Advertisement

Genomics of Peanut, a Major Source of Oil and Protein

  • Mark David Burow
  • Michael Gomez Selvaraj
  • Hari Upadhyaya
  • Peggy Ozias-Akins
  • Baozhu Guo
  • David John Bertioli
  • Soraya Cristina de Macedo Leal-Bertioli
  • Marcio de Carvalho Moretzsohn
  • Patricia Messenberg Guimarães
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)

Abstract

Peanut, as a source of oil and protein, is the second-most important grain legume cultivated. The perceived lack of molecular variation in the cultivated species had, until recently, resulted in a focus on characterization and mapping of wild species and on transformation of peanut with genes for improved disease resistance. With development of simple sequence repeats and potentially single nucleotide polymorphism-based markers and improved minicore collections, the focus is shifting towards the molecular characterization of the cultivated species. The development of large-inset libraries, expressed sequence tags, genomic clone libraries, characterized mutant collections, and bioinformatics is expected to advance peanut genomics.

Keywords

Tomato Spotted Wilt Virus Arachis Hypogaea Peanut Allergen Mini Core Collection Transgenic Peanut 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anuradha TS, Jami SK, Datla RS, Kirti PB (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based promoter. J Biosci 31:235–246PubMedCrossRefGoogle Scholar
  2. Anderson WG, Holbrook CC, Culbreath AK (1996) Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61Google Scholar
  3. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rept 9:208–218Google Scholar
  4. Balikrishnan R, Chombreeda P, Rimkere H (1998) Gender roles in peanut sector for household food security. Bangkok: Kesetsart Agricultural and Agro-Industrial Product Improvement InstituteGoogle Scholar
  5. Bertioli DJ, Leal-Bertioli SCM, Lion MB, Santos VL, Pappas JR, et al. (2003) A large scale analysis of resistance gene homologues in Arachis. Mol Gen Genomics 270:34–45CrossRefGoogle Scholar
  6. Boldt A, Fortunato D, Conti A, Peterson A, Ballmer-Weber B, et al. (2005) Analysis of the composition of an immunoglobulin E reactive high molecular weight protein complex of peanut extract containing Ara h 1 and Ara h 3/4. Proteomics 5:675–686PubMedCrossRefGoogle Scholar
  7. Burks W, Sampson HA, Bannon GA (1998) Peanut allergens. Allergy 53:725–730PubMedCrossRefGoogle Scholar
  8. Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA (1995) Isolation, identification, and characterization of clones encoding antigens responsible for peanut hypersensitivity. Internatl Arch Allergy Immunol 107:248–250Google Scholar
  9. Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root – knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:369–379CrossRefGoogle Scholar
  10. Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploidy species. Genetics 159:823–837PubMedGoogle Scholar
  11. Chen H, Holbrook CC, Guo BZ (2006) Peanut seed transcriptome: construction of six peanut seed cDNA libraries from two peanut cultivars. Am Peanut Res Educ SocGoogle Scholar
  12. Chenault KD, Maas A (2005) Identification of a simple sequence repeat (SSR) marker in cultivated peanut (Arachis hypogaea L.) potentially associated with sclerotinia blight resistance. Proc Am Peanut Res Educ Soc pp 24–25Google Scholar
  13. Chenault KD, Melouk HA, Payton ME (2005) Field reaction to sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci 45:511–515CrossRefGoogle Scholar
  14. Cheng M, Jarret R, Li Z, Xing A, Demski J (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657CrossRefGoogle Scholar
  15. Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294PubMedCrossRefGoogle Scholar
  16. Church GT, Simpson CE, Burow MD, Paterson AH, Starr JL (2000) Use of RFLP markers for identification of individuals homozygous for resistance to Meloidogyne arenaria in peanut. Nematology 2:575–580CrossRefGoogle Scholar
