Genomics of Sorghum, a Semi-Arid Cereal and Emerging Model for Tropical Grass Genomics

  • Andrew H. Paterson
  • John E. Bowers
  • F. Alex Feltus
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)


Sorghum, an important failsafe crop in the global agroecosystem, is also emerging as a model for tropical grasses based on its small and well-characterized genome, low level of gene duplication, and close relationship to the larger and more complex genomes of maize and sugarcane. A whole-genome shotgun sequence of the sorghum genome is complete and being annotated. The sorghum sequence, together with the attributes of sorghum as a prospective functional genomics and association genetics system, has many implications for better understanding the structure, function, and evolution of cereal genomes. In addition, the sequence will raise to a new level the opportunities to engage genomics in the improvement of human livelihood in arid and semi-arid tropical regions in which sorghum is a staple. Already established as a seed-based ethanol crop, progress in understanding the genetic control of perenniality in sorghum makes it also promising as a cellulosic biofuels crop.


Rust Resistance Sorghum Genome Tropical Grass Sorghum Midge Sorghum Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrama HA, Wilde G, Reese J, Campbell L, Tuinstra M (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance inSorghum bicolor. Theor Appl Genet 104: 1373–1378PubMedCrossRefGoogle Scholar
  2. Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Reptr 9: 208–218CrossRefGoogle Scholar
  3. Battraw M, Hall TC (1991) Stable transformation of Sorghum-bicolor protoplasts with chimeric neomycin phosphotransferase-Ii and beta-glucuronidase genes. Theor Appl Genet 82: 161–168CrossRefGoogle Scholar
  4. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, et al. (2005) Sorghum genome sequencing by methylation filtration. Plos Biol 3: 103–115CrossRefGoogle Scholar
  5. Bethel CM, Sciara EB, Estill JC, Bowers JE, Hanna W, et al. (2006) A framework linkage map of bermudagrass (Cynodon dactylon x transvaalensis) based on single-dose restriction fragments. Theor Appl Genet 112: 727–737PubMedCrossRefGoogle Scholar
  6. Bhattramakki D, Dong JM, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43: 988–1002PubMedCrossRefGoogle Scholar
  7. Bowers J, Abbey C, Anderson S, Chang C, Draye X, et al. (2003) A high-density genetic recombination map of sequence-tagged sites for sorghuz, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165: 367–386PubMedGoogle Scholar
  8. Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, et al. (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102: 13206–13211PubMedCrossRefGoogle Scholar
  9. Buchanan CD, Lim SY, Salzman RA, Kagiampakis L, Morishige DT, et al. (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58: 699–720PubMedCrossRefGoogle Scholar
  10. Carrari F, Benech-Arnold R, Osuna-Fernandez R, Hopp E, Sanchez R, et al. (2003) Genetic mapping of the Sorghum bicolor vp1 gene and its relationship with preharvest sprouting resistance. Genome 46: 253–258PubMedCrossRefGoogle Scholar
  11. Carvalho CH, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, et al. (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27: 259–269Google Scholar
  12. Casa AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, et al. (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90: 11212–11216CrossRefGoogle Scholar
  13. Casa AM, Kononowicz AK, Haan TG, Zhang L, Tomes, DT, et al. (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol-Plant 33: 92–100Google Scholar
  14. Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, et al. (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111: 23–30PubMedCrossRefGoogle Scholar
  15. Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed rflp map of Sorghum-bicolor X S-Propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor App Genet 87: 925–933Google Scholar
  16. Chopra S, Brendel V, Zhang JB, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96: 15330–15335PubMedCrossRefGoogle Scholar
  17. Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262: 579–588PubMedCrossRefGoogle Scholar
