Skip to main content

Genomics of Banana and Plantain (Musa spp.), Major Staple Crops in the Tropics

  • Chapter
Genomics of Tropical Crop Plants

Abstract

This chapter on Musa (banana and plantain) genomics covers the latest information on activities and resources developed by the Global Musa Genomics Consortium. Section 4.1 describes the morphology of the plant, its socio-economical importance and usefulness as an experimental organism. Section 4.2 describes the complexity of Musa taxonomy and the importance of genetic diversity. Section 4.3 details the genetic maps which have recently been developed and those that are currently being developed. Section 4.4 presents the five BAC libraries which are now publicly available from the Musa Genome Resource Centre and can be distributed in various forms under a material transfer agreement. Section 4.5 gives an overview of cytogenetics and genome organization, showing that the genus Musa has a quite high proportion of repetitive DNA; the discovery of the first para-retrovirus integrated in the genome makes it unique. Section 4.6 explains the first attempts to sequence the genome by BAC end sequencing, whole BAC sequencing, and reduced representation sequencing. Section 4.7 addresses functional genomics with the description of cDNA libraries, gene validation using gene trapping, mutation induction and tilling techniques, as well as genetic transformation. Section 4.8 draws overall conclusions. This chapter demonstrates that by organizing the Global Musa Genomics Consortium (currently comprising 33 member institutions from 23 countries), duplication of effort can be minimized and the results of Musa genomics research are rapidly made accessible to taxonomists, breeders and the biotechnology community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acereto-Escoffié POM, Chi-Manzanero BH, Echeverría-Echeverría S, Grijalva R, James Kay A, et al. (2005) Agrobacterium-mediated transformation of Musa acuminata cv. “Grand Nain” scalps by vacuum infiltration. Sci Hortic 105:359–371

    Article  CAS  Google Scholar 

  • Aert R, Ság L, Volckaert G (2004) Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theor Appl Genet 109:129–139

    Article  PubMed  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Anonymous (1990) List of new mutant cultivars; Musa sp. (banana). Mutation Breed Newsl 35:32–41

    Google Scholar 

  • Anonymous (2005) All is good with the banana tree. Spore (FRA) 118:3

    Google Scholar 

  • Anonymous (2006) Technical Cooperation Projects Highlights. Plant Breed Genet Newsl 117:13

    Google Scholar 

  • Balint-Kurti PJ, Clendennen SK, Dolezelová M, Valárik M, Dolezel J, et al. (2000) Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol Gen Genet 263:908–915

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Gallois P, Raynal M, Mestre-Orteg D, Sallaud C, et al. (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471:161–164

    Article  PubMed  CAS  Google Scholar 

  • Bartoš J, Alkhimova O, Dolezelová M, De Langhe E, Dolezel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109:50–57

    Article  PubMed  CAS  Google Scholar 

  • Baurens FC (1997) Identification par PCR des espèces impliquées dans la composition génomique des cultivars de bananier à l’aide de séquences répétées. PhD, Université Paul Sabatier, Toulouse, France

    Google Scholar 

  • Baurens FC, Noyer JL, Lanaud C Lagoda PJL (1996) Use of competitive PCR to assay copy number of repetitive elements in banana. Mol Gen Genet 253:57–64

    Article  PubMed  CAS  Google Scholar 

  • Baurens FC, Noyer JL, Lanaud C, Lagoda PJL (1997a) A repetitive sequence family of banana (Musa sp.) shows homology to Copia-like elements. J Genet Breed 51:135–142

    CAS  Google Scholar 

  • Baurens FC, Noyer JL, Lanaud C, Lagoda PJL (1997b) Assessment of a species-specific element (Brep 1) in banana. Theor Appl Genet 95:922–931

    Article  CAS  Google Scholar 

  • Baurens FC, Noyer JL, Lanaud C, Lagoda PJL (1998) Inter-Alu PCR like genomic profiling in banana. Euphytica 99:137–142

