Skip to main content

Transgenics for New Plant Products, Applications to Tropical Crops

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

Advancements in plant science and agricultural technology now allow the direct transfer of gene(s) from diverse origins into target crops for improvement, with the advantages of breaking cross-species barriers and saving time in comparison to conventional breeding and selection. Transgenic technology has been used and commercialized since 1994 to produce new crop products with herbicide tolerance, insect resistance, virus resistance, and improved post-harvest quality. These input traits are characteristic of first generation transgenic crops that continue to be widely adopted by farmers globally. Numerous transgenic crop new products, with increased emphasis on output traits such as improved and novel product quality (which are more appealing and directly beneficial to the consumers), are under development and field testing. Activities in developing crops with new and better agronomic properties and using plants as bioreactors to produce high value products are also on the rise. While tropical plant germplasm, with its rich biodiversity increasingly revealed through gene discovery through genomics and associated technologies, can offer novel genes and regulatory mechanisms for crop improvement, transgenic technology provides a complementary approach with new possibilities for improving tropical crops to assure food security and nutritional well-being of the people in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius F, Gonzalex-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, et al. (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotech 21:177–181

    Article  CAS  Google Scholar 

  • Agrios GN (1997) Plant Pathology, 4th edition. Academic Press, Inc., San Diego, p. 655

    Google Scholar 

  • Altenbach SB, Pearson KW, Leung FW, Sun SSM (1987) Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rice in methionine. Plant Mol Biol 8:239–250

    Article  CAS  Google Scholar 

  • Altenbach SB, Pearson KW, Meeker G, Staraci LC, Sun SSM (1989) Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol Biol 13:513–522

    Article  PubMed  CAS  Google Scholar 

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, et al. (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotech 14:862–866

    Article  CAS  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN (1997) Mechanisms and application of pathogen-derived resistance in transgenic plants. Curr Opin Plant Biotech 8:215–220

    Article  CAS  Google Scholar 

  • Boothe JG, Parmenter DL, Saponja JA (1997) Molecular farming in plants: oilseeds as vehicles for the production of pharmaceutical proteins. Drug Develop Res 42:172–181

    Article  CAS  Google Scholar 

  • Borlaug, N (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica online (http://www.springerlink.com/content/d023617827754266)

    Google Scholar 

  • Botella-Pavia P, Rodriguez-Concepcion M (2006) Carotenoid biotechnology in plants for nutrionally improved foods. Physiol Plant 126:369–381

    Article  CAS  Google Scholar 

  • Broun P, Gettner S, Somerville C (1999) Genetic engineering of plant lipids. Annu Rev Nutr 19:197–216

    Article  PubMed  CAS  Google Scholar 

  • Castle LA, Wu G and McElroy D (2006) Agricultural input traits: past, present and future. Curr Opin Biotech 17:105–112

    PubMed  CAS  Google Scholar 

  • Chakauya E, Coxon KM, Whitney HM, Ashurst JL, Abell C, et al. (2006) Pantothenate biosynthesis in higher plants: advance and challenges. Physiol Plant 126:319–329

    Article  CAS  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA, et al. (1997) Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci USA 94:7094–7097

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307–313

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  PubMed  CAS  Google Scholar 

  • Dawson WD (1996) Gene silencing and virus resistance: A common mechanism. Trends Plants Sci 1:107–108

    Article  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, et al. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    PubMed  Google Scholar 

  • De Clercq A, Vandewlele M, Van Damme J, Guerche P, Van Montagu M, et al. (1990) Stable accumulation of modified 2S albumin seed storage protein with higher methionine contents in transgenic plants. Plant Physiol 94:970–979

    Article  PubMed  Google Scholar 

  • De Maagd RA, Bosch D, Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4:9–13

    Article  PubMed  Google Scholar 

  • De Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomorpathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  CAS  Google Scholar 

  • DellaPenna D, Last RL (2006) Progress in the dissection and manipulation of plant vitamin E biosynthesis. Physiol Plant 126:356–368

    Article  CAS  Google Scholar 

  • Delmer DP (2005) Agriculture in the developing world: Connecting innovations in plant research to downstream application. Proc Natl Acad Sci USA 102:15739–15746

    Article  PubMed  CAS  Google Scholar 

  • Dickinson CD, Scott MO, Hussein EHA, Argos P, Nielsen NC (1990) Effect of structural modification on the assembly of a glycinin subunit. Plant Cell 2:403–413

    Article  PubMed  CAS  Google Scholar 

  • Federici BA (2005) Insecticidal bacteria: an overwhelming success for invertebrate pathology. J Invertebr Pathol 89:30–38

    Article  PubMed  Google Scholar 

  • Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, et al. (2002) Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Dis 86:101–105

    Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Drossarf J, Commandeur U, Schillberg S, Emans N (1999) Towards molecular farming in the future: moving from diagnostic protein and antibody production in microbes to plants. Biotech Appl Biochem 30:101–108

    CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M, Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zhucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Tech 13:1466–1473