  18. Devi PB, Sticklen MB (2003) In vitro culture and genetic transformation of sorghum by microprojectile bombardment. Plant Biosystems 137: 249–254Google Scholar
  19. Dewet JMJ, Gupta SC, Harlan JR, Grassl CO (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16: 568–572CrossRefGoogle Scholar
  20. Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, et al. (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94: 409–418CrossRefGoogle Scholar
  21. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, et al. (2006) Ethanol can contribute to energy and environmental goals. Science 311: 506–508PubMedCrossRefGoogle Scholar
  22. Feltus FA, Hart GE, Schertz KF, Casa AM, Brown P, et al. (2006) Genetic map alignment and QTL correspondence between inter- and intra-specific sorghum populations. Theor Appl Genet 112: 1295–1305PubMedCrossRefGoogle Scholar
  23. Gao ZS, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48: 321–333Google Scholar
  24. Gao ZS, Xie XJ, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotech J 3: 591–599CrossRefGoogle Scholar
  25. Gaut BS, Clark LG, Wendel JF, Muse SV (1997) Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family .(Poaceae) Mol Biol Evol 14: 769–777Google Scholar
  26. Gingle AR, Huang YC, Yang H, Bowers JE, Kresovich S, Paterson AH (2007) CGGC: An integrated web resource for sorghum. Crop Sci in pressGoogle Scholar
  27. Gomez MI, Islam-Faridi MN, Zwick MS, Czeschin DG, Hart GE, et al. (1998) Tetraploid nature of sorghum bicolor (L.) Moench. J Heredity 89: 188–190CrossRefGoogle Scholar
  28. Hagio T, Blowers AD, Earle ED (1991) Stable transformation of Sorghum cell-cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep 10: 260–264CrossRefGoogle Scholar
  29. Hamblin MT, Mitchell SE, White GM, Gallego W, Kukatla R, et al. (2004) Comparative population genetics of the panicoid grasses: Sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167: 471–483PubMedCrossRefGoogle Scholar
  30. Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, et al. (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171: 1247–1256PubMedCrossRefGoogle Scholar
  31. Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, et al. (2006) Challenges of detecting directional selection after a domestication bottleneck. Genetics 173: 953–964PubMedCrossRefGoogle Scholar
  32. Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, et al. (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106: 133–142PubMedGoogle Scholar
  33. Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS, et al. (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109: 1005–1016PubMedCrossRefGoogle Scholar
  34. Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, HI.Google Scholar
  35. Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25: 784–791PubMedCrossRefGoogle Scholar
  36. Hu FY, Tao DY, Sacks E, Fu BY, Xu P, et al. (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100: 4050–4054PubMedCrossRefGoogle Scholar
  37. Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, et al. (2002) A molecular cytogenetic map of sorghum chromosome 1: Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161: 345–353PubMedGoogle Scholar
  38. Jessup RW, Burson BL, Burow G, Wang YW, Chang C, et al. (2003) Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping. Genome 46: 304–313PubMedCrossRefGoogle Scholar
  39. Katsar CS, Paterson AH, Teetes GL, Peterson GC (2002) Molecular analysis of Sorghum resistance to the greenbug (Homoptera : Aphididae). J Econ Entomol 95: 448–457PubMedCrossRefGoogle Scholar
  40. Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, et al. (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45: 402–412PubMedCrossRefGoogle Scholar
  41. Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, et al. (2005a) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: Distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171: 1963–1976CrossRefGoogle Scholar
  42. Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, et al. (2005b) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169: 1169–1173CrossRefGoogle Scholar
  43. Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, et al. (2005c) Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics 169: 955–965CrossRefGoogle Scholar