  17. Cruickshank AW, Rachaputi NC, Wright GC, Nigam SN (2003) Breeding of drought-resistant peanuts. Canberra: ACIARGoogle Scholar
  18. Dar WD, Reddy BVS, Gowda CLL, Ramesh S (2006) Genetic resources enhancement of ICRISAT-mandate crops. Curr Sci 91:880–884Google Scholar
  19. De Jong EC, van Zijverden M, Spanhaak S, Koppelman SJ, Pellegrom H (1998) Identification and partial characterization of multiple major allergens in peanut proteins. Clin Exp Allergy 28:743–751PubMedCrossRefGoogle Scholar
  20. Egnin M, Mora A, Prakash CS (1998) Factors enhancing A. tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.) In Vitro Cell Dev Biol Plant 34:310–318PubMedGoogle Scholar
  21. Fávero AP, Simpson CE, Valls JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1622CrossRefGoogle Scholar
  22. Ferguson M, Bramel P, Chandra S (2004a) Gene diversity among botanical varieties in peanut (Arachis hypogaea L.) Crop Sci 44:1847–1855CrossRefGoogle Scholar
  23. Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, et al. (2004b) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108: 1064–1070CrossRefGoogle Scholar
  24. Fernández A, Krapovickas A (1994) Cromosomas y evolucion en Arachis (Leguminosae). Bonplandia 8:187–220Google Scholar
  25. Franke MD, Brenneman TB, Holbrook CC (1999) Identification of resistance to rhizoctonia limb rot in a core collection of peanut germplasm. Plant Dis 83:944–948CrossRefGoogle Scholar
  26. Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, et al. (2006) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 7:207Google Scholar
  27. Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii to A. hypogaea. Genome 39:836–845PubMedGoogle Scholar
  28. Garcia GM, Stalker HT, Shroeder E, Lyerly JH, Kochert G (2005) A RAPD-based linkage map of peanut based on a backcross population between the two diploid species Arachis stenosperma and A. cardenasii. Peanut Sci 32:1–8CrossRefGoogle Scholar
  29. Gepts P, Beavis WD, Brummer EC, Shoemaker R, Stalker HT, et al. (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235PubMedCrossRefGoogle Scholar
  30. Gobbi A, Texeira C, Moretzsohn M, Guimarães P, Bertioli SL, et al. (2006) Development of a linkage map to species of B genome related to the peanut (Arachis hypogaea – AABB). Plant Animal Genome P679Google Scholar
  31. Gonzales MD, Archuleta E, Farmer A, Kajendran K, Grant D, et al. (2005) The Legume Information System: an integrated information resource for comparative legume biology. Nucleic Acids Res 33:D660–D665PubMedCrossRefGoogle Scholar
  32. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, et al. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740PubMedGoogle Scholar
  33. Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384CrossRefGoogle Scholar
  34. Halward T, Stalker HT, Laure EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020Google Scholar
  35. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication - fresh perspectives in molecular resistance breeding. Curr Opin Biotech 14:177–193PubMedCrossRefGoogle Scholar
  36. He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.) Euphytica 97:143–149CrossRefGoogle Scholar
  37. He GH, Li J, Prakash CS, Smith OD, Lopez Y (1999) AFLP mapping and QTL analysis in cultivated peanut (Arachis hypogaea L.). Plant and Animal Genome. P236Google Scholar
  38. He GH, Meng R, Gao H, Guo B, Gao G, et al. (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142:131–136CrossRefGoogle Scholar
  39. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636PubMedCrossRefGoogle Scholar
  40. Herselman L, Thwaites R, Kimmins FM, Courtois B, van der Merwe PJA, et al. (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433PubMedCrossRefGoogle Scholar
