Skip to main content

Genomics of Papaya a Common Source of Vitamins in the Tropics

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Papaya is amajor fruit crop of the tropics and is grown to a lesser extent in the subtropics. The genome is small (372 Mbp) and has evolutionarily primitive sex chromosomes. These characters justify papaya genomics programs. In addition to whole genome sequencing, a second major goal is to completely sequence the male specific region of the Y chromosome (MSY) and its corresponding region of the X chromosome.Genomic resources such as high density genetic maps, a physical map, and an expressed sequence tag database have been generated to support genome sequencing and as tools for papaya improvement. The papaya genome is currently being sequenced by the Hawaii Papaya Genome Consortium. Physical mapping of the MSY is near completion. Sequencing the papaya genome and the MSY will enhance our capacity to explore the origin and evolution of dioecy in the family of Caricaceae, to expand our knowledge on genome evolution by serving as an outgroup for the intensively studied family Brassicaceae, identify candidate genes for target traits, and provide genome-wide DNA markers for papaya improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aradhya, MK, Manshardt RM, Zee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Res Crop Evol 46:579–586

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 93:208–219

    Article  Google Scholar 

  • Badillo VM (2000) Carica L. vs. Vasconcella St. Hil. (Caricaceae): con la rehabilitación de este último. Ernstia 10:74–79

    Google Scholar 

  • Bowers JE, Chapman BA, Rong J-K, Paterson AH (2003). Unravelling angiosperm chromosome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Chiang,CH, Wang JJ, Jan FJ, Yeh SD, Gonsalves D (2001). Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CT-transgenic papaya. J Gen Virology 82:2827–2836

    CAS  Google Scholar 

  • Chiu C-T (2000). Study on sex inheritance and horticultural characteristics of hermaphrodite papaya. Master Thesis. National Pingtung University of Science and Technology. Republic of China. 60 pp

    Google Scholar 

  • Czaplewski C, Grzonka Z, Jaskolski M, Kasprzykowski F, Kozk M, et al. (1999) Binding modes of a new epoxysuccinyl-peptide inhibitory of cysteine proteases. Where and how do cysteine proteases express their selectivity? Biochem et Biophysica Acta 1431:290–305.

    CAS  Google Scholar 

  • Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, et al. (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111

    PubMed  CAS  Google Scholar 

  • Draye X, Lin Y, Qian X, Bowers JE, Burow GB, et al. (2001) Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol 125:1325–1341

    Article  PubMed  CAS  Google Scholar 

  • Drew RA, Siar SV, O’Brien CM, Sajise AGC (2006) Progress in backcrossing between Carica papaya × Vasconcellea quercifolia intergeneric hybrids and C. papaya. Austr J Exp Agri 46:419–424

    Article  Google Scholar 

  • FAOSTAT (2006) Papayas. http://apps.fao.org/page/collections?subset=agriculture last updated April 2005

    Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnol 10:1466–1472

    Article  CAS  Google Scholar 

  • Gonsalves D, Gonsalves C, Ferreira S, Pitz K, Fitch M, et al. (2004). Transgenic virus resistant papaya: from hope to reality for controlling papaya ringspot virus in Hawaii. APSnet Feature, Am Phytopathol Soc July 2004

    Google Scholar 

  • Heilborn O (1921) Taxonomical and cytological studies on cultivated Ecuodorian species of Carica. Ark Bot 17:1–16

    Google Scholar 

  • Hofmeyr JDJ (1938) Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. So Afr Dept Agri Sci Bul No. 187. 64pp

    Google Scholar 

  • Hofmeyr JDJ (1939) Sex-linked inheritance in Carica papaya L. So Afr J Sci 36:283–285

    Google Scholar 

  • Jobin-Décor MP, Graham GC, Henry RJ, Drew RA (1997) RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Gene. Res Crop Evol 44:471–477

    Article  Google Scholar 

  • Kim MS, Moore PH, Zee F, Fitch MMM, Steige, DL, et al. (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45:503–512

    Article  PubMed  CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, et al. (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  • Kumar LSS, Abraham A, Srinivasan VK (1945) The cytology of Carica papaya Linn. Indian J Agr Sci 15:242–253

    Google Scholar 

  • Lai CW, Yu Q, Hou S, Skelton RL, Jones MR, et al. (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lindsay RH (1930) The chromosomes of some dioecious angiosperms. Am J Bot 17:152–174.

