Skip to main content

Molecular Research in Oil Palm, the Key Oil Crop for the Future

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

African oil palm (Elaeis guineensis Jacq) produces more than five times the yield of oil/year/hectare of any annual oil crop. In consequence, it represents a key species for meeting future vegetable oil needs (both for food and for industry) against the background of a rising world population. As it is a tree crop and naturally out-crossing current planting material is, in contrast to most annual crops, generally heterogeneous. This complicates breeding for future needs. Recent developments in molecular biology have the potential to substantially alter approaches for the genetic improvement of oil palm. Some of these biotechnological approaches have already made an impact, for example, somatic embryogenesis for clonal propagation and routine genetic fingerprinting for quality control. The recent development of plant sequence-based approaches, supported by bioinformatics and broadly classified into genomics (DNA) and functional genomics (mRNA, protein and metabolites) could lead to a step-wise change in our understanding of the genetic basis of agronomic traits and the development of practical tools and trait information for plant breeding. These high-throughput developments add significant new potential to the two broad approaches generally adopted in crop molecular research. The “bottom-up” approach involves investigating individual genes and the pathways in which they operate with a long-term aim to develop a complete understanding of these networks and their importance in trait specification. The alternative “top-down” approach starts with the trait in the species of interest and uses inheritance studies, anonymous molecular markers, and physiological techniques to begin to dissect the trait and its interactions with the environment. Genomics and functional genomics represent a suite of techniques which can help to bridge the gap between the bottom-up and the top-down approaches. In this article we review recent progress in developing molecular resources for oil palm and assess the potential impact that specific cutting edge techniques, already developed and implemented in other plant and crop species, could have in oil palm. The article gives background information on the various technologies, but is not intended to be exhaustive. A number of good text books and articles are available which go into greater detail. It also does not go into depth on discoveries in other species, except to illustrate their potential utility in oil palm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah F (2000) Sequential and spatial mapping of the incidence of basal stem rot of oil palms (Elaeis guineensis) on a former coconut (Cocos nuciifera) plantation. pp 183–194. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma disease of perenial crops. CABI international, Wallingford, UK

    Google Scholar 

  • Abdullah R, Zainal A, Heng WY, Li LC, Beng YC, et al. (2005) Immature embryo: A useful tool for oil palm (Elaeis guineensis Jacq) genetic transformation studies. Electronic J Biotech 8(1):25–34

    CAS  Google Scholar 

  • Adam H, Jouannic S, Escoute J, Duval Y, Verdeil J-T, et al. (2005) Reproductive developmental complexity in African oil palm (Elaeis guineensis Arecaceae). Am J Bot 92(11):1836–1852

    Google Scholar 

  • Adam H, Jouannic S, Morcillo S, Richard F, Duval Y, et al. (2006) MADS box genes in oil palm (Elaeis guineensis): Patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 62(1):15–31

    PubMed  CAS  Google Scholar 

  • Afolabi AS, Worland B, Snape JW, Vain P (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826

    PubMed  CAS  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, et al. (2006) Diveristy Arrays Technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    PubMed  CAS  Google Scholar 

  • Alerlenc Bertossi F, Noirot M, Duval Y (1999) BA enhances the germination of oil palm somatic embryos derived from embryogenic suspension cultures. Plant Cell Tissue Organ Cult 56(1):53–57

    Google Scholar 

  • Asemota O, Shah FH (2004) Detection of mesocarp oleoyl-thioesterase gene of the South American oil palm Elaeis oleifera by reverse transcriptase polymerase chain reaction. Afr J Biotech 3(11):595–598

    CAS  Google Scholar 

  • Barcelos E, Amblard P, Berthaud J, Seguin M (2002) Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesquisa Agropecuaria Brasileira 37(8):1105–1114

    Google Scholar 

  • Baudouin L (1992) Use of molecular markers for oil palm breeding. I. Protein markers. Oleagineux 47:681–691

    CAS  Google Scholar 

  • Beinaret A, Vanderweyen R (1941) Contribution à l’étude génétique et biométrique des variétés d’Elaeis guineensis Jacq. Publs INEAC Sér Sci 27

    Google Scholar 

  • Benfrey PN, Protopapas AD (2005) Genomics. Pearson Education Ltd, London ISBN 0-13-047019-8

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant DNA C-values database (release 4.0) http://www.rbgkew.org.uk/cval/homepage.html

    Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philo Trans Roy Soc London B 334:309–345

    CAS  Google Scholar 

  • Bhasker S, Mohankumar C (2001) Association of lignifying enzymes in shell synthesis of oil palm fruit (Elaeis guineensis - dura variety). Indian J Exp Bio 39(2):160–164

    CAS  Google Scholar 

  • Billotte N, Lagoda PJL, Risterucci A-M, Baurens F-C (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288

    CAS  Google Scholar 

  • Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, et al. (2001) Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensis Jacq) microsatellite markers. Genome 44:413–425