  41. Higgins C, Hall R, Mitter N, Cruickshank A, Dietzgen R (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 13:59–67PubMedCrossRefGoogle Scholar
  42. Holbrook CC, Dong W (2005) Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci 45:1540–1544CrossRefGoogle Scholar
  43. Holbrook CC, Stalker HT (2002) Peanut Breeding and Genetic Resources. Plant Breed. Rev 22:297–356Google Scholar
  44. Holbrook CC, Wilson DM, Matheron ME (1998) Source of resistance to pre-harvest aflatoxin contamination in peanut. Proc Am Peanut Res Educ Soc 30:54Google Scholar
  45. Holbrook C, Anderson W, Pittman R (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci 33:859–861CrossRefGoogle Scholar
  46. Holbrook CC, Stephenson MG, Johnson AW (2000). Level and geographical distribution of resistance to Meloidogyne arenaria in the U.S. peanut germplasm collection. Crop Sci 40:1168–1171CrossRefGoogle Scholar
  47. Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, et al. (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39: 1243–1247Google Scholar
  48. Hougaard BK, Madsen LH, Fredslund J, Schauser L, Nielsen AM, et al. (2005) Development of legume anchor markers: A bioinformatic driven tool for genetic mapping and comparative genomics. Phaseomics IV (abstract)Google Scholar
  49. Husted L (1936) Cytological studies of the peanut Arachis. II. Chromosome number, number morphology and behavior and their application to the origin of cultivated forms. Cytologia 7:396–423Google Scholar
  50. Isleib TG, Beute MK, Rice PW, Hollowell JE (1995) Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc Am Peanut Res Educ Soc 27:25Google Scholar
  51. Jain AK, Basha SM, Holbrook CC (2001) Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). Elect J Biotech 4:2Google Scholar
  52. Jarvis A, Ferguson ME, Williams DE, Guarino L, Jones PG, et al. (2003) Biogeography of wild Arachis: assessing conservation status and setting future priorities. Crop Sci 43:1100–1108CrossRefGoogle Scholar
  53. Jesubatham AM, Burow MD (2006) PeanutMap: an online genome database for comparative molecular maps of peanut. BMC Bioinformatics 7:375PubMedCrossRefGoogle Scholar
  54. Jayashree B, Ferguson M, Ilut D, Doyle J, Crouch JH (2005) Analysis of genomic sequences from peanut (Arachis hypogaea) Elec J Biotech 8:226–237Google Scholar
  55. Jiang H, Liao B, Duan N, Holbrook CC, Guo B (2004) Development of a core collection of peanut germplasm in China. Proc Am Peanut Res Educ Soc 36:33Google Scholar
  56. Joshi M, Niu C, Fleming G, Hazra S, Chu Y et al. (2005) Use of green fluorescent protein as a non-destructive marker for peanut genetic transformation. In Vitro Cell Dev Biol Plant 41:437–445CrossRefGoogle Scholar
  57. Kleber-Jancke T, Crameri R, Appenzeller U, Schlaak M, Becker WM (1999) Selective cloning of peanut allergens, including profiling and 2S albumins, by phage display technology. Internatl Arach Allergy Immunol 119:265–274CrossRefGoogle Scholar
  58. Knauft D, Ozias-Akins P (1995) Recent methods for germplasm enhancement and breeding. In: Pattee HE, Stalker HT (eds), Advances in peanut science. Stillwater: APRES pp. 54–94Google Scholar
  59. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570CrossRefGoogle Scholar
  60. Kochert G, Stalker HT, Gimenes M, Galgaro SL, Lopes CR, et al. (1996) RFLP and cytological evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  61. Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the U.S. peanut minicore using microsatellite markers. Crop Sci 47:1718–1727CrossRefGoogle Scholar
  62. Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186Google Scholar
  63. Law A, Gupta N, Louie M, Poddar R, Ray A, et al. (2005) Identification and characterization of plant allergens using proteomic approaches. Curr Proteomics 2:147–164CrossRefGoogle Scholar
  64. Li Z, Jarret R, Demski J (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Res 6:297–305CrossRefGoogle Scholar
