Genomics of Tropical Solanaceous Species: Established and Emerging Crops

  • Richard C. Pratt
  • David M. Francis
  • Luz S. Barrero Meneses
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)


The primary solonaceous food crops are found within several genera (Solanum, Capsicum, and Physalis). The genus Solanum contains three of the four leading crops (potato, tomato, and eggplant) in the Solanaceae family, and is arguably the most economically important plant genus. Peppers (Capsicum spp.) are also one of the leading vegetable crops cultivated throughout the tropics. The centers of diversity of Solanum, Capsicum and Physalis are located in the tropics. Many local varieties and both cultivated and wild relatives are often found in close proximity to these centers. Locally important varieties from all of these genera are cultivated in diverse tropical agro-ecosystems worldwide and some have considerable promise for further development. Additional progress in ascertaining phylogenetic relationships will foster improved utilization of these genetic resources. Among the solanaceous crops, tomato and potato have emerged as “model” scientific research organisms. In 2003, tomato was the first diploid crop among the asterids to be chosen for genome sequencing. It is intended that a high quality sequence of the tomato euchromatin will serve as a reference for the Solanaceae. In addition, the Potato Genome Sequencing Consortium aims to complete the DNA sequence of the entire potato genome by 2008. High quality, annotated, genome sequence information from these two species is expected to benefit improvement of multiple solanaceous crops. Sequence and functional genomics resources are being generated for the Solanaceae through international cooperation. Tomato cDNA, genomic DNA, conserved orthologous set, and restriction fragment length polymorphism markers have been mapped to allow comparative genome analysis between eggplant, tomato, potato and pepper. Additional comparative analyses and their implications for development of two Andean Solanum species are presented.