    PubMed  CAS  Google Scholar 

  • Billotte N, Marseillac N, Risterucci AM, Adon B, Brottier P, et al. (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 110(4):754–65

    PubMed  CAS  Google Scholar 

  • Billotte N, Amblard P, Durand-Gasselin T, Flori A, Nouy B, et al. (2006) Oil palm biotechnology at CIRAD. Proc Intl Oil Palm Conf 15:19–22

    Google Scholar 

  • Blaak G (1970) Epistasis for crown disease in the oil palm (Elaeis guineensis Jacq) Euphytica 19(1):22–24

    Google Scholar 

  • Blaak G, Sparnaaji LD, Menendez T (1963) Breeding and inheritance in oil palm (E. guineensis Jacq) Part II. Methods of bunch quality analysis. J W Afr Inst Oil Palm Res 4:146–155

    Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol 18:630–634

    CAS  Google Scholar 

  • Breure CJ, Soebagjo FX (1991) Factors associated with occurrence of crown disease in oil palm (Elaeis guineensis Jacq) and its effect on growth and yield. Euphytica 54(1):55–64

    Google Scholar 

  • Castilho A, Vershinin A, Heslop-Harrison JS (2000) Repetitive DNA and the chromosomes in the genome of oil palm (Elaeis guineensis). Ann Bot 85:837–844

    CAS  Google Scholar 

  • Cha TS, Shah FH (2001) Kernel-specific cDNA clones encoding three different isoforms of seed storage protein glutelin from oil palm Elaeis guineensis. Plant Sci 160(5):913–923

    PubMed  CAS  Google Scholar 

  • ChanKook W (2005) Best-developed practices and sustainable development of the oil palm industry. J Oil Palm Res 17:124–135

    Google Scholar 

  • Chaudhury R, Malik SK (2004) Genetic conservation of plantation crops and spices using cryopreservation. Indian J Biotech 3:348–358

    Google Scholar 

  • Chen JJ, Rowley JD, Wang SM (2000) Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA 97(1):349–353

    PubMed  CAS  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    PubMed  CAS  Google Scholar 

  • Choo YM, Cheah KY (2000) Biofuel. In: Basiron Y, Jalani BS, Chan KW (eds) Adv Oil Palm Res 2:1293–1345

    Google Scholar 

  • Choong CY, Shah FH, Rajanaidu N, Zakri AH (1996) Isoenzyme variation of Zairean oil palm (Elaies guineensis Jacq) germplasm collection. Elaeis 8:45–53

    CAS  Google Scholar 

  • Chua KL, Singh R, Cheah SC (2001) Construction of oil palm (Elaies guineensis Jacq) linkage maps using AFLP markers. Proc Intl Palm Oil Congr 2001:461–465

    Google Scholar 

  • Chuah TG, Wan Azlina AGK, Robiah Y, Omar R (2006) Biomass as renewed energy sources in Malaysia: an overview. Int J Green Energy 3(3):323–346

    CAS  Google Scholar 

  • Cochard B, Amblard P, Durand-Gasselin T (2005) Oil palm genetic improvement and sustainable development. (Feature: research, oil palm and sustainable development) OCL - Oleagineux, Corps Gras, Lipides 12(2):141–147

    Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196

    CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, et al. (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–86

    PubMed  CAS  Google Scholar 

  • Corley RHV (1985) Yield potentials of plantation crops. In: Potassium in the agricultural systems of the humid tropic. Int Potash Inst Bern, Switzerland

    Google Scholar 

  • Corley RHV (2005) Illegitimacy in oil palm breeding – a review. J Oil Palm Res 17(1):64–69

    Google Scholar 

  • Corley RHV, Donough CR (1995) Effects of defoliation on sex differentiation in oil palm clones. Exp Agric 31(17):177–189

    Google Scholar 

  • Corley RHV, Lee CH (1992) The physiological basis for genetic improvement of oil palm in Malaysia. Euphytica 60:179–184

    Google Scholar 

  • Corley RHV, Tinker PB (2003) The oil palm. 4th Ed. World Agricultural Series. Blackwell Publishers Ltd, Oxford UK

    Google Scholar 

  • Corley RHV, Lee CH, Law IH, Wong CY (1986) Abnormal flower development in oil palm clones. The Planter 62:233–240

    Google Scholar 

  • de Franqueville H (2003) Oil palm bud rot in Latin America. Exp Agric 39(3):225–240

    Google Scholar 

  • de Franqueville H, de Greef W (1987) Hereditary transmission of resistance to vascular wilt of oil palm: facts and hypotheses. In: Halim A, Hassan Y, Chew PS, Wood BJ, Pushparajah E (eds) Proc Intl Oil Palm Conf:118–129

    Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrometry Rev 26:51–78

    CAS  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (2000) Cryopreservation of oil-palm polyembryonic cultures. (JIRCAS International Agriculture Series No8) In: Cryopreservation of tropical plant germplasm: current research progress and application. Proc Intl workshop Tsukuba Japan October 1998 International Plant Genetic Resources Institute (IPGRI) Rome Italy pp. 172–177