  65. Liang XQ, Luo M, Holbrook CC, Guo BZ (2006) Storage protein profiles in Spanish and runner market type peanuts and potential markers. BMC Plant Biol 6:24PubMedCrossRefGoogle Scholar
  66. Livingstone DM, Hampton JL, Phipps PM, Grabau EA (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362PubMedCrossRefGoogle Scholar
  67. Lopez Y, Burow MD (2004) Development and validation of CAPS markers for the high oleate trait in peanuts. Proc Am Peanut Res Educ Soc 36:25–26Google Scholar
  68. Luo M, Dang P, Guo BZ, He G, Holbrook CC, et al. (2005a) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353CrossRefGoogle Scholar
  69. Luo M, Dang P, Holbrook CC, Bausher MG, Lee RD, et al. (2005b) Identification of transcripts involved in resistance responses to leaf spot disease caused by C. personatum in peanut (A hypogaea L.). Phytopathol 95:381–387CrossRefGoogle Scholar
  70. Luo M, Liang X, Dang P, Holbrook CC, Baushe MG, et al. (2005c) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703CrossRefGoogle Scholar
  71. Mace ES, Phong DT, Upadhyaya HD, Chandra S, Crouch JH (2006) SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152:317–330CrossRefGoogle Scholar
  72. Mace ES, Yuejin W, Boshou L, Upadhyaya HD, Chandra S, et al. (2007) SSR-based diversity analysis of groundnut (Arachis hypogaea L.) germplasm resistant to bacterial wilt. Plant Genetic Res 5:27–36CrossRefGoogle Scholar
  73. Magbanua Z, Wilde H, Roberts J, Chowdhury K, Abad J, et al. (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236CrossRefGoogle Scholar
  74. Milla SR, Isleib TG, Tallury SP (2005) Identification of AFLP markers linked to reduced aflatoxin accumulation in A. cardenasii-derived germplasm lines of peanut. Proc Am Peanut Res Educ Soc 37:90Google Scholar
  75. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, et al. (2004) Genetic diversity of peanut (Arachis hypogaea) and its wild relatives based on the analysis of hyper variable regions of the genome. BMC Plant Biol 4:11CrossRefGoogle Scholar
  76. Moretzsohn MC, Leoi L, Proite K, Guimarães PM, Leal-Bertioli SCM, et al. (2005) A micro satellite–based, gene–rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071PubMedCrossRefGoogle Scholar
  77. National Peanut Genome Initiative (2005) Accomplishment Report. USDA-ARSGoogle Scholar
  78. O’Byrne DJ, Knauft DA, Shireman RB (1997) Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 32:687–695PubMedCrossRefGoogle Scholar
  79. Ozias-Akins P (2005) Peanut. In: Put EC, Davey MR (eds) Biotechnology in Agriculture and Forestry – Tropical Crops I. Heidelberg: Springer-VerlagGoogle Scholar
  80. Ozias-Akins P, Gill R (2001) Progress in the development of tissue culture and transformation methods applicable to the production of transgenic peanut. Peanut Sci 28:123–131Google Scholar
  81. Ozias-Akins P, Schnall JA, Anderson WF, Singsi, C, Clemente TE, et al. (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194CrossRefGoogle Scholar
  82. Ozias-Akins P, Yang H, Gill R, Fan H, Lynch RE (2002) Reduction of aflatoxin contamination in peanut: genetic engineering approach. ACS Symp Series 829:151–160CrossRefGoogle Scholar
  83. Patel M, Jung S, Moore K, Powell G, Ainsworth C, et al. (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502PubMedCrossRefGoogle Scholar
  84. Peanut Institute. (2006) http://www.peanut-institute.org/NutritionBasics.html.Google Scholar
  85. Porter DM, Smith DH, Rodríguez-Kábana R (1990) Compendium of Peanut Diseases. 2nd edn. St. Paul: APS PressGoogle Scholar
  86. Powell A, Nelson R, De B, Hoffmann N, Rogers S, et al. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743CrossRefGoogle Scholar
  87. Rabjohn P, Helm EM, Stanley JS, West CM, Sampson HA, et al. (1999) Molecular cloning and epitope analysis of the peanut allergen Arah3. J Clin Invest 103:535–542PubMedGoogle Scholar
