Skip to main content

Genomics of Tropical Maize, a Staple Food and Feed across the World

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

Tropical maize is a major staple crop providing food and feed across the developing world. Genomics of maize is very well advanced but heavily focused on temperate germplasm. Tropical maize germplasm is substantially more diverse than temperate maize with a wide range of landraces and types of varieties. Thus, diversity analysis at genetic, molecular, and functional levels is important for underpinning translational genomics from temperate to tropical maize. Virtually all types of markers have been used for molecular linkage mapping in maize over the past decade. However, single nucleotide polymorphic markers are now very well developed in maize and are becoming the marker of choice for most applications. Both linkage and association-based mapping has been used for identifying markertrait associations. Maize genome sequencing is now well advanced but focused on gene-rich regions due to its high density of repetitive elements. Functional genomics activities have made use of insertional mutation-based cloning as well as expressed sequence tags and map-based cloning. A wide range of genomic databases and tools have been developed, of which MaizeGDB features a wealth of data and resources facilitating the scientific study of maize. Genomics-assisted breeding is at an advanced stage in temperate, especially in private sector breeding programs, and applications in tropical maize are also common. Marker-assisted selection has been used in maize for yield, grain quality, abiotic and biotic stresses. Using these approaches, commercial maize breeding programs have reported twice the rate of genetic gain compared with phenotypic selection. However, reports in the literature from public breeding programs are inconsistent and generally less promising. Applied maize genomics in the tropics should in the future focus on tropical maize fingerprinting, haplotype establishment, allele mining, gene discovery, understanding genotype-byenvironment interactions, and development of decision support tools and networks for developing countries to facilitate effective applications of genomics in maize breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern K, Deewatthanawong P, Conrad L, Schnable J, Dong Q, et al. (2006) A two component Activator/Dissociation platform for reverse and forward genetic analysis in maize. Maize Genet Conf (abstr) 48, P155

    Google Scholar 

  • Babu ER, Man VP, Gupta HS (2004) Combining high quality protein and hard endosperm traits through phenotypic and marker assisted selection. In: Fhisher T (ed) New Directions for a Diverse Planet. Proc 4th Intl Crop Sci Congress, Published on CDROM. Webside www.cropscience.org.au.

    Google Scholar 

  • Bai L, Singh M, Lauren Pitt L, Sweeney M, Brutnell TP (2007) Generating novel allelic variation through activator (Ac) insertional mutagenesis in maize. Genetics 175:981–992

    Article  PubMed  CAS  Google Scholar 

  • Barrière Y, Argillier O (1993) Brown-midrib genes of maize: A review. Agronomie 13:865–876

    Article  Google Scholar 

  • Barrière Y, Guillet C, Goffner D, Pichon M. (2003) Genetic variation and breeding strategies for improved cell digestibility in annual forage crops: a review. Animal Res 52:193–228

    Article  CAS  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1998) QTL analysis: power, precision and accuracy. pp 145–162. In: Paterson AH (ed) Molecular Dissection of Complex Traits. CRC Press, Boca Raton, FL

    Google Scholar 

  • Beavis WD, Grant D (1991) A linkage map based on information from 4 F2 populations of Maize (Zea mays L.). Theor Appl Genet 82:636–644

    Article  CAS  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, et al. (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:0103–0115

    Article  Google Scholar 

  • Bellon MR, Berthaud J (2004) Transgenic maize and the evolution of landrace diversity in Mexico. The importance of farmers’ behavior. Plant Physiol 134:883–888

    Article  PubMed  CAS  Google Scholar 

  • Bernier, J., Kumar, A., Venuprasad, R., Spaner, D., and Atlin, G. (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47, 505–517.

    Article  Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, Gonzalez de León D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Biswas GCG, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623

    Article  CAS  Google Scholar 

  • Bjarnason M, Vasal SK (1992) Breeding of quality protein maize (QPM). Plant Breed Rev 9:181–216

    CAS  Google Scholar 

  • Bohn M, Khairallah MM, González-de-León D, Hoisington DA, Utz HF, et al. (1996) QTLs mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci 36:1352–1361

    Article  Google Scholar 

  • Bohn M, Khairallah MM Jiang C, González-de-León D, Hoisington DA, et al. (1997) QTL mapping in tropical maize: II. Comparison of genomic regions for resistance to Diatraea spp. Crop Sci 37:1892–1902

    Article  CAS  Google Scholar 

  • Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, et al. (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059–1067

    Article  Google Scholar 

  • Bommert PB, Lunde C, Nardmann J, Vollbrecht E, Running PM, et al. (2005) thick tassel dwarf1 encodes a putative maize orthologue of the Arabidopsis CLAVATA1 leucine-rich receptor-like kinase. Development 132:1235–1245

    Article  PubMed  CAS  Google Scholar 

  • Bortiri E, Jackson D, Hake S (2006a) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171

    Article  CAS  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rochefort TF, Martienssen R, et al. (2006b) ramosa2 ancodes a LOB domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  CAS  Google Scholar 

  • Briggs WH, McMullen M, Gaut BS, Doebley J (2006) QTL analysis of morphological traits in a large maize-teosinte backcross population. Maize Genet Conf (abstr) 48:T24