    Google Scholar 

  • Durand-Gasselin T, Baudouin L, Cochard B, Adon B, Cao TV (1999) Oil palm genetic improvement strategies. Plantations, Recherche, Developpement 6(5):344–358

    Google Scholar 

  • Durand-Gasselin T, Asmady H, Flori A, Jacqeumard JC, Hayun Z, et al. (2005) Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq) to basal stem rot caused by Ganoderma boninense – prospects for future breeding. Mycopathologia 159(1):93–100

    PubMed  CAS  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale GR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    PubMed  CAS  Google Scholar 

  • Elyana MD, Halimah A, Boon SH, Amos TCY, Low ETL, et al. (2005) Expressed sequence tags (ESTs): an approach to gene discovery in oil palm (Elaeis guineensis Jacq) tissue culture. Proc Conf Biotechnol Plantation Commodities:344–353

    Google Scholar 

  • Eeuwens CJ, Lord S, Donough CR, Rao V, Vallejo G, et al. (2002) Effects of tissue culture conditions during embryoid multiplication on the incidence of “mantled” flowering in clonally propagated oil palm. Plant Cell Tiss Organ Cult 70:311–323

    CAS  Google Scholar 

  • Falconer DJ (1989) Introduction to quantitative Genetics. 3rd Edition. Longman Scientific and Technical, Harlow, UK

    Google Scholar 

  • FAO (2005) Status of research and application of crop biotechnologies in developing countries. FAO, Rome ISBN 92-5-105290-5

    Google Scholar 

  • Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    PubMed  CAS  Google Scholar 

  • Flood J (2005) A review of Fusarium wilt of oil palm caused by F. oxysporum f sp. Elaedis. Phytopathol 95(6) suppl

    Google Scholar 

  • Flood J, Bridge P (2000) Ganoderma diseases of perennial crops. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Frengen E, Weichenhan D, Zhao B, Osoegawa K, van Geel M, et al. (1999) A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics 58:250–253

    PubMed  CAS  Google Scholar 

  • Fu D, Scuzs P, Yan L, Helguera M, Skinner JS, et al. (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Gen Genomics 273:54–65

    CAS  Google Scholar 

  • Fulton T, van der Hoeven R, Eannetta N, Tanksley S (2002) Identification, analysis and utilization of a conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    PubMed  CAS  Google Scholar 

  • Galeano CH (2005) Standardising amplified fragment-length polymorphisms (AFLP) for Dura oil palm (Elaeis guineensis Jacq) and preliminary molecular characterization studies. Agronomia Colombiana 23(1):42–49

    Google Scholar 

  • Ghesquiére M (1984) Enzyme polymorphism in oil palm (Elaeis guineensis Jacq) I. Genetic control of 9 enzyme-systems. Oleagineaux 39:561–574

    Google Scholar 

  • Ghesquiére M (1985) Enzyme polymorphism in oil palm (Elaies guineensis Jacq) II Variability and genetic structure of seven origins of oil palm. Oleagineux 40:529–540

    Google Scholar 

  • Guo Y, Fu Z, Van Eyk JE (2007) A Proteomic primer for the clinician. Proc Am Thoracic Soc 4:9–17

    CAS  Google Scholar 

  • Hafeez F (2005) PhD thesis submitted to the University of Cambridge ‘Genome structure and organisation of oil palm (E. guineensis Jacq)

    Google Scholar 

  • Hammond JP, Broadley MR, Craigon DJ, Higgins J, Emmerson ZF, et al. (2005) Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods 1:10

    PubMed  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke PA, et al. (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytologist 170(2):239–260

    PubMed  CAS  Google Scholar 

  • Hanley S, Edwards D, Stevenson D, Haines S, Hegarty M, et al. (2000) Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays Plant J 23(4):557–566

    PubMed  CAS  Google Scholar 

  • Hardon JJ (1969) Interspecific hybrids in the genus Elaeis II vegetative growth and yield of F1 hybrids E. guineensis x E. oleifera. Euphytica 18(3):380–388

    Google Scholar 

  • Hardon JJ, Tan GY (1969) Interspecific hybrids in the genus Elaeis I crossability, cytogenetics and fertility of F1 hybrids of E. guineensis x E. oleifera. Euphytica 18(3):372–379

    Google Scholar 

  • Hasan Y, Foster HL, Flood J (2005) Investigations on the causes of upper stem rot (USR) on standing mature oil palms. Mycopathologia 159(1):109–112

    PubMed  CAS  Google Scholar 

  • Hassan K, Sukaimi J (1993) Industrial moulding of oil palm particles. I. Suitability of oil palm trunk and frond for moulded table-tops. Palm Oil Inst of Malaysia Bulletin 27:1–7