Restriction Fragment Length Polymorphism Marker Solanaceous Crop International Plant Genetic Resource Institute Potato Genome Sequencing Consortium Andigenum Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bosland PW (1996) Capsicums: Innovative uses of an ancient crop. In: J. Janick (ed.), Progress in new crops. ASHS Press, Arlington, VA p. 479–487Google Scholar
  2. Centro Internacional de la Papa (CIP) (2007) CIP Potato Facts: Potato: Growth in Production Accelerates. (verified Aug. 11, 2007)Google Scholar
  3. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161: 1713–1726PubMedGoogle Scholar
  4. Economic Research Service (ERS), USDA (2007) Vegetables and Melons Outlook /VGS-321/June 21. (verified Aug. 11, 2007)Google Scholar
  5. Facciola S (1990) Cornucopia - A Source Book of Edible Plants. Kampong Publications. ISBN 0–9628087-0–9Google Scholar
  6. Flinn B, Rothwell C, Griffiths R, Lague M, DeKoeyer D, et al. (2005) Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Mol Biol 59:407–433PubMedCrossRefGoogle Scholar
  7. Fory P, Sá nchez I, Bohó rquez A, Medina, CI, Lobo M 2004. Caracterizació n molecular de la colecció n colombiana de lulo ( Solanum quitoense ) LAM. V Seminario Nacional e Internacional de Frutales p. 443Google Scholar
  8. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell:1457–1467Google Scholar
  9. Garcia P, Garcia R, Medina C, and Lobo M (2002) Variabilidad morfoló gica cualitativa en una colecció n de tomate de árbol Cyphomandra (Solanum) Betacea (Betaceum). In: Seminario Nacional de Frutales de Clima Frio Moderado. (4: 2002). Memorias del IV Seminario Nacional de frutales de clima frí o moderado. p. 49–54Google Scholar
  10. Ghislain MD, Andrade MD, Rodríguez F, Hijmans RJ and Spooner DM (2006) Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor Appl Genet 113:1515–1527PubMedCrossRefGoogle Scholar
  11. Gó mez-Pompa A and Sosa, V (eds.) (1978) Flora de VeracruzGoogle Scholar
  12. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887PubMedGoogle Scholar
  13. Hawkes JG (1990) The potato: evolution, biodiversity, and genetic resources. (Potato EGR) 182Google Scholar
  14. Heiser C, Anderson G (1999) “New” Solanums. p. 379–384. In: J. Janick (ed.), Perspectives on new crops and new uses. ASHS Press, Alexandria, VAGoogle Scholar
  15. Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Amer J Bot 89:947–965Google Scholar
  16. International Plant Genetic Resources Institute. New World Fruits Database [online]. (2006) Google Scholar
  17. Isshiki S, Taura T (2003) Fertility restoration of hybrids between Solanum melongena L. and S. aethiopicum L. Gilo Group by chromosome doubling and cytoplasmic effect on pollen fertility. Euphytica 134:195–201CrossRefGoogle Scholar
  18. Kang BC, Yeam I, Frantz JD, Murphy JF, and Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405PubMedCrossRefGoogle Scholar
  19. Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breeding:16:343–349CrossRefGoogle Scholar
  20. Lester RN (1986) Taxonomy of scarlet eggplants. Solanum aethiopicum L. ISHS Acta Horticulturae 182: I International Symposium on Taxonomy of Cultivated Plants (ed. L.J.G. van der Maesen). ISBN 978–90-66053–12-0 ISSN 0567–7572Google Scholar
  21. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedGoogle Scholar
  22. Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, et al. (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nature Genetics 15:47–56PubMedCrossRefGoogle Scholar
  23. Minna JD, Gazdar AF (1996) Translational research comes of age. Nature Med 2:974–975PubMedCrossRefGoogle Scholar
  24. National Research Council (1990) Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. (Ed. Popenoe H, et al) National Academy Press, Washington, DC ISBN 0–309-04264-XGoogle Scholar
  25. Ori N, Eshed Y, Paran I, Presting G, Aviv D, et al. (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521–532PubMedCrossRefGoogle Scholar
  26. Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133CrossRefGoogle Scholar
  27. Ronning CM, Stegalkina SS, Ascenzi RA, Bougri O, Hart AL, et al. (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol 131:419–429PubMedCrossRefGoogle Scholar
  28. Shibata D (2005) Genome sequencing and functional genomics approaches in tomato. J Gen Plant Pathol 71:1–7CrossRefGoogle Scholar
  29. Spooner DM, Anderson DJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae) Am J Bot 80:676–688Google Scholar
  30. Stewart CB, Kang C, Liu K, Mazourek M, Moore SL, et al. (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42: 675–688PubMedCrossRefGoogle Scholar
  31. Tanksley SD, Ganal MW, Prince JP, de-Vicente MC, Bonierbale MW, et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  32. Tsugane T, Watanabe M, Yano K, Sakurai N, Suzuki H, et al. (2005) Expressed sequence tags of full-length cDNA clones from the miniature tomato (Lycopersicon esculentum ) cultivar Micro-Tom. Plant Biotechnol 22:161–165Google Scholar
  33. USDA, ARS, National Genetic Resources Program (2007) Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory,Beltsville, Maryland. URL: pl?8904 (verified 11 August 2007)Google Scholar
  34. Van Deynze A, Douches D, De Jong W, and Francis, D (2007) Summary of Solanaceae Coordinating Meetings. In: Spooner GM, Bohs l, Giovannoni J, Olmstead RG, Shibata D (eds), Solanaceae VI. Proc Sixth Intl Solan Conf. Madison, WI. Acta Hort.(ISHS) 745:533–536. 40.htmGoogle Scholar
  35. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, et al. (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087PubMedCrossRefGoogle Scholar
  36. Wang Y, Tang C, Cheng Z, Mueller L, Giovannoni J, et al. (2006). Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540PubMedCrossRefGoogle Scholar
  37. Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solonaceae). Systematic Bot 32:445–463CrossRefGoogle Scholar
  38. Wong KK, Tsang YT, Shen J, Cheng RS, Chang YM, et al. (2004) Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Res 32(9):e69PubMedCrossRefGoogle Scholar
  39. Wu FN, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: A test case in the euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  40. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, et al. (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breeding 14:21–34CrossRefGoogle Scholar
  41. Zhang LP, Lin GY, Niño-Liu D, Foolad MR (2004) Mapping QTLs conferring early blight (Alternaria solani ) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breeding 12 (1):3–19CrossRefGoogle Scholar
  42. Zhang LP, Khan A, Nino-liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs. Genome 48: 391–400Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Richard C. Pratt
    • 1
  • David M. Francis
  • Luz S. Barrero Meneses
  1. 1.Ohio Agricultural Research and Development Center, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWooster

Personalised recommendations