    Article  CAS  Google Scholar 

  • Fuchs M, Gonsalves D (1997) Genetic engineering. In: Environmentally Safe Approaches to Crop Disease Control. CRC Lewis, Boca Raton, pp. 333–363

    Google Scholar 

  • Galili G, Galili S, Lewinsohn E, Tadmor Y (2002) Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. Crit Rev Plant Sci 21:167–204

    Article  CAS  Google Scholar 

  • Galili G, Hoefgen R (2002) Metabolic engineering of amino acids and storage protein in plants. Metab Engng 4:3–11

    Article  CAS  Google Scholar 

  • Galun E, Breiman A (1997) Transgenic plants. Imperial College Press, London, pp. 234–248

    Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    Article  CAS  Google Scholar 

  • Goddijn OJM, Pen J (1995) Plants as bioreactors. Trends Biotech 13:379–387

    Article  CAS  Google Scholar 

  • Herbers K, Sonnewald U (1999) Production of new/modified proteins in transgenic plants. Curr Opin Biotech 10:163–168

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Jilka JM (1999) Plant-based production of xenogenic protein. Curr Opin Biotech 10:382–386

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Witcher D, Maddock S, Meyer T, Baszynski C, et al. (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breeding 3:291–306

    Article  CAS  Google Scholar 

  • Huang J, Rozelle S, Pray C, Wang Q (2002) Plant biotechnology in China. Science 295:674–677

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    Article  CAS  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops: 2006. ISAAA Brief No. 35–2006

    Google Scholar 

  • Jaynes JM, Yang MS, Espinoza NO, Dodds JH (1986) Plant protein improvement by genetic engineering: use of synthetic genes. Trends Biotech 4:314–320

    Article  CAS  Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, et al. (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Keeler SJ, Maloney CL, Webber PY, Patterson C, Hirata LY, et al. (1997) Expression of de novo high-lysine alpha-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of transgenic tobacco plants. Plant Mol Biol 34:15–29

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Cetiner S, Jaynes JM (1992) Enhancing the nutritional quality of crop plants: design, construction and expression of an artificial plant storage protein gene. In: Bhatnagar D, Cleveland TE (eds) Molecular Approaches to Improving Food Quality and Safety, AVI Book, New Yorkpp. 1–36

    Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Kochhar, SL (1981) Tropical Crops: A Textbook of Economic Botany. Macmillan Publishers, 3rd Edition. pp. 1–17

    Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, et al. (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech 17:76–80

    Article  CAS  Google Scholar 

  • Lai JS, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30:295–402

    Article  Google Scholar 

  • Liu QQ (2002) Genetic engineering rice for increased lysine. PhD thesis, Yangzhou University and the Chinese University of Hong Kong, Hong Kong

    Google Scholar 

  • Lomonossoff GL (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    Article  CAS  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailabilty and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Lucca P, Poletti S, Sautter C (2006) Genetic engineering approaches to enrich rice with iron and vitamin A. Physiol Plant 126:291–303

    Article  CAS  Google Scholar 

  • Malpica CA, Cervera MT, Simoens C, van Mobtagu M (1998) Engineering resistance against viral diseases in plants. Subcell Biochem 29:287–320

    PubMed  CAS  Google Scholar 

  • Marcellino LH, Neshich G, Grossi de Sa MF, Krebbers E, Gander ES (1996) Modified 2S albumins with improved tryptophan content are correctly expressed in transgenic tobacco plants. FEBS Lett 385:154–158

    Article  PubMed  CAS  Google Scholar 

  • Maruta Y, Ueki J, Saito H, Nitta N, Imaseki H (2001) Transgenic rice with reduced glutelin content by transformation with glutelin antisense gene. Mol Breed 8:273–284

    Article  CAS  Google Scholar 

  • Mazur B, Krebbers E, Tingey S (1999) Gene discovery and production development for grain quality traits. Science 285:372–375

    Article  PubMed  CAS  Google Scholar 

  • Mercenier A, Wiedermann U, Breiteneder H (2001) Edible genetically modified microorganisms and plants for improved health. Curr Opin Biotech 12:510–515

    Article  PubMed  CAS  Google Scholar 

  • Napier JA, Haslam R, Caleron MV, Michaelson LV, Beaudoin F, et al. (2006) Progress towards the production of very long-chain polyunsaturated fatty acid in transgenic plants: plant metabolic engineering comes of age. Physiol Plant 126:398–406

    Article  CAS  Google Scholar 

  • O'Brien IEW, Forster RLS (1994) Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc Natl Acad Sci USA 91:10310–10314.