    Google Scholar 

  • Hayati A, Wickneswari R, Maizura I, Rajanaidu N (2004) Genetic diversity of oil palm (Elaeis guineensis Jacq) germplasm collections from Africa: implications from improvement and conservation of genetic resources. Theor Appl Genet 108: 1274–1284

    PubMed  CAS  Google Scholar 

  • Henderson J, Osborne DJ (1990) Cell separation and anatomy of abscission in the oil palm Elaeis guineensis Jacq J Exp Bot 41(2):203–210

    Google Scholar 

  • Henderson J, Davies HA, Heyes SJ, Osborne DJ (2001) The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses. Phytochem 56:131–139

    CAS  Google Scholar 

  • Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, et al. (1999) Poly (beta-hydroxybutyrate) production in oil seed leucoplasts of Brassica napus. Planta 20:547–550

    Google Scholar 

  • Ibrahim R (2003) Structural, mechanical and optical properties of recycled paper blended with oil palm empty bunch pulp. J Oil Palm Res 15(2):28–34

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    PubMed  CAS  Google Scholar 

  • Jack PJ, Mayes S (1993) Use of molecular markers for oil palm breeding. II. Use of DNA markers (RFLPs). Oleagineux 48(1):1–8

    CAS  Google Scholar 

  • Jack PL, Dimitrijevic TAF, Mayes S (1995) Assessment of nuclear, mitochondrial and chloroplast RFLP markers in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 90:643–649

    Google Scholar 

  • Jack PL, James C, Price Z, Groves L, Corley RHV, et al. (1998) Application of DNA markers in oil palm breeding. Proc Intl Oil Palm Conf Indonesian Oil Palm Res Institute, Medan, Indonesia, pp 315–324

    Google Scholar 

  • Jacquemard J-C (1998) The tropical agriculturist; oil palm. MacMillan Education Ltd, London and Basingstoke, UK

    Google Scholar 

  • Jaligot E, Rival A, Baule T, Dussert S, Verdeil J-L (2000) Somaclonal variation in oil palm (Elaies guineensis Jacq): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    CAS  Google Scholar 

  • Jaligot E, Beule T, Verdeil J-L, Tregear J, Rival A (2003) DNA methylation vs. somaclonal variation in higher plants: oil palm as a case study. Acta Horticulturae 625:345–353

    CAS  Google Scholar 

  • Jaligot E, Beule T, Baurens F-C, Billotte N, Rival A (2004) Search for methylation-sensitive amplification polymorphisms associated with the “mantled” variant phenotype in oil palm (Elaeis guineensis Jacq) Genome 47(1):224–228

    PubMed  CAS  Google Scholar 

  • Jouannic S, Argout X, Lechauve F, Fizames C, Borgel A, et al. (2005) Analysis of expressed sequence tags from oil palm (Elaeis guineensis). FEBS Letters 579(12):2709–2714

    PubMed  CAS  Google Scholar 

  • Jones LH (1998) Metabolism of cytokinins by tissue culture lines of oil palm (E. guineensis Jacq) producing normal and abnormal flowering palms. J Plant Growth Reg 17(4):205–214

    CAS  Google Scholar 

  • Kalendar R, Schulman HA (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols 1(5):2478–2484

    PubMed  Google Scholar 

  • Khemvong S, Suvachittanont W (2005) Molecular cloning and expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate synthase from oil palm Elaeis guineensis Jacq. Plant Sci 169(3):571–578

    CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, et al. (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    PubMed  CAS  Google Scholar 

  • Kubis SE, Castilho AMMF, Vershinin AV, Seymour J, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    PubMed  CAS  Google Scholar 

  • Kularatne RS, Shah FH, Rajanaidu N (2001) The evaluation of genetic diversity of Deli dura and African oil palm germplasm collection by AFLP technique. Trop Agric Res 13:1–12

    Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33 479–532

    PubMed  CAS  Google Scholar 

  • Kuntom A, Hamirin K (2000) Soaps from palm products. In: Basiron Y, Jalani BS, Chan KW (eds Advances in Oil Palm Research, Vol 2 Malaysian Palm Oil Board. Kuala Lumpur. Malaysian Palm Oil Board (MPOB). pp 1102–1140

    Google Scholar 

  • Latiffah Z, Harikrishna K, Tan SG, Tan SH, Abdullah F, Ho YW (2002) Restriction analysis and sequencing of the ITS regions and 5.8S gene of rDNA of Ganoderma isolates from infected oil palm and coconut stumps in Malaysia. Annals Appl Biol 141(2):133–142

    CAS  Google Scholar 

  • Lawrence MR, Marshall DF, Davies P (1995) Genetics of genetic conservation. II. Sample size when collecting seed of cross-pollinating species and the information that can be obtained from the evaluation of material held in gene banks. Euphytica 84(2):101–107

    Google Scholar 

  • Lee J, Cooper B (2006) Alternative workflows for plant proteomic Analysis. Mol BioSyst 2:621–626