    Article  Google Scholar 

  • Liu A, Moore PH, Ma H, Ackerman CM, Makandar R, et al. (2004). A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, et al. (2003). High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, et al. (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436

    Article  PubMed  CAS  Google Scholar 

  • Magdalita PM, Villegas VN, Pimentel RB, Bayot RG (1988) Reaction of papaya (Carica papaya L.) and related Carica species to ringspot virus. Philippine J Crop Sci 13:129–132

    Google Scholar 

  • Magdalita PM, Persley DM, Godwin ID Drew RA, Adkins SW (1997) Screening Carica papaya x C. Cauliflora hybrids for resistance to papaya ringspot virus-type P. Plant Pathol 46:837–841

    Article  Google Scholar 

  • Manshardt RM, Drew RA (1998) Biotechnology of papaya. Acta Hort 461:65–73

    Google Scholar 

  • Manshardt RM, Wenslaff TF (1989) Inter-specific hybridization of papaya with other species. J Am Soc Hort Sci 114:689–694

    Google Scholar 

  • Martin G, Brommonschenkel SH, Chunwongse J, Frary A, Ganal M, et al. (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu YJ (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337–347

    Article  PubMed  CAS  Google Scholar 

  • Meurman O (1925) The chromosome behavior of some dioecious plants and their relatives with special reference to the sex chromosomes. Soc Sci Fennica comm Biol 2:105p

    Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H, et al. (2001). Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899

    Article  CAS  Google Scholar 

  • Ming R, Van Droogenbroeck B, Moore PH, Zee FT, Kynd, T, et al. (2005) Molecular diversity of Carica papaya and related species. In: Sharma AK, Sharma A (eds) Plant Genome: Biodiversity and Evolution. Volume 1B: Phanerograms. pp. 229–254. Science Publishers, Enfield, New Hampshire, USA

    Google Scholar 

  • Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol (in press)

    Google Scholar 

  • Nishijima W (1994) Papaya. In: Ploetz RC, Zentmyer GA, Nishijima WT, Rohrbach, KG, Ohr HD (eds) Compendium of Tropical Fruit Disease. pp. 54–70. American Phytopath Soc Press, St. Paul, MN

    Google Scholar 

  • Parasnis AS, Gupta VS, Tamhankar SA, Ranjekar PK (2000) A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6:337–344

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, et al. (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    Article  PubMed  CAS  Google Scholar 

  • Persley DM, Ploetz RC (2003) Diseases of papaya. In: Ploetz RC (ed) Diseases of Tropical Fruit Crops. pp. 373–412. CABI Publishing, Wallingford, Oxon, UK

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Genet 93:547–553

    CAS  Google Scholar 

  • Storey WB (1938a) The primary flower types of papaya and the fruit types that developed from them. Proc Am Soc Hort Sci 35:80–82

    Google Scholar 

  • Storey WB (1938b) Segregations of sex types in Solo papaya and their application to the selections of seed. Proc Am Soc Hort Sci 35:83–85

    Google Scholar 

  • Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5–22

    Google Scholar 

  • Storey WB (1953) Genetics of papaya. J Heredity 44:70–78

    Google Scholar 

  • Storey WB (1969) Papaya. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. H Veenman & Zonen N.V., Wageningen, The Netherlands, pp. 21–24

    Google Scholar 

  • Storey WB (1976) Papaya. In: Simmonds NW (ed) The evolution of crop plants.. pp. 21–24. Longman, London

    Google Scholar 

  • Suguira T (1927) Some observations on the meiosis of the pollen mother cells of Carica papaya, Myrica rubra, Acuba japonica, and Beta vulgaris. Bot Mag 41:219–224

    Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68

    Article  PubMed  CAS  Google Scholar 

  • Urasaki N, Tokumoto M, Tarora K, Ban Y, Rayano T, et al. (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L). Theor Appl Genet 104:281–285

    Article  PubMed  CAS  Google Scholar 

  • USDA (2001) USDA National Nutrient Database for Standard Reference, Release 17. Papayas, raw: Measure 3 (whole papaya, edible portion). http://www.nal.usda.gov/fnic/foodcomp/Data/SR17/reports/sr17fg09.pdf

    Google Scholar 

  • Van Droogenbroeck B, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, et al. (2002) AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theor Appl Genet 105:289–297

    Article  PubMed  CAS  Google Scholar 

  • Watson B (1997) Agronomy/Agroclimatology notes for the production of papaya. Min Agric, Forests Fisheries Meterol, Australia

    Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibl Genet 3:1–62

    Google Scholar 

  • Yu Q, Hou S, Feltus FA, Jones MR, Murray JE, et al. (2007a) Recent origin of papaya sex chromosomes.Submitted

    Google Scholar 

  • Yu Q, Hou S, Hobza R, Feltus FA, Wang X, et al. (2007b) Chromosomal Location and Gene paucity of the male specific region on papaya y chromosome. Mol. Genet. Genomics In press

    Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ming, R., Yu, Q., Blas, A., Chen, C., Na, JK., Moore, P.H. (2008). Genomics of Papaya a Common Source of Vitamins in the Tropics. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_16

Download citation

Publish with us

Policies and ethics