  44. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong JM, et al. (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: Progress toward a sorghum genome map. Genome Res 10: 789–807PubMedCrossRefGoogle Scholar
  45. Klein RR, Klein PE, Chhabra AK, Dong J, Pammi S, et al. (2001) Molecular mapping of the rf1 gene for pollen fertility restoration in sorghum (Sorghum bicolor L.) Theor Appl Genet 102: 1206–1212CrossRefGoogle Scholar
  46. Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, et al. (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111: 994–1012PubMedCrossRefGoogle Scholar
  47. Kresovich S, Barbazuk B, Bedell JA, Borrell A, Buell CR, et al. (2005) Toward sequencing the sorghum genome. A US National Science Foundation-Sponsored Workshop Report. Plant Physiol 138: 1898–1902CrossRefGoogle Scholar
  48. Lijavetzky D, Martinez MC, Carrari F, Hopp HE (2000) QTL analysis and mapping of pre-harvest sprouting resistance in sorghum. Euphytica 112: 125–135CrossRefGoogle Scholar
  49. Lin Y, Schertz K, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141: 391–411.PubMedGoogle Scholar
  50. Magalhaes JV, Garvin DF, Wang YH, Sorrells ME, Klein PE, et al. (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167: 1905–1914PubMedCrossRefGoogle Scholar
  51. McIntyre CL, Hermann SM, Casu RE, Knight D, Drenth J, et al. (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet 109: 875–883PubMedCrossRefGoogle Scholar
  52. McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, et al. (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48: 391–400PubMedCrossRefGoogle Scholar
  53. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, et al. (2002) A high-density genetic map ofSorghum bicolor (L.) Moench based on 2926 AFLP (R), RFLP and SSR markers. Plant Mol Biol 48: 483–499PubMedCrossRefGoogle Scholar
  54. Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, et al. (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96: 832–839CrossRefGoogle Scholar
  55. Ming R, Liu SC, Lin YR, da Silva J, Wilson W, et al. (1998) Detailed alignment of Saccharum and Sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes. Genetics 150: 1663–1682PubMedGoogle Scholar
  56. Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110: 1372–1383PubMedCrossRefGoogle Scholar
  57. Multani DS, Meeley RB, Paterson AH, Gray J, Briggs SP, et al. (1998) Plant-pathogen microevolution: Molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci USA 95: 1686–1691PubMedCrossRefGoogle Scholar
  58. Mutengwa CS, Tongoona PB, Sithole-Niang I (2005) Genetic studies and a search for molecular markers that are linked to Striga asiatica resistance in sorghum. African J Biotechnol 4: 1355–1361Google Scholar
  59. Nagaraj N, Reese JC, Tuinstra M, Smith CM, St. Amand P, et al. (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98: 595–602Google Scholar
  60. Park SJ, Huang YH, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223: 932–947PubMedCrossRefGoogle Scholar
  61. Paterson AH, Lin YR, Li ZK, Schertz KF, Doebley JF, et al. (1995a) Convergent domestication of cereal crops by independent mutations at corresponding genetic-loci. Science 269: 1714–1718CrossRefGoogle Scholar
  62. Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995b) The weediness of wild plants - molecular analysis of genes influencing dispersal and persistence of Johnsongrass, Sorghum halepense (L) Pers. Proc Natl Acad Sci USA 92: 6127–6131CrossRefGoogle Scholar
  63. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101: 9903–9908PubMedCrossRefGoogle Scholar
  64. Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, et al. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12: 795–807PubMedCrossRefGoogle Scholar
  65. Pratt LH, Liang C, Shah M, Sun F, Wang HM, et al. (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts. Plant Physiol 139: 869–884PubMedCrossRefGoogle Scholar
  66. Quinby JR (1974) Sorghum Improvement and the Genetics of Growth. Texas A&M University Press, College StationGoogle Scholar
  67. Salzman RA, Brad, JA, Finlayson SA, Buchanan CD, Summer EJ, et al. (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138: 352–368PubMedCrossRefGoogle Scholar
  68. Sang YJ, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species. Genome 43: 918–922PubMedCrossRefGoogle Scholar
