. Bustamante J, Campa C, Poncet V, Noirot M, Leroy T, et al. (2007) Molecular characterization of an ethylene receptor gene (CcETR1) in coffee trees, its relationship with fruit development and caffein content. Mol Genet Genomics (in press), DOI: 10.1007/s00438-007-0219-zGoogle Scholar
  23. Canche-Moo RLR, Ku-Gonzales A, Burgeff C, Loyola-Vargas VM, Rodríguez-Zapata LC, et al. (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tiss Org Cult 84:373–387Google Scholar
  24. Carvalho A (1988) Principles and practice of coffee plant breeding for productivity and quality factors: Coffea arabica. In: Clarke RJ, Macrae R (eds) Coffee, volume 4: Agronomy. Elsevier Applied Science, London, pp 129–165Google Scholar
  25. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994). Green florescent protein as a marker for gene expression. Science 263:663–664Google Scholar
  26. Chevalier A, Dagron M (1928) Recherches historiques sur les débuts de la culture du caféier en Amérique. Communications et Actes de lácadémie des Sciences Coloniales (Paris) 5:1–38Google Scholar
  27. Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, et al. (2000) Characterisation of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol 9:1178–1180PubMedGoogle Scholar
  28. Coulibaly I, Revol B, Noirot M, Poncet V, Lorieux M, et al. (2003) AFLP and SSR polymorphism in a Coffea interspecific backcross progeny [(C. heterocalyx x C. canephora) x C. canephora]. Theor Appl Genet 107:1148–1155PubMedGoogle Scholar
  29. Couturon E (1982) Obtention d’haploïde spontanés de Coffea canephora Pierre par l’utilisation du greffage d’embryons. Café Cacao Thé 26(3):155–160Google Scholar
  30. Cristancho MA, Rivera C, Orozco C, Chalarca A, Mueller L (2006) Development of a bioinformatics platform at the Colombia National Coffee Research Center Proc Intl Sci Colloquium Coffee 21: 638–643, ASIC ( Scholar
  31. Cros J, Combes MC, Chabrillange N, Duperray C, Monnot des Angles A, et al. (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20Google Scholar
  32. Cros J, Combes MC, Trouslot P, Anthony F, Hamon S, et al. (1998) Phylogenetic relationships of Coffea species: new evidence based on the chloroplast DNA variation analysis. Mol Phylo Evol 9:109–117Google Scholar
  33. Crouzillat D, Rigoreau M, Bellanger L, Priyono S, Mawardi S, Syahrudi, McCarthy J, Tanksley S, Zaenudin I, Petiard V (2004) A Robusta consensus map using RFLP and microsatellites markers for the detection of QTL. Proc Intl Sci Colloquium Coffee 20: 546–553, ASIC ( Scholar
  34. Cruz ARR, Paixao ALD, Machado FR, Barbosa MFF, Junqueira CS, et al. (2004) Metodologia para obtenç˜o de plantas transformadas de Coffea canephora por co-cultivo e calos embriogênicos com A. tumefaciens. Boletim de Pesquisa e Desenvolvimento. Embrapa, Brasilia, Brasil, vol.58:15 pGoogle Scholar
  35. Cunha WG, Machado FRB, Vianna GR, Texteira JB, Barros EVSA (2004) Obtenç˜o de Coffea arabica geneticamente modificado por bombardeio de calos embriogênicos. Boletim de Pesquisa e Desenvolvimento. Embrapa, Brasilia, Brasil, vol. 73:15 pGoogle Scholar
  36. Davis AP, Maurin O, Chester M, Mvungu EF, Fay MF (2006) Phylogenetic relationship in Coffea (Rubiaceae) inferred from sequence data and morphology. Proc Intl Sci Colloquium Coffee 21: 868-875, ASIC ( Scholar
  37. De Nardi B, Dreos R, Del Terra L, Martellossi C, Asquini E, et al. (2006) Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance. Genome 49:1594–1605PubMedGoogle Scholar
  38. Dussert S, Lashermes P, Anthony F, Montagnon C, Trouslot P, et al. (2003) Coffee (Coffea canephora). In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers Inc., Plymouth, pp 239–258Google Scholar
  39. Eira MTS, Amaral da Silva EA, de Castro RD, Dussert S, Walters C, et al. (2006) Coffee seed physiology. Brazilian J Plant Physiol 18:149–163Google Scholar
  40. Etienne H (2005) Protocol of somatic embryogenesis: Coffee (Coffea arabica L. and C. canephora P.). In: Protocols for somatic embryogenesis in woody plants. Series: Forestry Sci Vol. 77, Jain SM, Gupta PK (Eds). Springer, the Netherlands. ISBN: 1-4020-2984-5, pp. 167–179Google Scholar
  41. Fernandez D, Santos P, Agostini C, Bon MC, Petitot AS, et al. (2004) Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Mol Plant Pathol 5:527–536Google Scholar