    Article  CAS  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via particle bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Brown SD, Peters J (1996) Combining mutagenesis and genomics in the mouse-closing the phenotype gap. Trends Genet 12:433–435

    Article  PubMed  CAS  Google Scholar 

  • Buddenhagen IW (1987) Disease Susceptibility and Genetics in Relation to Breeding of Bananas and Plantains. In: Persley GJ DeLanghe EA (eds) Banana and Plantain Breeding Strategies. ACIAR, Canberra 21, pp 95–109

    Google Scholar 

  • Carreel F (1994) Etude de la diversité génétique des bananiers (genre Musa) à l’aide de marqueurs RFLP. PhD, Institut National Agronomique, Paris-Grignon, France

    Google Scholar 

  • Carreel F, Faure S, Gonzalez de Leon D, Lagoda PJL, Perrier X, et al. (1994) Evaluation de la diversité génétique chez les bananiers diploides (Musa sp.). Genet Sel Evol 26:125–136

    Article  Google Scholar 

  • Carreel F, Gonzalez de Leon D, Lagoda PJL, Lanaud C, Jenny C, et al. (2002) Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45:679–692

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    PubMed  CAS  Google Scholar 

  • Cheesman EE (1947) Classification of the bananas II. The Genus Musa L. Kew Bull 2:106–117

    Article  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, et al. (2005) SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 111:1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Côte FX, Domergue R, Mommarson S, Schwendiman J, Teisson C, et al. (1996) Embryogenic cell suspensions from the male flower of Musa AAA. Physiol Plant 97:285–290

    Article  Google Scholar 

  • Creste S, Tulmann Neto A, De Oliveira Silva S, Figueira A (2003) Genetic characterization of banana cultivars (Musa spp.) from Brazil using microsatellite markers. Euphytica 132:259–268

    Article  CAS  Google Scholar 

  • Crouch HK, Crouch JH, Jarret RL, Cregan PB, Ortiz R (1998) Segregation at Microsatellite loci in Haploid and Diploid gametes of Musa. Crop Sci 38:211–217

    Article  CAS  Google Scholar 

  • Crouch JH, Crouch HK, Constandt H, Van Gysel A, Breyne P, et al. (1999) Comparison of PCR-based marker analyses of Musa breeding populations. Mol Breed 5:233–244

    Article  CAS  Google Scholar 

  • D’Hont A, Paget-Goy A, Escoute J, Carreel F (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183

    Article  CAS  Google Scholar 

  • De Langhe E, Pillay M, Tenkouano A, Swennen R (2005) Integrating morphological and molecular taxonomy in Musa: the african plantains (Musa spp. AAB group). Plant Syst Evol 255: 225–236

    Article  Google Scholar 

  • Dolezel J, Dolezelová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and Musa balbisiana). Biol Plant 36:351–357

    Google Scholar 

  • Dolezelová M, Dolezel J, Van den Houwe I, Roux N, Swennen R (2005) Focus on the Musa collection: Ploidy levels revealed. InfoMusa 14:34–36

    Google Scholar 

  • Dolezelová M, Valárik M, Swennen R, Horry JP, Dolezel J (1998) Physical mapping of the 18S–25S and 5S ribosomal RNA genes in diploid bananas. Biol Plant 41:497–505

    Article  Google Scholar 

  • Ewing B, Green P (1998) Base calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • FAO, (2005) http://faostat.fao.org/

    Google Scholar 

  • Fauré S, Bakry F, De León DG (1993a) Cytogenetic studies of diploid bananas In: Ganry J (ed) Proc Int Symp Breeding Banana and Plantain for Resistance to Diseases and Pests. CIRAD, Montpellier, pp 77–92

    Google Scholar 

  • Fauré S, Noyer JL, Carreel F, Horry JP, Bakry F, et al. (1993b) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526

    Article  Google Scholar 

  • Cheung F, Town CD (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biology 7:29

    Article  PubMed  CAS  Google Scholar 

  • Ge XJ, Liu MH, Wang K, Schaal BA, Chiang TY (2005) Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Mol Ecol 14:933–944

