Chickpea, a Common Source of Protein and Starch in the Semi-Arid ropics

  • Fred J. Muehlbauer
  • P.N. Rajesh
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)


Chickpea (Cicer arietinum L.) is an important food crop in the semi-arid tropics where it is grown during the cool winter season. Research has concentrated on the development of improved germplasm for resistance to diseases and pests and more recently has focused on the use of genetics and biotechnological tools to enhance the knowledge of the genomics of chickpea. The wild species (8 annuals and 34 perennials) are a potential source of genes for overcoming problems of diseases and pests, and work is underway toward overcoming barriers to interspecific hybridization. Bacterial artificial chromosome libraries are available for genomic research in chickpea and a targeted induced local lesion in genomes, also called TILLING, platform is under development that holds promise for identification of important genes and determination of their function. The chickpea plant is described and the tools for further exploitation of the crop are discussed.


Simple Sequence Repeat Marker Ascochyta Blight Cicer Arietinum Single Nucleotide Polymorphism Discovery Single Nucleotide Polymorphism Frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad F (2000) A comparative study of chromosome morphology among the nine annual species of Cicer L. Cytobios 101:37–53PubMedGoogle Scholar
  2. Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet—a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472PubMedCrossRefGoogle Scholar
  3. Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2003) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 17:5:16Google Scholar
  4. Ching ADA, Caldwell KS, Jung M, Dolan M, Smith OS, et al. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3:19PubMedCrossRefGoogle Scholar
  5. Cho S, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64:57–66CrossRefGoogle Scholar
  6. Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, et al. (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292CrossRefGoogle Scholar
  7. Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739PubMedCrossRefGoogle Scholar
  8. Choi H-K, Mun JH, Kim DJ, Zhu H, Baek JM, et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294PubMedCrossRefGoogle Scholar
  9. Collard BC, Pang EC, Ades PK, Taylor PW (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729PubMedCrossRefGoogle Scholar
  10. Corum T, Pang ECK (2005) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200CrossRefGoogle Scholar
  11. Croser JS, Ahmad F, Clarke HJ, Siddique KHM (2003) Utilization of wild Cicer in chickpea improvement - progress, constraints, and prospects.Austr J Agric Res 54:429–444CrossRefGoogle Scholar
  12. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, et al. (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 2004 108:414–422CrossRefGoogle Scholar
  13. FAO (2006) FAO Statistics at Scholar
  14. Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456PubMedGoogle Scholar
  15. Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, et al. (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217PubMedCrossRefGoogle Scholar
  16. Huttel B, Winter P, Weising K, Choumane W, Weigand F et al. (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217PubMedCrossRefGoogle Scholar
  17. Ichinose Y, Tiemann K, Schwenger-Erger C, Toyoda K, Hein F, et al. (2000) Genes expressed in Ascochyta rabiei-inoculated chickpea plants and elicited cell cultures as detected by differential cDNA-hybridization. Z Naturforsch 55:44–54Google Scholar
  18. Jander G, Baerson SR, Hudak JA, Gonzalez KA, Gruys KJ, et al. (2003) Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol 131:139–146PubMedCrossRefGoogle Scholar
  19. Jander G, Norris SR, Rounsley SD. Bush DF, Levin IM, et al. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450PubMedCrossRefGoogle Scholar
  20. Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, et al. (1997) Expression of cryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6:177–185CrossRefGoogle Scholar
  21. Ladizinsky G (1975) A new Cicer from Turkey. Notes of the Royal Botanic Garden Edinburgh 34:201–202Google Scholar
  22. Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510PubMedCrossRefGoogle Scholar
  23. Lopez C, Pie’gu B, Cooke R, Delseny M, Tohme J, et al. (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431PubMedCrossRefGoogle Scholar
