Genomics of Citrus, a Major Fruit Crop of Tropical and Subtropical Regions

  • Mikeal L. Roose
  • Timothy J. Close
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)


Genomics in citrus and closely related genera is relatively advanced, with many linkage maps, several bacterial artificial chromosome libraries, a physical map, a fairly large and well-annotated expressed sequence tag collection, several microarrays, and a low coverage (1.2x) genome sequence for sweet orange. This chapter reviews the various genomics resources available for citrus. Integration of these resources, particularly those developed in different laboratories, remains a challenge.


Quantitative Trait Locus Analysis Sweet Orange Citrus Species Trifoliate Orange Poncirus Trifoliata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad R, Struss D, Southwick SM (2003) Development and characterization of microsatellite markers in Citrus. J Am Soc Hort Sci 128:584–590Google Scholar
  2. Arugumanathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  3. Asins MJ, Bernet GP, Ruiz C, Cambra M, Guerri J, et al. (2004) QTL analysis of citrus tristeza virus-citradia interaction. Theor Appl Genet 108:603–611PubMedCrossRefGoogle Scholar
  4. Ballester A, Cervera M, Pena, L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45PubMedCrossRefGoogle Scholar
  5. Barkley NA, Roose ML, Krueger RR, Federici, CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531PubMedCrossRefGoogle Scholar
  6. Bausher MG, Singh ND, Lee S, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ’Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21PubMedCrossRefGoogle Scholar
  7. Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234CrossRefGoogle Scholar
  8. Bretó MO, Ruiz C, Pina JA, Asins MJ (2001) The diversification of Citrus clementina Hort. Ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293PubMedCrossRefGoogle Scholar
  9. Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, et al. (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527PubMedCrossRefGoogle Scholar
  10. Cervera M, Pina JA, Juarez J, Navarro L, Pena, L (1998) Agrobacterium-mediated transformation of citrange: Factors affecting transformation and regeneration. Plant Cell Rep 18:271–278CrossRefGoogle Scholar
  11. Cervera M, Juarez J, Navarro L, Pena L (2005) Genetic transformation of mature citrus plants, In: Pena, L (ed.), Methods in Molecular Biology, Humana Press, pp. 177–187Google Scholar
  12. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257PubMedCrossRefGoogle Scholar
  13. Chen C, Bowman KD, Choi YA, Dang PM, Rao MN, et al. (2007a) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genetics and Genomes DOI 10.1007/s11295-007-0083-3Google Scholar
  14. Chen C, Zheng Q, Xiang X, Soneji JR, Huang S, et al. (2007b) Development of pGreen-derived GFP binary vectors for citrus transformation. HortSci 42:7–10Google Scholar
  15. Cheng FS, Roose ML (1995) Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliata ‘Flying Dragon.’ J Am Soc Hort Sci 120:286–291Google Scholar
  16. Close TJ, Wanamaker S, Lyon M, Mei G, Davies C, et al. (2006) A GeneChip®for Citrus. Plant & Animal Genomes Conf 14:W82, pg 26Google Scholar
  17. Cristofani M, Machado MA, Grattapaglia D (1999) Genetic linkage maps of Citrus sunki Hort. Ex. Tan. and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109:25–32CrossRefGoogle Scholar
  18. Dalkilic Z, Timmer LW, Gmitter FG Jr (2005) Linkage of Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hort Sci 130:191–195Google Scholar
  19. de Araujo EF, de Queiroz LP, Machado MA (2003) What is Citrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioidaeae). Org Divers Evol 3:55–62CrossRefGoogle Scholar
  20. de Oliveira RP, Cristofani M, Machado MA (2005) Integrated genetic map of citrus based on RAPD markers. Fruits 60:187–193CrossRefGoogle Scholar
  21. Deng Z, Huang S, Ling P, Yu C, Tao Q, et al. (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genomics 265:739–747PubMedCrossRefGoogle Scholar
  22. Duan YX, Guo WW, Meng HJ, Tao NG, Li DD, et al. (2007) High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biologia Plantarum (Prague) 51:212–216CrossRefGoogle Scholar
  23. Durham RE, Liou PC, Gmitter FG Jr, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor Appl Genet 84:39–48CrossRefGoogle Scholar
  24. Fang DQ, Roose ML (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417CrossRefGoogle Scholar
  25. Fang DQ, Federici CT, Roose ML (1998a) Development of molecular markers linked to a gene controlling fruit acidity in Citrus. Genome 40:841–849Google Scholar
  26. Fang DQ, Federici CT, Roose ML (1998b) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150:883–890Google Scholar
  27. Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822CrossRefGoogle Scholar
  28. Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, et al. (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391PubMedCrossRefGoogle Scholar
  29. Garcia R, Asins MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511–518CrossRefGoogle Scholar
  30. Gmitter FG Jr (1995) Origin, evolution and breeding of the grapefruit. Plant Breeding Rev 13:345–363Google Scholar
  31. Gmitter FG, Xiao SY, Huang S, Hu XL, Garnsey SM, et al. (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695CrossRefGoogle Scholar
  32. Guerra M (1993) Cytogenetics of Rutaceae. V. High chromosomal variability in Citrus species revealed by CMA/DAPI staining. Heredity 71:234–241Google Scholar
  33. Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J Am Soc Hort Sci 126:309–317Google Scholar