    Article  PubMed  Google Scholar 

  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, et al. (1996) New weed control opportunities: development of soybeans with a Roundup ReadyR gene. In: Duke SO (ed) Herbicide-resistant Crops: Agricultural, Economic, Environmental, Regulatory and Technological Aspects. Lewis Publishers, pp. 53–84

    Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, et al. (2005) A new version of Golden Rice with increased pro-vitamin A content. Nat Biotech 23:482–487

    Article  CAS  Google Scholar 

  • Pujol M, Ramirez NI, Ayala M, Gavilondo JV, Rodriguez M, et al. (2005) An integral approach towards a practical application for a plant-made monoclonal antibody in vaccine purification. Vaccine 23:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Rebeille F, Ravanel S, Jabrin S, Douce R, Storozhenko S, et al. (2006) Folates in plants: biosynthesis, distribution, and enhancement. Physiol Plant 126:330–342

    Article  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance derived resistance genes from the parasite's own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. TIBECH 16:168–175

    CAS  Google Scholar 

  • Sheehy R, Kramer M, Hiatt W (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA.. Proc Natl Acad Sci USA 85:8805–8809

    Article  PubMed  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2010

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Sharp PJ, Skerritt JH (2000) A new candidate protein for high lysine content in wheat grain. J Sci Food Agric 81:216–226

    Article  Google Scholar 

  • Slattery CJ, Kavakli IH, Okita TW (2000) Engineering starch for increased quantity and quality. Trends Plant Sci 5:291–298

    Article  PubMed  CAS  Google Scholar 

  • Sparrow PAC, Irwin JA, Dale PJ, Twyman RM, Ma JKC (2007) Pharma-planta: Road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res 16:147–161

    Article  PubMed  CAS  Google Scholar 

  • Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423

    Article  PubMed  CAS  Google Scholar 

  • Sun SSM (1999) Methionine enhancement in plants. In: Singh BK (ed) Plant Amino Acids: biochemistry and biotechnology, Marcel Dekker, pp. 509–522

    Google Scholar 

  • Sun SSM, Larkins BA (1993) Transgenic plants for improving seed storage protein. In: Kung SD, Wu R (eds) Transgenic Plants (Vol 1) Engineering and Utilization. Academic Press, New York, pp 339–371

    Google Scholar 

  • Sun SSM, Wang ML, Tu HM, Zuo WN, Xiong LW, et al. (2000) Transgenic approach to improve crop quality. In: Lin ZP (ed) Green Genes for the 21st Century. Sci Pub., Beijing, pp. 207–219

    Google Scholar 

  • Sun SSM, Liu QQ (2004) Transgenic approaches to improve the nutritional quality of plant proteins. In Vitro Cell Dev Biol –Plants 40:55–162

    Google Scholar 

  • Sun SSM, Xiong LW, Jing YX, Liu BL (1993) Lysine rich protein from winged bean. US patent #5,270,200

    Google Scholar 

  • Takaiwa F, Katsube T, Kitagawa S, Higasa T, Kito M, et al. (1995) High level accumulation of soybean glycinin in vacuole-derived protein bodies in the endosperm tissue of transgenic tobacco seed. Plant Sci 111:39–49

    Article  CAS  Google Scholar 

  • Theologis A, Oeller PW, Wong LM, Rpttmann WH, Gantz DM (1993) Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process. Develop Genet 14:282–295

    Article  CAS  Google Scholar 

  • Toenniessen GH (2002) Crop genetic improvement for enhanced human nutrition. J Nutr 132:2943S–2946S

    PubMed  CAS  Google Scholar 

  • Tu HM, Godfrey LW, Sun SSM (1998) Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato. Plant Mol Biol 37:829–838

    Article  PubMed  CAS  Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, et al. (2003) Engineering vitamin E content:from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411:834–842

    Article  PubMed  CAS  Google Scholar 

  • Whalon ME and Wingerd BA (2003) BT: mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  PubMed  CAS  Google Scholar 

  • Willmitzer L (1999) Plant biotechnology: output traits – the second generation of plant biotechnology products is gaining momentum. Curr Opin Biotech 10:161–162

    Article  CAS  Google Scholar 

  • Willmitzer L, Topfer R (1992) Manipulation of oil, starch and protein composition. Curr Opin Biotech 3:176–180

    Article  CAS  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Bailey MR, Barker DK, et al. (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotech Appl Biochem 38:123–130

    Article  CAS  Google Scholar 

  • Wu KM and Guo YY (2005) The evolution of cotton pest management practices in China. Annu Rev Entomol 50:31–52

    Article  PubMed  CAS  Google Scholar 

  • Yang MS, Espinoza NO, Nagplala PG, Doods JH, White FF, et al. (1989) Expression of a synthetic gene for improved protein quality in transformed potato plants. Plant Sci 64:99–111

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, et al. (2000) Engineering the provitamin A (beta-carotene) biosynthesis pathway into (carotene-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Young VR, Pellett PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59:1203S–1212S

    PubMed  CAS  Google Scholar 

  • Zhang P, Jaynes JM, Potrykus I, Gruissem W, Puonti-Kaerlas J. (2003) Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculata Cranz). Transgenic Res 12:243–250

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MB, Hurrell RF (2002) Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotech 13:142–145

    Article  PubMed  CAS  Google Scholar 

  • Zuo WN (1993) Sulfur-rich 2S proteins in Lechydidaceae and their methionine-enriched forms of transgenic plants. PhD thesis, University of Hawaii

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sun, S.S. (2008). Transgenics for New Plant Products, Applications to Tropical Crops. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_3

Download citation

Publish with us

Policies and ethics