  69. Scheinost P (2001) Perennial wheat: a sustainable cropping system for the Pacific Northwest. Amer J Altern Agric 16, 147–151CrossRefGoogle Scholar
  70. Schertz KF, Stephens JC (1966) Compilation of gene symbols, recommended revisions, and summary of linkages for inherited characters of Sorghum vulgare Pers. Rep. No. 3. Texas A&M University, College StationGoogle Scholar
  71. Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, et al. (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105, 912–920PubMedCrossRefGoogle Scholar
  72. Singh M, Chaudhary K, Singal HR, Magill CW, Boora KS (2006) Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghumSorghum bicolor (L.) Moench. Euphytica 149: 179–187CrossRefGoogle Scholar
  73. Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. John Wiley and Sons, HobokenGoogle Scholar
  74. Sobral BWS, Braga DPV, Lahood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb subtribe of the Andropogoneae Dumort tribe. Theor Appl Genet 87: 843–853CrossRefGoogle Scholar
  75. Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Soughum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101: 733–741CrossRefGoogle Scholar
  76. Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, et al. (2004a) Close split of sorghum and maize genome progenitors. Genome Res 14: 1916–1923CrossRefGoogle Scholar
  77. Swigonova Z, Lai J, Ma JX, Ramakrishna W, Llaca M, et al. (2004b) On the tetraploid origin of the maize genome. Comp Func Genomics 5: 281–284.CrossRefGoogle Scholar
  78. Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca V, et al. (2004c) Close split of sorghum and maize genome progenitors. Genome Res 14: 1916–1923Google Scholar
  79. Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Culture 75: 1–18CrossRefGoogle Scholar
  80. Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103: 287–292CrossRefGoogle Scholar
  81. Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, et al. (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107: 116–122PubMedGoogle Scholar
  82. Totad AS, Fakrudin B, Kuruvinashetti MS (2005) Isolation and characterization of resistance gene analogs (RGAs) from sorghum (Sorghum bicolor L. Moench) Euphytica 143: 179–188CrossRefGoogle Scholar
  83. Ulanch PE, Childs KL, Morgan PW, Mullet JE (1996) Molecular markers linked to Ma(1) in sorghum. Plant Physiol 111:709Google Scholar
  84. Wagoner P (1990) Perennial grain development - past efforts and potential for the future. Crit Rev Plant Sci 9: 381–408Google Scholar
  85. Wang ML, Dean R, Erpelding J, Pederson G (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: Rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola). Euphytica 148: 319–330CrossRefGoogle Scholar
  86. Webster OJ (1964) Genetic studies in Sorghum vulgare (Pers.). Crop Sci 4: 207–210.CrossRefGoogle Scholar
  87. Wen L, Tang HV, Chen W, Chang R, Pring DR, et al. (2002) Development and mapping of AFLP markers linked to the sorghum fertility restorer gene rf4. Theor Appl Genet 104: 577–585PubMedCrossRefGoogle Scholar
  88. Whitkus R, Doebley J, Lee M (1992) Comparative genetic mapping of sorghum and maize. Genetics 132:1119Google Scholar
  89. Woo S-S, Jiang J, Gill B, Paterson A, Wing R (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22: 4922–4931PubMedCrossRefGoogle Scholar
  90. Xin Z, Wang M, Barkley N, Franks C, Burow G, et al. (2007) Development of a Tilling population for sorghum functional genomics. In: International Plant and Animal Genome Conference, p W397, San Diego CAGoogle Scholar
  91. Xu GW, Magill CW, Schertz KF, Hart GE (1994) A rflp linkage map of Sorghum bicolor (L) Moench. Theor Appl Genet 89: 139–145CrossRefGoogle Scholar
  92. Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, et al. (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43: 461–469PubMedCrossRefGoogle Scholar
  93. Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44: 789–798PubMedCrossRefGoogle Scholar
  94. Zwick MS, Islam-Faridi MN, Czeschin DG, Wing RA, Hart GE, et al. (1998) Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148: 1983–1992PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrew H. Paterson
    • 1
  • John E. Bowers
  • F. Alex Feltus
  1. 1.Plant Genome Mapping Laboratory, University of GeorgiaAthens

Personalised recommendations