  34. Jarrell DC, Roose ML, Traugh SN, Kupper RS (1992) A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor App Genet 84:49–56CrossRefGoogle Scholar
  35. Jayaprakasha GK, Patil BS (2007) In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chemistry 101:410–418CrossRefGoogle Scholar
  36. Kepiro J (2004) Molecular genetic analysis of nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. pp. 220. Ph.D. Dissertation, University of California, RiversideGoogle Scholar
  37. Ling P, Duncan LW, Deng Z, Dunn D, Hu X, et al. (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100:1010–1017CrossRefGoogle Scholar
  38. Luro F, Lorieux M, Laigret F, Bové JM and Ollitraut P (1995) Cartographie du génome des agrumes á láide des marquers moléculaires et distorsions de ségrégation. In: INRA (ed.) Techniques et Utilisations des Marqueurs Moléculaires. INRA, Paris, pp. 69–82Google Scholar
  39. Matsuyama T, Akihama T, Ito Y, Omura M, Fukui K (1996) Characterization of heterochromatic regions in ‘Trovita’ orange (Citrus sinensis Osbeck) chromosomes by the fluorescent staining and FISH methods. Genome 39:941–945PubMedCrossRefGoogle Scholar
  40. Mestre PF, Asins MJ, Pina JA, Carbonell EA, Navarro L (1997) Molecular markers flanking citrus tristeza virus resistance gene from Poncirus trifoliata (L.) Raf. Theor Appl Genet 94:458–464CrossRefGoogle Scholar
  41. Mirkov TE, Yang Z, Rai M, Molina JJ, Roose ML, et al. (in press) Toward positional cloning of the Citrus tristeza virus resistance gene. In: Karasev, AV and Hilf, ME (ed.), Citrus tristeza Virus Complex and Tristeza Diseases, APS PressGoogle Scholar
  42. Moore G (2001) Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet 17:536–540PubMedCrossRefGoogle Scholar
  43. Moraes A, Soares Filho WS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121PubMedCrossRefGoogle Scholar
  44. Mozoruk J, Hunnicutt LE, Cave RD, Hunter WB, Bausher MG (2006) Profiling transcriptional changes in Citrus sinensis (L.) Osbeck challenged by herbivory from the xylem-feeding leafhopper Homalodisca coagulata (Say) by cDNA macroarray analysis Plant Sci 170:1068–1080Google Scholar
  45. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, et al. (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166CrossRefGoogle Scholar
  46. Nicolosi E, La Malfa S, El-Otmani M, Neqbi M, Goldschmidt EE (2005) The search for the authentic citron (Citrus medica L.): Historic and genetic analysis. HortSci 40:1963–1968Google Scholar
  47. Pang X-M, Hu C-G, Deng, X-X (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet Resources Crop Evol 54:429–436CrossRefGoogle Scholar
  48. Pedrosa A, Schweizer D, Guerra M (2000) Cytological heterozygosity and the hybrid origin of sweet orange Citrus sinensis (L.) Osbeck. Theor Appl Genet 100:361–367CrossRefGoogle Scholar
  49. Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in Citrus. Plant Physiol 135:1540–1551PubMedCrossRefGoogle Scholar
  50. Recupero GR, Russo MP, De Simone M, Natoli A, Marsan PA, Marocco A (2000) Development of molecular marker maps for rootstock breeding in Citrus. Acta Hort. 535:33–36Google Scholar
  51. Rico-Cabanas L, Martínez-Izquierdo JA (2007) CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 277:365–377PubMedCrossRefGoogle Scholar
  52. Roose ML, Schwarzacher T, Heslop-Harrison JS (1998) The chromosomes of Citrus and Poncirus species and hybrids: identification of characteristic chromosomes and physical mapping of rDNA loci using in situ hybridization and fluorochrome banding. J Hered 89:83–86PubMedCrossRefGoogle Scholar
  53. Roose ML, Fang D, Cheng FS, Tayyar RA, Federici CT, et al. (2000) Mapping the Citrus genome. Acta Horticulturae 535:25–32Google Scholar
  54. Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836PubMedGoogle Scholar
  55. Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet 102:206–214CrossRefGoogle Scholar
  56. Shimada T, Fuiii H, Endo T, Yazaki J, Kishimoto N, et al. (2005) Toward comprehensive expression profiling by microarray analysis in citrus: monitoring the expression profiles of 2213 genes during fruit development. Plant Sci 168:1383–1385CrossRefGoogle Scholar
  57. Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo FR, et al. (2007) Analyses of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31PubMedCrossRefGoogle Scholar
  58. Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. Am J Bot 65:869–881CrossRefGoogle Scholar
  59. Tozlu I, Guy CL, Moore GA (1999a) QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:1020–1029CrossRefGoogle Scholar
  60. Tozlu I, Guy CL, Moore GA (1999b) QTL analysis of Na+and Cl accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:692–705CrossRefGoogle Scholar
  61. Yamamoto M, Tominaga S (2003) High chromosomal variability of mandarins (Citrus spp.) revealed by CMA banding. Euphytica 129:267–274CrossRefGoogle Scholar
  62. Yang ZN, Ingelbrecht I, Louzada E, Skaria M, Mirkov, TE (2000) Agrobacterium mediated transformation of the commercially important grapefruit cultivar Rio Red. Plant Cell Rep 19:1203–1211CrossRefGoogle Scholar
  63. Yang ZN, Ye XR, Choi S, Molina J, Moonan F, et al. (2001) Construction of a 1.2 Mb contig including the Citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata. Genome 44:382–393PubMedCrossRefGoogle Scholar
  64. Yang ZN, Ye XR, Molina J, Roose ML, Mirkov, TE (2003) Sequence analysis of a 282-kb region surrounding the Citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata. Plant Physiol 131:482–492PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mikeal L. Roose
    • 1
  • Timothy J. Close
  1. 1.Department of Botany & Plant SciencesUniversity of CaliforniaRiversideU.S.A.

Personalised recommendations