    Article  PubMed  CAS  Google Scholar 

  • Global Musa Genomics Consortium (2002) Beyond Arabidopsis and Rice, Strategy for the Global Musa Genomics Consortium. Report of a meeting held in Arlington, USA, 17–20 July 2001, INIBAP, ProMUSA, pp 25–30

    Google Scholar 

  • Grapin A, Noyer JL, Dambier D, Carreel F, Lanaud C, et al. (1998) Diploid Musa acuminata genetic diversity with Sequence Tagged Microsatellite Sites. Electrophoresis 19:1374–1380

    Article  PubMed  CAS  Google Scholar 

  • Harper G, Osuji JO, Heslop-Harrison JSP, Hull R (1999) Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255:207–213

    Article  PubMed  CAS  Google Scholar 

  • Harper LC, Cande WZ (2000) Mapping a new frontier development of integrated cytogenetic maps in plants. Rev Funct Integr Genom 1:89–98

    Article  CAS  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  PubMed  CAS  Google Scholar 

  • Hermann SR, Becker DK, Harding RM, Dale JL (2001) Promoters derived from banana bunchy top virus-associated components S1 and S2 drive transgene expression in both tobacco and banana. Plant Cell Rep 20:642–646

    Article  CAS  Google Scholar 

  • Horry JP (1988) Distribution of anthocyanins in wild and cultivated banana varieties. Phytochemistry 27:2667–2672

    Article  CAS  Google Scholar 

  • Horry JP (1989) Chimio taxonomie et organisation génétique dans le genre Musa. I, II, III. Fruits 44:455–475, 509–520, 573–578

    Google Scholar 

  • Horry JP, Dolezel J, Dolezelová M, Lysák MA (1998) Do natural AxB tetraploid bananas exist? InfoMusa 7:5–6

    Google Scholar 

  • Hribová E, Macas J, Dolezelová M, Dolezel J (2006) Characterization of the highly repeated part of the banana genome. In: Abstracts of the 5th Plant Genomics European Meetings. The Italian Plant Genomics Network, Venice, p 205

    Google Scholar 

  • Hull R (2002) Matthews’ Plant Virology, 4th edn. San Diego, Academic Press

    Google Scholar 

  • Hull R, Harper G, Lockhart B (2000) Viral sequences integrated into plant genomes. Trends Plant Sci 5:362–365

    Article  PubMed  CAS  Google Scholar 

  • IAEA, http://www-mvd.iaea.org/

    Google Scholar 

  • INIBAP (1992) Banana and Plantain – food for thought. In: Annual report 1992, INIBAP, Montpellier, France, pp 7–11

    Google Scholar 

  • INIBAP (1999) Musa production around the world – trends, varieties and regionnal importance. In: Annual Report 1998, INIBAP, Montpellier, pp 42–47

    Google Scholar 

  • James AC, Jimenez-Martinez R, Canto-Canche B, Peraza-Echeverria S (2006) Discovery and characterization of disease resistance gene homologues in a plant transformation competent BIBAC library of the banana Musa acuminata cv Tuu Gia (AA). Plant and Animal Genome XIV Abst W6, p 8

    Google Scholar 

  • Jarret RL, Litz RE (1986) Enzyme polymorphism in Musa acuminata Colla. J Hered 77:183–186

    Google Scholar 

  • Jarret RL, Gawel N, Whittemore A, Sharrock S (1992) RFLP based phylogeny of Musa species in Papua New Guinea. Theor Appl Genet 84:579–584

    Article  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    Article  PubMed  CAS  Google Scholar 

  • Lanaud C, Tezenas du Montcel H, Jolivot MP, Glaszmann JC, González de León D (1992) Variation of ribosomal gene spacer length among wild and cultivated banana. Heredity 68:147–156

    CAS  Google Scholar 

  • Lebot V, Aradhya KM, Manchardt R, Meilleur B (1993) Genetic relationships among cultivated bananas and plantains from Asia and the Pacific. Euphytica 67:163–175