  88. Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Sys Evol 214:1–4CrossRefGoogle Scholar
  89. Ramos ML, Fleming G, Chu Y, Akiyama Y, Gallo M, et al. (2006) Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Gen Genomics 275:578–592CrossRefGoogle Scholar
  90. Reddy TY, Reddy VR, Anbumozhi V (2003) Physiological responses to groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul 41: 75–88CrossRefGoogle Scholar
  91. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, et al. (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that A. duranensis and A. ipaënsis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303Google Scholar
  92. Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19PubMedCrossRefGoogle Scholar
  93. Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–80Google Scholar
  94. Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ’NemaTAM’ Peanut. Crop Sci 43:1561CrossRefGoogle Scholar
  95. Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt J . (ed), The groundnut crop: a scientific basis for improvement. London: Chapman and Hall. pp 96–137Google Scholar
  96. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  97. Stalker HT, Dalmacio RD (1986) Karyotype relationships and analysis among varieties of Arachis hypogaea L. Cytologia 51:167–629Google Scholar
  98. Stalker HT, Moss JP (1987). Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40CrossRefGoogle Scholar
  99. Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123CrossRefGoogle Scholar
  100. Stanley JS, King N, Burks AW, Huang SK, Sampson H, et al. (1997) Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 342:244–253PubMedCrossRefGoogle Scholar
  101. Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660PubMedCrossRefGoogle Scholar
  102. Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440CrossRefGoogle Scholar
  103. Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156CrossRefGoogle Scholar
  104. Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Res Crop Evol 50:139–148CrossRefGoogle Scholar
  105. Upadhyaya HD, Reddy LJ, Gowda CLL, Singh S (2006a) Identification of diverse groundnut germplasm: Sources of early-maturity in a core collection. Field Crop Res 97:261–267CrossRefGoogle Scholar
  106. Upadhyaya HD, Bhattacharjee R, Hoisington DA, Chandra S, Varshney R, et al. (2006b) Molecular characterization of groundnut (Arachis hypogaea L.) composite collection. Research Meeting of the Generation Challenge Program.Google Scholar
  107. USDA-FAS (2006) USDA Foreign Agricultural Service, Circular, WAP-05–06, May 2006Google Scholar
  108. Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63Google Scholar
  109. Yang H, Ozias-Akins P, Culbreath A, Gorbet D, Weeks J, et al. (2004) Field evaluation of Tomato spotted wilt virus resistance in transgenic peanut (Arachis hypogaea). Plant Dis 88:259–264CrossRefGoogle Scholar
  110. Weissinger A, Wu M, Isleib T, Stalker T, Shew B, et al. (2006). Expression of an active form of maize RIP 1 in transgenic peanut inhibits fungal infection and aflatoxin contamination. Fungal Genomics WorkshopGoogle Scholar
  111. Yüksel B, Paterson AH (2005) Construction and characterization of peanut HindIII BAC library. Theor ApplGenet 111:630–639CrossRefGoogle Scholar
  112. Yüksel B, Estill JC, Schulze SR, Paterson AH (2005) Organization and evolution of resistance gene analogs in peanut. Mol Gen Genomics 274:248–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mark David Burow
    • 1
  • Michael Gomez Selvaraj
  • Hari Upadhyaya
  • Peggy Ozias-Akins
  • Baozhu Guo
  • David John Bertioli
  • Soraya Cristina de Macedo Leal-Bertioli
  • Marcio de Carvalho Moretzsohn
  • Patricia Messenberg Guimarães
  1. 1.Texas Agricultural Experiment Station, Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA

Personalised recommendations