  42. Fernandez-Da Silva R, Menéndez-Yuffá A (2003) Transient gene expression in secondary somatic embryos from coffee tissues electroporated with genes gus and bar. Electronic J Biotech 6:29–35Google Scholar
  43. Fernandez-Da Silva R, Menéndez-Yuffá A (2004) Efecto del herbicida glufosinate de amonio en diferentes explantes de Coffea arabica cv. Catimor. Acta Científica Venezolana 55:211–217Google Scholar
  44. Gaborit C, Caillet V, Deshayes A, Marraccini P (2003) Molecular cloning of a full-length cDNA and gene from Coffea arabica encoding a protein homologous to the yeast translation initiation factor SUI1: expression analysis in plant organs. Braz J Plant Physiol 15: 55–58Google Scholar
  45. Gallie DR, Lucas WJ, Walbot V (1989). Vizualing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1: 303–311Google Scholar
  46. Ganesh D, Petitot A-S, Silva M, Alary R, Lecouls AC, et al. (2006). Monitoring of the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus (Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Sci 170:1045–1051Google Scholar
  47. Geromel C, Ferreira LP, Guerreiro SMC, Cavalari AA, Pot D, et al. (2006) Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot 57:3243–3258PubMedGoogle Scholar
  48. Guerrero Filho O, Silvarolla MB, Eskes AB (1999) Expression and mode of inheritance of resistance in coffee to leaf miner Perileucoptera coffeella. Euphytica 105:7–15Google Scholar
  49. Haarer AE (1956) Modern coffee production. Leonard Hill (books) Limited, LondonGoogle Scholar
  50. Hatanaka T, Choi YE, Kusano T, Sano H (1999) Transgenic plants of Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 19:106–110Google Scholar
  51. Herrera JC, D’Hont A, Lashermes P (2007) Use of fluorescence in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (Coffea arabica L.). Genome 50:619–626PubMedGoogle Scholar
  52. Herrera JC, Combes MC, Anthony F, Charrier A, Lashermes P (2002) Introgression into the allotetraploid coffee (Coffea arabica L.): segregation and recombination of the C. canephora genome in the tetraploid interspecific hybrid (C. arabica x C. canephora). Theor Appl Genet 104:661–668PubMedGoogle Scholar
  53. Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, et al. (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot 97:755–765PubMedGoogle Scholar
  54. Joet T, Salmona J, Suzanne W, Descroix F, Dussert S, et al. (2006) Targeted transcriptome profiling during seed development in C. arabica cv. Laurina. Proc Intl Sci Colloquium Coffee 21: 687–694, ASIC ( Scholar
  55. Krug CA, Mendes AJT (1940) Cytological observations in Coffea - IV. J Genet 39:189–203Google Scholar
  56. Krug CA, Mendes JET, Carvalho A (1939) Taxonomia de Coffea arabica L. Campinas: Instituto Agronômico do Estado, Bolétim Técnico no 62Google Scholar
  57. Kumar V, Sathyabarayana KV, Indu EP, Sarala Itty S, Giridhar P, et al. (2004) Post transcriptional gene silencing for down regulating caffeine biosynthesis in Coffea canephora P. Proc Intl Sci Colloquium Coffee 20:769–774Google Scholar
  58. Kumar V, Satyanarayana KV, Sarala Itty S, Indu EP, Giridhar P, et al. (2006) Stable transformation and direct regeneration in Coffea canephora P ex. Fr. Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep 25:214–222PubMedGoogle Scholar
  59. Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, et al. (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee Coffea sp. Theor Appl Genet 101:669–676Google Scholar
  60. Lashermes P, Trouslot P, Anthony F, Combes MC, Charrier A (1996a) Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica. Euphytica 87:59–64Google Scholar
  61. Lashermes P, Cros J, Combes MC, Trouslot P, Anthony F, et al. (1996b) Inheritance and restriction fragment length polymorphism of chloroplast DNA in the genus Coffea L. Theor Appl Genet 93:626–632Google Scholar
  62. Lashermes P, Combes MC, Trouslot P, Charrier A (1997) Phylogenetic relationships of coffee tree species (Coffea L.) as inferred from ITS sequences of nuclear ribosomal DNA. Theor Appl Genet 94:947–955Google Scholar
  63. Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, et al. (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266Google Scholar