  24. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, et al. (2002) Search for and analysis of single nucleotide polymorphism (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171PubMedCrossRefGoogle Scholar
  25. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. Nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Intl J Syst Bacteriol 44:511–522CrossRefGoogle Scholar
  26. Ocampo B, Venora G, Errico A, Singh KB, Saccardo F (1992) Karyotype analysis in the genus Cicer. J Genet Plant Breed 46:229–240Google Scholar
  27. Pfaff T, Kahl G (2003) Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genom 269:243–251Google Scholar
  28. Rajesh PN, Meksem K, Coyne C, Lightfoot D, Muehlbauer FJ (2002). Construction of first BAC library in Chickpea. Intl Chickpea Pigeonpea Newslet 9:29–30Google Scholar
  29. Rajesh PN, Gupta VS, Ranjekar PK, Muehlbauer FJ (2003) Functional genome analysis using DDRT with respect to ascochyta blight disease in chickpea. Intl Chickpea Pigeonpea Newslet 10:35–37Google Scholar
  30. Rajesh PN, Coyne C, Meksem K, Sharma KD, Gupta VS, et al. (2004) Construction of a HindIII Bacterial Artificial Chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669PubMedCrossRefGoogle Scholar
  31. Rajesh PN, McPhee K, Muehlbauer FJ (2005) Detection of polymorphism using CAPS and dCAPS markers in two chickpea genotypes. Intl Chickpea Pigeonpea Newslet 12:4–6Google Scholar
  32. Rajesh PN, Muehlbauer FJ, McPhee K (2007) Stability of chickpea large genomic DNA inserts in Agrobacterium. (In press)Google Scholar
  33. Ren C. Xu Z, Sun S, Lee M, Wu C, et al. (2005) Genomic DNA libraries and physical mapping. The handbook of plant genome mapping pp. 173–214 Wiley-VCH Verlag GmbH &Co. KGaA publishersCrossRefGoogle Scholar
  34. Santra DK, Tekeoglu M, Ratnaparkhe MB, Gupta VS, Ranjekar PK, et al. (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40:1606–1612CrossRefGoogle Scholar
  35. Sanyal I, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J. Biosci 31:339–345CrossRefGoogle Scholar
  36. Sanyal I, Singh AK, Amla DV (2003) Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.) using mature embryonic axes and cotyledonary nodes. Indian J Biotech 2:524–532Google Scholar
  37. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, et al. (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82CrossRefGoogle Scholar
  38. Schneider K, Weisshaar B, Borchardt DC, Salamani F (2001) SNP frequency and allele haplotype structure of Beta vulgaris expressed genes. Mol Breed 8:63–74CrossRefGoogle Scholar
  39. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and comparison with maps of pea and lentil. J Hered 88:115–119Google Scholar
  40. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81PubMedCrossRefGoogle Scholar
  41. Smithson JB, Thompson JA, Summerfield RJ (1985) Chickpea (Cicer arietinum L.). In: Summerfield RJ, Roberts EH (eds.) Grain Legume Crops. Collins, London, UK pp. 312–390Google Scholar
  42. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667PubMedCrossRefGoogle Scholar
  43. Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsattellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854PubMedCrossRefGoogle Scholar
  44. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, et al. (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 28:4:12Google Scholar
  45. Town CD (2005) Large-scale DNA sequencing The handbook of plant genome mapping. pp. 337–351 Wiley-VCH Verlag GmbH &Co. KGaA publishersGoogle Scholar
  46. Van der Maesen LJG (1972) Cicer L. a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Mededlingen landbouwhogeschool (Communication Agricultural University) Wageningen 72–10. 342 pGoogle Scholar
  47. Vláčilová K. Ohri D, Vrána J, Cíhalíková J, Kubaláková M, et al. (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.), Chromosome Res 10:695–706PubMedCrossRefGoogle Scholar
  48. Winter P, Benko-Iseppon HB, Ratnaparkhe M, Tullu A, Sonnante G, et al. (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum X C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163CrossRefGoogle Scholar
  49. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, et al. (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fred J. Muehlbauer
    • 1
  • P.N. Rajesh
  1. 1.USDA-ARS, Washington State UniversityPullmanUSA

Personalised recommendations