    Article  CAS  Google Scholar 

  • Lescot M, Piffanelli1 P, Ciampi AY, Ruiz M, Blanc G, et al. (2007) Molecular insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics (under review)

    Google Scholar 

  • Lysák MA, Dolezelová M, Horry JP, Swennen R, Dolezel J (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350

    Article  Google Scholar 

  • Mak C, Ho YW, Tan YP, Ibrahim R (1996) Novaria - A new banana mutant induced by gamma irradiation. InforMusa 5:35–36

    Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, et al. (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technol 13:486–492

    Article  CAS  Google Scholar 

  • Miller RNG, Pappas GJ, Souza MT, Bertioli DJ (2006) Analysis of resistance gene analogs in Musa acuminata subps burmanicoides var Calcutta 4. Plant and Animal Genome XIV, Abst W7, p 8

    Google Scholar 

  • Nair AS, Teo CH, Schwarzacher T, Heslop Harrison P (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144:285–290

    Article  CAS  Google Scholar 

  • Noyer JL, Causse S, Tomekpe K, Bouet A, Baurens FC (2005) A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetika 124:61–69

    Article  CAS  Google Scholar 

  • Noyer JL, Dambier D, Lanaud C, Lagoda PJL (1997) The saturated map of diploid banana Musa acuminata. Plant and Animal Genome V, Abst P335, p 138

    Google Scholar 

  • Ortiz-Vázquez E, Kaemmer D, Zhang HB, Muth J, Rodríguez-Mendiola M, et al. (2005) Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka-resistant banana Musa acuminata cv. Tuu Gia (AA). Theor Appl Genet 110:706–713

    Article  PubMed  CAS  Google Scholar 

  • Osuji JO, Crouch J, Harrison G, Heslop-Harrison JS (1998) Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences. Ann Bot 82:243–248

    Article  CAS  Google Scholar 

  • Osuji JO, Harrison G, Crouch J, Heslop-Harrison JS (1997) Identification of the genomic constitution of Musa L. lines (bananas, plantains and hybrids) using molecular cytogenetics. Ann Bot 80:787–793

    Article  CAS  Google Scholar 

  • Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, et al. (2005) Creation of transgenic bananas expressing human lysozyme gene for Panama Wilt resistance. J Integr Plant Biol 47:971–977

    Article  CAS  Google Scholar 

  • Pérez Hernández JB, Remy S, Galán Saúco V, Swennen R, Sági L (1999) Chemotactic movement and attachment of Agrobacterium tumefaciens to banana cells and tissues. J Plant Physiol 155:245–250

    Google Scholar 

  • Pérez Hernández JB, Remy S, Swennen R, Sági L (2006a) Banana (Musa sp.). In: Wang K (ed) Methods in Molecular Biology, vol 344: Agrobacterium Protocols, vol 2. Humana Press Inc, Totowa, NJ, pp 167–176

    Google Scholar 

  • Pérez Hernández JB, Swennen R, Sági L (2006b) Number and accuracy of T-DNA insertions in transgenic banana (Musa spp.) plants characterized by an improved anchored PCR technique. Transgenic Res 15:139–150

    Article  CAS  Google Scholar 

  • Persley GJ, DeLanghe EA (1987) Banana and Plantain Breeding Strategies ACIAR, Canberra 21

    Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, et al. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  PubMed  CAS  Google Scholar 

  • Pillay M, Nwakanma DC, Tenkouano A (2000) Identification of RAPD markers linked to A and B genome sequence in Musa L. Genome 43:763–767

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, et al. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genet 23:305–308

    Article  PubMed  CAS  Google Scholar 

  • Raboin LM, Carreel F, Noyer J-L, Baurens F-C, Horry J-P, et al. (2005) Diploid Ancestors of Triploid Export Banana Cultivars: Molecular Identification of 2n Restitution Gamete Donors and n Gamete Donors. Molecular Breed 16:333–341