  64. Lashermes P, Paczek V, Trouslot P, Combes MC, Couturon E, et al. (2000a). Single-locus inheritance in the allotetraploid Coffea arabica L. and interspecific hybrid C. arabica x C. canephora. J Heredity 91:81–85Google Scholar
  65. Lashermes P, Andrzejewski S, Bertrand B, Combes MC, Dussert S, et al. (2000b) Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theor Appl Genet 100:139–146Google Scholar
  66. Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, et al. (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–595PubMedGoogle Scholar
  67. Lashermes P, Noir S, Combes MC, Ansaldi C, Bertrand B, et al. (2004) Toward an Integrated Physical Map of the Coffee Genome. Proc 20th Intl Sci Colloquium Coffee 20: 554–559, ASIC ( Scholar
  68. Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, et al. (2007) Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci (in press), DOI:10.1016/j.plantsci.2007.02.004Google Scholar
  69. Leroy T, Henry A-M, Royer M, Altosaar I, Frutos R, et al. (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389Google Scholar
  70. Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, et al. (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1032–1041PubMedGoogle Scholar
  71. Lin C, Mueller LA, McCarthy J, Crouzillat D, Pétiard V, et al. (2005). Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130PubMedGoogle Scholar
  72. Lombello RA, Pinto-Maglio CAF (2004) Cytogenetic studies in Coffea L. and Psilanthus Hook. Using CMA/DAPI and FISH. Cytologia 69:85–91Google Scholar
  73. López G, Moncada MDP (2006) Construction of an interspecific genetic Linkage map from a Coffea liberica x C. eugenioides F1 Population. Proc Intl Sci Colloquium Coffee 21: 644–652, ASIC ( Scholar
  74. Mahé L, Combes MC, Lashermes P (2007) Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Plant Mol Biol 64:699–711PubMedGoogle Scholar
  75. Marraccini P, Deshayes A, Pétiard V, Rogers WJ (1999) Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 37:273–282Google Scholar
  76. Marraccini P, Courjault C, Caillet V, Lausanne F, Lepage B, et al. (2003) Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 41:17–25Google Scholar
  77. Mettulio R, Rovelli P, Anthony F, Anzueto F, Lashermes P, et al. (1999) Polymorphic microsatellites in Coffea arabica. Proc Intl Sci Colloquium Coffee 18:344–347Google Scholar
  78. Moncada P, McCouch S (2004) Simple sequence repeat diversity in diploid and tetraploid Coffea species. Genome 47:501–509PubMedGoogle Scholar
  79. Naveen KS, Sreenath HL, Sreedevi G, Veluthambi K, Naidu R (2002) Transgenic coffee (Coffea arabica) plants with markers genes through Agrobacterium tumefaciens-mediated transformation. XV Plant Crops Symposium. Placrosym. Mysore, India, pp. 219–225Google Scholar
  80. Noir S, Patheyron S, Combes MC, Lashermes P, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109:225–230PubMedGoogle Scholar
  81. Ogita S, Uefuji H, Yamaguchi Y, Sano H (2003) RNA interference: producing decaffeinated coffee plants. Nature 423:823PubMedGoogle Scholar
  82. Ogita S, Uefuji H, Morimoto M, Sano H (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol. Biol 54:931–941PubMedGoogle Scholar
  83. Orozco-Castillo C, Chalmers KJ, Waugh R, Powell W (1994) Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor Appl Genet 87:934–940Google Scholar
  84. Orozco-Castillo C, Chalmers KJ, Powell W, Waugh R (1996) RAPD and organelle specific PCR re-affirms taxonomic relationships within the genus Coffea. Plant Cell Rep 15:337–341Google Scholar
  85. Paillard M, Lashermes P, Pétiard V (1996) Construction of a molecular linkage map in coffee. Theor Appl Genet 93:41–47Google Scholar
  86. Pearl HM, Nagai C, Moore PH, Steiger DL, Osgood RV, et al. (2004) Construction of a genetic map for arabica coffee. Theor Appl Genet 108:829–835PubMedGoogle Scholar
  87. Perthuis B, Pradon J, Montagnon C, Dufour M, Leroy T (2005) Stable resistance against the leaf miner Leucoptera coffeella expressed by genetically transformed Coffea canephora in a pluriannual field experiment in French Guiana. Euphytica 144:321–329Google Scholar
  88. Pinto-Maglio CAF, Da Cruz ND 1998. Pachytene chromosome morphology in Coffea L. II. C. arabica L. complement. Caryologia, 51:19–35Google Scholar
  89. Poncet V, Hamon P, Minier J, Carasco C, Hamon S, et al. (2004) SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 47:1071–1081PubMedGoogle Scholar