    PubMed  CAS  Google Scholar 

  • Lee M-P, Yeun LH, Abdullah R (2006) Expression of Bacillus thuringiensis insecticidal protein gene in transgenic oil palm. Electronic J Biotech 9(2):117–126

    CAS  Google Scholar 

  • Lim CC, Rao V (2004) DNA marker technology and private sector oil palm breeding. The Planter 80:611–628

    Google Scholar 

  • Lim CC, Rao V (2005) DNA fingerprinting of oil palm – choice of tissues. J Oil Palm Res 17:136–144

    CAS  Google Scholar 

  • Low ETL, Tan JS, Chan PL, Boon SH, Wong YL, et al. (2006) Developments toward the application of DNA chip technology in oil palm tissue culture. J Oil Palm Res (Special Issue – April 2006):87–96

    Google Scholar 

  • Luyindula N, Mantantu N, Dumortier F, Corley RHV (2005a) The effects of inbreeding on growth and yield of oil palm. Euphytica 143(1–2):9–17

    Google Scholar 

  • Luyindula N, Corley RHV, Mantantu N (2005b) A comparison of the Deli Dumpy and Pobe Dwarf short-stemmed oil palms and their outcrossed progenies. J Oil Palm Res 17:152–159

    Google Scholar 

  • Madon M, Heslop-Harrison JS, Schwarzacher T, Mohd Rafdi MH, Clyde MM (2005a) Cytological analysis of oil palm pollen mother cells (PMCs). J Oil Palm Res 17:176–180

    Google Scholar 

  • Madon M, Clyde MM, Hashim H, Mohd Yusuf Y, Mat H, Saratha S (2005b) Polyploid induction of oil palm through colchicine and oryzalin treatments. J Oil Palm Res 17:110–123

    CAS  Google Scholar 

  • Maizura I, Cheah SC, Rajanaidu N (2001) Genetic diversity of oil palm germplasm collections using RFLPs. Proc 2001 PIPOC Intl Palm Oil Congr – Cutting-edge technologies for sustained competitiveness (Agriculture):526–535

    Google Scholar 

  • Maizura I, Rajanaidu N, Zakri A, Cheah S (2006) Assessment of Genetic Diversity in Oil Palm (Elaeis guineensis Jacq) using restriction fragment length polymorphism (RFLP). Genet Resources Crop Evol 53(1):187–195(9)

    CAS  Google Scholar 

  • Mannan MA, Alexander J,Ganapathy C, Teo DCL (2005) Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Building Environ 41:1239–1242

    Google Scholar 

  • Maria M, Clyde MM, Cheah SC (1995) Cytological analysis of Elaeis guineensis (tenera) chromosomes. Elaeis 7:122–134

    Google Scholar 

  • Masani Mat Yunus A, Ho CL, Parveez GKA (2001) Construction of PHB gene expression vectors for the production of biodegradable plastics in transgenic oil palm. Proc Int Palm oil Congr:694–711

    Google Scholar 

  • Masi P, Zeuli PLS, Donini P (2003) Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L). Mol Breed 11(4):303–313

    CAS  Google Scholar 

  • Matthes M, Singh R, Cheah S-C, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    CAS  Google Scholar 

  • Mayes S, James CM, Pluhar V, Batty N, Jack PL, Corley RHV (1995) The application of biotechnology to oil palm – prospects and progress. In: Rao V, Henderson IE, Rajanaidu N (eds) Recent developments in oil palm tissue culture and biotechnology. Proc Intl Palm Oil Congr, Palm Oil Res. Inst. Malaysia, Kuala Lumpur, Malaysia: pp 171–189

    Google Scholar 

  • Mayes S, James CM, Horner SF, Jack PL, Corley RHV (1996) The application of restriction fragment length polymorphism for the genetic fingerprinting of oil palm (Elaeis guineensis Jacq). Mol Breed 2:175–180

    CAS  Google Scholar 

  • Mayes S, Jack PL, Marshall DF, Corley RHV (1997) Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq). Genome 40:116–122

    CAS  Google Scholar 

  • Mayes S, Jack PL, Corley RHV (2000) The use molecular markers to investigate the genetic structure of an oil palm breeding programme. Heredity 85:288–293

    PubMed  CAS  Google Scholar 

  • Mayes S, Holdsworth MJ, Pellegrineschi A, Reynolds M (2005a) Allying genetic and physiological innovations to improve productivity of wheat and other crops. pp 89–122. In: Sylvester-Bradley R, Wiseman J (eds) Yields of farmed species – constraints and opportunities in the 21mathrmst century. Nottingham University Press, Nottingham

    Google Scholar 

  • Mayes S, Parsley K, Sylvester-Bradley R, May S, Foulkes MJ (2005b) Integrating Genetic information into plant breeding programmes: how will we produce new varieties from molecular variation using bioinformatics? Annals Appl Biol 146:223–237

    CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    PubMed  CAS  Google Scholar 

  • Mohd Basri W, Siti Nor AA, Henson IE (2005) Oil palm – achievements and potential. Oil Palm Bull 50:1–13