    Article  CAS  Google Scholar 

  • Remy S, Buyens A, Cammue BPA, Swennen R, Sági L (1998a) Production of transgenic banana plants expressing antifungal proteins. Acta Hort 490:433–436

    CAS  Google Scholar 

  • Remy S, François I, Cammue BPA, Swennen R, Sági L (1998b) Co-transformation as a potential tool to create multiple and durable resistance in banana (Musa spp.). Acta Hort 461:361–365

    Google Scholar 

  • Remy S, Thiry E, Coemans B, Windelinckx S, Swennen R, Sági L (2005) Improved T-DNA vector for tagging plant promoters via high-throughput luciferase screening. BioTechniques 38:763–770

    Article  PubMed  CAS  Google Scholar 

  • Roux N, Dolezel J, Swennen R, Zapata-Arias FJ (2001) Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell Tissue Organ Cult 66:189–197

    Article  Google Scholar 

  • Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Dolezel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep 21:483–490

    PubMed  CAS  Google Scholar 

  • Roux NS (2004) Mutation Induction in Musa – Review. In: Jain SM, Swennen R (eds) Banana Improvement: Cellular, Molecular Biology and Induced Mutations. Science Publishers, Inc, Enfield, pp 23–32

    Google Scholar 

  • Roux NS, Toloza A, Dolezel J, Panis B (2004) Usefulness of Embryonic Cell Suspension Cultures for the Induction and Selection of Mutations in Musa spp. In: Jain SM, Swennen R (eds) Banana Improvement: Cellular, Molecular Biology and Induced Mutations. Science Publishers, Inc, Enfield, pp 33–44

    Google Scholar 

  • Safár J, Noa-Carrazana JC, Vrána J, Bartoš J, Alkhimova O, et al. (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47:1182–1191

    Article  PubMed  Google Scholar 

  • Sági L (2000) Engineering resistance to diseases caused by fungi. In: Jones D (ed) Diseases of Banana, Abacá and Enset. CABI, Wallingford, UK, pp 482–491

    Google Scholar 

  • Sági L, Panis B, Remy S, Schoofs H, De Smet K, et al. (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology 13:481–485

    Article  PubMed  Google Scholar 

  • Sági L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenic cell suspensions. Plant Cell Rep 13:262–266

    Article  Google Scholar 

  • Samson JA (1986) Tropical fruits, 2nd edn. Longman Scientific and Technical, Harlow, UK, 335 pp

    Google Scholar 

  • Santos CMR, Martins NF, Hörberg HM, de Almeida ERP, Coelho MCF, et al. (2005) Analysis of expressed sequence tags from Musa acuminata spp. burmannicoides, var. Calcutta 4 leaves submitted to temperature stresses. Theor Appl Genet 110: 1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Remans T, Sági L, Elliott AR, Dietzgen RG, et al. (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412

    Article  PubMed  CAS  Google Scholar 

  • Shepherd K (1999) Cytogenetics of the genus Musa. International Network for the Improvement of Banana and Plantain, Montpellier, France

    Google Scholar 

  • Shepherd K, da Silva KM (1996a) Mitotic instability in banana varieties. Aberrations in conventional triploid plants. – Fruits 51:99–103

    Google Scholar 

  • Shepherd K, da Silva KM (1996b) Mitotic instability in banana varieties. I. Plants from callus and shoot tip cultures. – Fruits 51:5–11

    Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci (USA) 89:8794–8797

    Article  CAS  Google Scholar 

  • Simková H, Cíhalíková J, Vrána J, Lysák MA, Dolezel J (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant 46:369–373

    Article  Google Scholar 

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc London (Bot) 5:302–312

    Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotechnol 23:75–81

    Article  CAS  Google Scholar 

  • Souza Jr MT, Santos CM, Martins NF, da Silva FR, Togawa RC, et al. (2005) Transcriptoma de Musa acuminata no DATAMusa Boletim de Pesquisa e Desenvolvimento (109) da Embrapa Reccursos Genéticos e Biotecnologia. 21 pp (http://www.cenargen.embrapa. br/publica/download.html#bp2005)

    Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, et al. (2006) Development of embryogenic cell suspensions from meristematic tissue in bananas and plantains (Musa spp.). Plant Sci 170:104–112

    Article  CAS  Google Scholar 

  • Sunil Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    Article  CAS  Google Scholar 

  • Taxonomic Advisory Group (TAG) (2006) Launching the Taxonomic Advisory Group: Developing a strategic approach to the conversation and use of Musa diversity. Report of a meeting held in Limbe, Cameroon, 29 May–3 June 2006, INIBAP

    Google Scholar 

  • Teo CH, Tan SH, Othman YR, Schwarzacher T (2002) The cloning of Ty 1-copia-like retrotransposons from 10 varieties of banana (Musa sp). J Biochem Mol Biol Biophys 6:193–201

    Article  PubMed  CAS  Google Scholar 

  • Tripathi L, Tripathi JN, Hughes Jd’A (2005) Agrobacterium-mediated transformation of plantain (Musa spp.) cultivar Agbagba. Afr J Biotechnol 4:1378–1383

    CAS  Google Scholar 

  • Ude G, Pillay M, Ogundiwin E, Tenkouano A (2002) Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theor Appl Genet 104:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255

    Article  PubMed  CAS  Google Scholar 

  • Valárik M, Simková H, Hribová E, Safár J, Dolezelová M, et al. (2002) Isolation, characterization and chromosome localization of repetitive DNA sequences in banana (Musa spp.). Chromosome Res 10:89–100

    Article  PubMed  Google Scholar 

  • van der Frits L, Hilliou F, Memelink J (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res 10:513–521

    Article  Google Scholar 

  • Van Duren M, Morpurgo R, Dolezel J, Afza R (1996): Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica 88:25–34

    Article  Google Scholar 

  • Venter JC (1993) Identification of new human receptor and transporter genes by high throughput cDNA (EST) sequencing. J Pharm Pharmacol 45 (Suppl 1):355–360

    Google Scholar 

  • Vilarinhos A, Carreel F, Rodier M, Hippolyte I, Benabdelmouna A, et al. (2006) Characterization of translocations in banana by FISH of BAC clones anchored to a genetic map. Plant and Animal Genome XIV, Abst W4, p 8

    Google Scholar 

  • Vilarinhos AD (2004) Cartographie génétique et cytogénétique chez le bananier : caractérisation des translocations. PhD thesis, Ecole Nationale Agronomique de Montpellier, Ecole doctorale biologie integrative, Montpellier, France

    Google Scholar 

  • Vilarinhos AD, Piffanelli P, Lagoda P, Thibivilliers S, Sabau X, et al. (2003) Construction and characterization of a bacterial artificial chromosome library of banana (Musa acuminata Colla). Theor Appl Genet 106:1102–1106

    PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, et al. (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci (USA) 101:9915–9920

    Article  CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    Article  PubMed  Google Scholar 

  • Wilson GB (1946a) Cytological studies in the Musae. I. Meiosis in some triploid clones. Genetics 31:241–258

    CAS  Google Scholar 

  • Wilson GB (1946b) Cytological studies in the Musae. II. Meiosis in some diploid clones. Genetics 31:475–482

    CAS  Google Scholar 

  • Wilson GB (1946c) Cytological studies in the Musae. III. Meiosis in some seedling clones. Genetics 31:483–493

    CAS  Google Scholar 

  • Wong C, Kiew R, Argent G, Set O, Lee SK, et al. (2002) Assessment of the validity of the section in Musa (Musaceae) using AFLP. Ann Bot 90:231–238

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    Article  PubMed  CAS  Google Scholar 

  • Zubko E, Adams CJ, Machácková I, Malbeck J, Scollan C, et al. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roux, N. et al. (2008). Genomics of Banana and Plantain (Musa spp.), Major Staple Crops in the Tropics. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_4

Download citation

Publish with us

Policies and ethics