  90. Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, et al. (2006) SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Mol Genet Genomics 276:436–449PubMedGoogle Scholar
  91. Powers J, Culbertson JD (1983). Interaction of a purified bean (Phaseolus vulgaris) glycoprotein with an insect amylase. Cereal Chem 60:107–117Google Scholar
  92. Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, et al. (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into Coffea arabica L. Theor Appl Genet 109:1311–1317PubMedGoogle Scholar
  93. Prakash NS, Combes MC, Dussert S, Naveen S, Lashermes P (2005) Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genetic Res Crop Evol 52: 333–343Google Scholar
  94. Raina SN, Mukai Y, Yamamoto M (1998) In situ hybridisation identifies the diploid progenitor of Coffea arabica (Rubiaceae). Theor Appl Genet 97:1204–1209Google Scholar
  95. Ribas AF, Kobayashi AK, Pereira LFP, Vieira LGE (2005a) Genetic transformation of Coffea canephora by particle bombardment. Biol Plant 49:493–97Google Scholar
  96. Ribas AF, Galv˜o RM, Pereira LFP, Vieira LGE (2005b) Transformaç˜o de Coffea arabica com o gene da ACC-oxidase em orientaç˜o antisenso. 50th Congreso Brasileiro de Genética p. 492Google Scholar
  97. Ribas AF, Kobayashi AK, Pereira LFP, Vieira LGE (2006) Production of herbicide-resistance coffee plants (Coffea canephora L.) via Agrobacterium tumefaciens-mediated transformation. Braz Arc Biol Technol 49:11–19Google Scholar
  98. Rosillo AG, Acuna JR, Gaitan AL, de Pena M (2003) Optimized DNA delivery into Coffea arabica suspension culture cells by particle bombardment. Plant Cell Tiss Org Cult 74:75–79Google Scholar
  99. Samson NP, Campa C, Noirot M, De Kochko A (2004) Potential use of D-Xylose for coffee plant transformation. Proc Intl Conf Coffee Sci 20: 707-713 (ASIC) ( Scholar
  100. Satyanarayana KV, Kumar V, Chandrashekar A, Ravishankar GA (2005) Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora. J Biotechnol 119:20–25PubMedGoogle Scholar
  101. Simkin AJ, Qian T, Caillet V, Michoux F, Ben Amor M, et al. (2006) Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. J Plant Physiol 163:691–708PubMedGoogle Scholar
  102. Spiral J, Thierry C, Paillard M, Pétiard V (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes. C. R. Acad Sci Paris 3:1–6Google Scholar
  103. Srinivasan KH, Narasimhaswamy RL (1975) A review of coffee breeding work done at the Government coffee experiment station, Balehonnur. Indian coffee 34:311–321Google Scholar
  104. Stoffelen P, Noirot M, Couturon E, Anthony F (2007) A new caffeine-free coffee species in the deep rain forest of Cameroon. Taxon (in press)Google Scholar
  105. Sugiyama M, Matsuoka C, Takagi T (1995) Transformation of Coffea with Agrobacterium rhizogenes. Proc Intl Conf Coffee Sci 16:853–859Google Scholar
  106. Thomas AS (1942) The wild arabica coffee on the Boma Plateau, Anglo-Egyptian Sudan. Empire J Expt Agric 10:207–212Google Scholar
  107. van Boxtel J, Berthouly M, Carasco M, Dufour M, Eskes A (1995) Transient expression of ss-glucuronidase following biolistic delivery of foreign DNA into coffee tissue. Plant Cell Rep 14:748–752Google Scholar
  108. van Boxtel J, Eskes A, Berthouly M (1997) Glufosinate as an efficient inhibitor of callus proliferation in coffee tissue. In Vitro Cell Dev Biol Plant 33:6–12Google Scholar
  109. Van der Vossen HAM (2001) Agronomy I: Coffee Breeding Practices. In: Clarke RJ, Vitzthum OG (eds) Coffee: recent developments. Blackwell Science, United Kingdom, pp 184–201Google Scholar
  110. Vieira LGE, Andrade AC, Colombo CA, Araujo AH, Metha A et al. (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108Google Scholar
  111. Wellman FL (1961) Coffee: botany, cultivation and utilization. London: Leonard Hill BooksGoogle Scholar
  112. Wu F, Mueller LA, Crouzillat D, Pétiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: A test case in the euasterid plant clade. Genetics 174:1407–1420PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Philippe Lashermes
    • 1
  • Alan Carvalho Andrade
  • Hervé Etienne
  1. 1.Institut de Recherche pour le Développement, UMR RPB34394 MontpellierCedex 5France

Personalised recommendations