    Google Scholar 

  • Mohd Din A, Rajanaidu N, Kushairi A (2005) Exploitation of genetic variability in oil palm. Proc MOSTA best practices workshops: agronomy and crop management, Malaysian Oil Sci Technol Assoc:19–42

    Google Scholar 

  • Morcillo F, Gagneur C, Adam H, Richaud F, Rajinder S, et al. (2006) Somaclonal variation in micropropagated oil palm. Characterization of two novel genes with enhanced expression in epigenetically abnormal cell lines and in response to auxin. Tree Physiol 26(5):585–594

    PubMed  CAS  Google Scholar 

  • Moretzsohn MC, Nunes CDM, Ferreira ME, Grattapaglia D (2000) RAPD linkage mapping of the shell thickness locus in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 100:63–70

    CAS  Google Scholar 

  • Moretzsohn MC, Ferreira MA, Amaral ZPS, Coelho PJA, Grattapaglia D, et al. (2002) Genetic diversity of Brazilian oil palm (EoHBK) germplasm collected in the Amazon rainforest. Euphytica 124:35–45

    CAS  Google Scholar 

  • Murphy DJ (2006) Molecular breeding strategies for the modification of lipid composition. In Vitro Cell Dev Biol 42(2):89–99

    CAS  Google Scholar 

  • Murphy DJ (2007) Future prospects for oil palm in the 21mathrmst century: biological and related challenges. Eur J Lipid Sci Technol 109:1–11

    Google Scholar 

  • Okwuagwu CO, Okolo EC (1992) Maternal inheritance of kernel size in the oil palm (Elaeis guineensis Jacq). Elaeis 4:72–73

    Google Scholar 

  • Okwuagwu CO, Okolo EC (1994) Genetic control of polymorphism for kernel to fruit ratio in oil palm (Elaeis guineensis Jacq). Elaeis 6:75

    Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, et al. (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2118

    PubMed  Google Scholar 

  • Panchal G, Bridge PD (2005) Following basal stem rot in young oil palm plantings. Mycopathologia 159(1):123–127

    PubMed  CAS  Google Scholar 

  • Pantzaris TP (1997) Pocketbook of palm oil uses. Palm Oil Res Inst Malaysia, Kuala Lumpur

    Google Scholar 

  • Parveez GKA (2003) Novel products from transgenic oil palm. AgBiotechNet 5 113:1–8

    Google Scholar 

  • Pevsner J (2003) Bioinformatics and Functional Genomics. Hoboken, New Jersey: John Wiley and Sons Inc

    Google Scholar 

  • Piffanelli P, Noa-Carrazana JC, Clement D, Ciampi J, Vilarinhos A, et al. (2002) A Platform of genomic resources to study organization and evolution of tropical crop species. SO4–3. (abstracts) Plant, Animal, Microbial Genome Conf X:58

    Google Scholar 

  • Pilotti CA, Sanderson FR, Aitken EAB (2003) Genetic structure of a population of Ganoderma boninense on oil palm. Plant Pathol 52(4):455–463

    Google Scholar 

  • Poole R, Barker G, Wilson ID, Coghill JA, Edwards KJ (2007) Measuring global gene expression in polyploidy; a cautionary note from allohexaploid wheat. Funct Integr Genomics 7(3): 207–219

    PubMed  CAS  Google Scholar 

  • Price Z, Dumortier F, MacDonald DW, Mayes S (2002) Characterization of copia-like retrotransposons in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 104:860–867

    PubMed  CAS  Google Scholar 

  • Price Z, Schulman A, Mayes S (2004) Development of new marker system: oil plam. Plant Genet Resources: Charact and Util 1(2/3):105–115

    Google Scholar 

  • Purba AR, Noyer JL, Baudouin L, Perrier X, Hamon S, et al. (2000) A new aspect of genetic diversity of Indonesian oil palm (Elaies guineensis Jacq) revealed by isoenzyme and AFLP markers and its consequences for breeding. Theor Appl Genet 101:956–961

    CAS  Google Scholar 

  • Purba A, Flori R, Baudouin L, Hamon S (2001) Prediction of oil palm (Elaeis guineensis Jacq) agronomic performances using the best linear unbiased predictor (BLUP). Theor Appl Genet 102(5):787–792

    Google Scholar 

  • Rabinowicz PD (2003) Constructing gene-enriched plant genomic libraries using methylation filtration technology. Methods Mol Biol 236:21–36

    PubMed  CAS  Google Scholar 

  • Rafii MY, Rajanaidu N, Jalani BS, Zakri AH (2001) Genotype x environment interaction and stability analyses in oil palm (Elaeis guineensis Jacq) progenies over six locations. J Oil Palm Res 13(1):11–41

    Google Scholar 

  • Rafii MY, Rajanaidu N, Jalani BS, Kushairi A (2002) Performance and heritability estimations on oil palm progenies tested in different environments. J Oil Palm Res 14(1):15–24

    Google Scholar 

  • Rajanaidu N, Kushairi A, Rafii M, Din M, Maizura I, Jalani BS (2000) Oil palm breeding and genetic resources. pp 171–227. In: Basiron Y, Jalani BS, Chan KW (eds) Advances in Oil Palm Research. Malaysian Palm Oil Board, Kuala Lumpur

    Google Scholar 

  • Rajinder S, Cheah SC, Madon M, Ooi LCL, Rahimah AR (2001) Genomic strategies for enhancing the value of the oil palm. Proc PIPOC Intl Palm Oil Congr:3–17

    Google Scholar 

  • Rance KA, Mayes S, Price Z, Jack PL, Corley RHV (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 103(8):1302–1310

    CAS  Google Scholar 

  • Rohde W (1996) Inverse sequence-tagged repeat (ISTR) analysis: a novel and universal PCRbased technique for genome analysis in the plant and animal kingdom J Genet Breeding 50:249–61

    CAS  Google Scholar 

  • Rival A, Beule T, Barre P, Hamon S, Duval Y, et al. (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq) tissue cultures and seed derived plants. Plant Cell Rep 16:884–887

    CAS  Google Scholar 

  • Rival A, Tregear J, Verdeil J-L, Richaud F, Beule T, et al. (1998a) Molecular search for mRNA and genomic markers of the oil palm “mantled” somaclonal variation. Acta Horticulturae 461:165–172

    CAS  Google Scholar 

  • Rival A, Bertrand L, Beule T, Combes MC, Trouslot P, et al. (1998b) Suitability of RAPD analysis for the detection of somaclonal variants in oil palm (Elaeis guineensis Jacq). Plant Breed 117:73–76

    Google Scholar 

  • Rival A, Jaligot E, Beule T, Verdeil JL, Tregear J (2000) DNA methylation and somaclonal variation in oil palm. Acta Horticulturae 530:447–454

    CAS  Google Scholar 

  • Rival A, Tregear J, Jaligot E, Morcillo F, Aberlenc F, et al.(2001) Oil palm biotechnology: progress and prospects. OCL - Oleagineux, Corps Gras, Lipides 8(4):295–306

    Google Scholar 

  • Rival A, Tregear J, Jaligot E, Morcillo F, Aberlenc F, et al. (2003) Biotechnology of the oil palm (Elaeis guineensis Jacq). In: Singh RP, Jaiwal PW (eds) Plant genetic engineering. - Houston : Sci Tech Publishing. p 261–318

    Google Scholar 

  • Rohani O, Zamzuri I, Tarmizi A H (2003) Oil palm cloning: MPOB protocol. MPOB Technology Malaysian Palm Oil Board (MPOB), Kuala Lumpur, Malaysia, 26, ii + 20

    Google Scholar 

  • Rosenquist EA (1985) The genetic base of oil palm breeding populations. Proc Palm Oil Res Inst Malaysia 10:10–27

    Google Scholar 

  • Salvi S, Tuberosa R (2005) To clones or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10(6):297–304

    PubMed  CAS  Google Scholar 

  • Sambanthamurthi R, Sundram K, Tan YA (2000) Chemistry and biochemistry of palm oil. Progr Lipid Res 39:507–558

    CAS  Google Scholar 

  • Sambrooke J, Russell DW (2000) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Princetown. ISBN-13-9780879695774

    Google Scholar 

  • Sanderson FR (2005) An insight into spore dispersal of Ganoderma boninense on oil palm. Mycopathologia 159(1):139–141

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotranposons. Ann Botany 82 (suppl A):37–44

    Google Scholar 

  • Schulman AH, Kalendar R (2005) A movable feast: Diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic Genome Res 110(1–4):598–605

    CAS  Google Scholar 

  • Shah FH, Rashid O, Simons AJ, Dunsdon A (1994) The utility of RAPD markers for the determination of genetic variation in oil palm (Elaeis guineensis). Theor Appl Genet 89:713–718

    CAS  Google Scholar 

  • Shah FH, Cha TS (2000) A mesocarp-and species-specific cDNA clone from oil palm encodes for sesquiterpene synthase. Plant Sci 154(2):153–160

    PubMed  CAS  Google Scholar 

  • Singh R, Lessard PA, Guan TS, Panandam JM, Sinskey A, et al. (2003) Preliminary attempts at the construction of large insert DNA libraries for oil palm (Elaeis guineensis Jacq). J Oil Palm Res 15(1):12–20

    CAS  Google Scholar 

  • Siti Nor AA, Sambanthamurthi R, Parveez GKA (2001) Genetic modification of oil palm for producing novel oils. Proc PIPOC Intl Palm Oil Congr:18–30

    Google Scholar 

  • Sniady V, Becker D, Herrán A, Ritter E, Rohde W(2003) A rapid way of physical mapping in oil palm. www.tropentag.de/2003/proceedings/node255.html

    Google Scholar 

  • Soh AC (1999) Breeding plans and selection methods in oil palm. p 65–95 In: Rajanaidu N, Jalani BS (eds) Proc Symp “The Science of Oil Palm Breeding”, Palm Oil Res Inst Malaysia, Kuala Lumpur

    Google Scholar 

  • Soh AC, Tan ST (1983) Estimation of genetic variance, variance and combining ability in oil palm breeding. In: Yap TC, Graham KM (eds) Proc 4mathrmth Int SABRAO Congr Crop Improvement Res. p 379–388

    Google Scholar 

  • Soh AC, Wong G, Tan CC, Chew PS, Hor TY, et al. (2001) Recent advances towards commercial production of elite oil palm clones. Proc PIPOC Intl Palm Oil Congr:33–44

    Google Scholar 

  • Soh AC, Wong G, Hor TY, Tan CC, Chew PS (2003a) Oil palm genetic improvement. Plant Breed Rev 22:165–219

    Google Scholar 

  • Soh AC, Gan HH, Wong G, Hor TY, Tan CC (2003b) Estimates of within family genetic variability for clonal selection in oil palm. Euphytica 133:147–163

    CAS  Google Scholar 

  • Sparnaaij LD (1969) Oil palm (Elaeis guineensis Jacq). In: Outlines of perennial crop breeding in the tropics. Misc Papers Landbouwhogesschool No 4 Wageningen, Veenam, Wageningen pp 339–387

    Google Scholar 

  • Sundram K, Sambanthamurthi R, Tan Y-A (2003) Palm fruit chemistry and nutrition. Asia Pacific J Clin Nutr 12:355–362

    CAS  Google Scholar 

  • Susanto A, Sudharto PS, Purba PY (2005) Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations. Mycopathologia 159(1):153–157

    PubMed  CAS  Google Scholar 

  • Syed Alwee SSR (2001) Genes controlling flowering: possible roles in oil palm floral abnormality. Oil Palm Bull 43:1–13

    Google Scholar 

  • Syed Alwee S, van der Linden CG, van der Schoot J, de Folter S, Angenent GC, et al. (2006) Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell, Tissue Organ Cult 85:331–344

    Google Scholar 

  • Tao Q, Chang YL, Wang J, Chen H, Islam-Faridi MN, et al. (2001) Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158:1711–1724

    PubMed  CAS  Google Scholar 

  • Tarmizi AH, Norjihan MA, Zaiton R (2004) Multiplication of oil palm suspension cultures in a bench-top (2-litre) bioreactor. J Oil Palm Res 16(2):44–49

    Google Scholar 

  • Te-chato S, Hilae A, Yeedum I (2002) Improved callus induction and embryogenic callus formation from cultured young leaves of oil palm seedling. Thai J Agric Sci 35(4):407–413

    Google Scholar 

  • Texeira JB, Sondahl MR, Nakamura T, Kirby EG (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tissue Organ Cult 40(2):105–111

    Google Scholar 

  • Thomas CA (1971) The genetic organization of chromosomes. Ann Rev Genetics 5:237–256

    CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, et al. (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    PubMed  CAS  Google Scholar 

  • Toruan-Mathius N, Bangun SII, Bintang M (2001) Analysis abnormalities of oil palm (Elaeis guineensis Jacq) from tissue culture by random amplified polymorphic DNA (RAPD). Menara Perkebunan 69(2):58–70

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:405–412

    PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator, Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    PubMed  CAS  Google Scholar 

  • US FDA (2006) Questions and answers about Trans fat nutrition labeling. http;//www.cfsan.fda.gov/∼dms/qatrans2.html#s3q1

    Google Scholar 

  • Utomo C, Werner S, Neipold F, Deising HB (2005) Identification of Ganoderma, the causal agent of basal stem rot disease in oil palm using a molecular method. Mycopathologia 159(1):159–170

    PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol 61(3):275–91

    PubMed  CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    PubMed  Google Scholar 

  • Wonkyi-Appiah JB (1987) Genetic control of fertility in the oil palm (Elaeis guineensis Jacq). Euphytica 36:505–511

    Google Scholar 

  • Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterisation of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    PubMed  CAS  Google Scholar 

  • Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, et al. (2001) The rice retrotransposon Tos17, prefers low-copy marker sequence as a target. Mol Genetics Genomics 265:336–344

    CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, et al. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100(10):6263–6268

    PubMed  CAS  Google Scholar 

  • Yan L, Loukolanov A, Blechi A, Tranquilli G, Ramakrishna W, et al. (2004) The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640–1644

    PubMed  CAS  Google Scholar 

  • Zubaidah R, Siti Nor AA (2003) Development of a transient promoter assay system for oil palm. J Oil Palm Res 15(2):62–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mayes, S., Hafeez, F., Price, Z., MacDonald, D., Billotte, N., Roberts, J. (2008). Molecular Research in Oil Palm, the Key Oil Crop for the Future. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_15

Download citation

Publish with us

Policies and ethics