    Google Scholar 

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr. Opin. Plant Biol 9:172–176

    Article  PubMed  CAS  Google Scholar 

  • Burr B, Burr F, Thompson KH, Albersten M, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    PubMed  CAS  Google Scholar 

  • Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella A, Martinez de la Vega O, et al. (2006) Transcriptome analysis of the low-phosphorus responses in roots and shoots of a phosphorus-efficient Zea mays line identifies alterations of several metabolical and physiological processes. Maize Genet Conf (abstr) 48:P203

    Google Scholar 

  • Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, et al. (1996) A composite map of expressed sequences in maize. Genome 39:418–432

    CAS  PubMed  Google Scholar 

  • Chen HD, Guo L, Fu Y, Emrich SJ, Ronin YI, et al. (2007) High-density genetic map of maize genes. Maize Genet Conf (abstr) 49, P 141

    Google Scholar 

  • Cheung VG, Spielman RS (2002) The genetics of variation in gene expression. Nat Genet 32 (suppl.):522–525

    Article  PubMed  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, et al. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Google Scholar 

  • Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, et al. (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207

    Article  PubMed  CAS  Google Scholar 

  • Coe EH, Hoisington DA, Neuffer MG (1987) Linkage map of corn (maize) (Zea mays L.). Maize Genet Coop Newsl 61:116–147

    Google Scholar 

  • Coe E, Cone K, McMullen M, Chen S-S, Davis G, et al. (2002) Access to the maize genome: An integrated physical and genetic map. Plant Physiol 128:9–12

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, et al. (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim Y-S, et al. (2002) Genetic, physical, and informatics resources for maize. On the road to integrated map. Plant Physiol 130:1598–1605

    Article  PubMed  CAS  Google Scholar 

  • Cooper M, Smith OS, Graham G, Arthur L, Feng L, et al. (2004) Genomics, genetics, and plant breeding: A private sector perspective. Crop Sci 44:1907–1913

    Article  Google Scholar 

  • Cowperthwaite M, Park W, Xu Z, Yan X, Maurais SC, et al. (2002) Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726

    Article  PubMed  CAS  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, et al. (2006) Plant breeding: past, present, and future. pp. 3–50. In: Lamkey KR, Lee M (eds) Plant Breeding: The Arnel R. Hallauer International Symposium. Blackwell Publishing, Ames, Iowa

    Google Scholar 

  • Crossa J, Vargas M, Van Eeuwijk FA, Jiang C, Edmeades GO, et al. (1999) Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet 99:611–625

    Article  Google Scholar 

  • Danilova T, Lamb J, Bauer M, Meyer J, Birchler J (2006) Development of PCR based FISH probes for identification of maize mitotic chromosomes. Maize Genet Conf (abstr) 48:P74

    Google Scholar 

  • Davis DW, Cone KC, Chomet P, Cox D, Brady S, et al. (2000) Maize whole-genome radiation hybrids: a progress report. Plant Animal Genome Conf 8:P255

    Google Scholar 

  • Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, et al. (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172

    PubMed  CAS  Google Scholar 

  • Dear PH, Cook PR (1993) Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res 21:13–20

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched 1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262:233–235

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil P, Dufour P, Drejci E, Causse M, de Vienne D, et al. (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434.

    PubMed  CAS  Google Scholar 

  • Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, et al. (2007) The molecularization of public sector crop breeding: progress, problems and prospects. Adv Agron 95:163–318.

    Article  CAS  Google Scholar 

  • Eathington SR (2005) Practical applications of molecular technology in the development of commercial maize hybrids. In: Proc 60th Ann Corn and Sorghum Seed Res Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Edwards MD, Helentjaris T, Wright S, Stuber CW (1992) Molecular-marker-facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet 83:765–774

    Article  CAS  Google Scholar 

  • Emrich SJ, Aluru S, Fu Y, Wen TJ, Narayanan M, et al. (2004) A strategy for assembling the maize (Zea mays L.) genome. Bioinformatics 20:140–147

    Article  PubMed  CAS  Google Scholar 

  • Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73

    Article  PubMed  CAS  Google Scholar 

  • Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    Article  PubMed  CAS  Google Scholar 

  • Falque M, Décousset L, Dervins D, Jacob AM, Joets J, et al. (2005) Linkage mapping of 1454 new maize candidate gene loci. Genetics 170:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Fernandes J, Brendel V, Gai X, Lal S, Chandler VL, et al. (2002) Comparison of RNA profiles based on maize expressed sequence tag frequency analysis and micro-array hybridization. Plant Physiol 128:896–910

    Article  PubMed  Google Scholar 

  • Figueroa D, Amarillo I, Ring B, Strobel C, Lawrence C, et al. (2006) Constructing a cytogenetic map of maize core bin markers in oat addition lines using sorghum BACs as FISH probes. Maize Genet Conf (abstr) 48:P71

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler IV ES (2003a) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003b) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107:1331–1336

    Article  CAS  Google Scholar 

  • Fraley R (2006) Presentation at Monsanto European Investor Day, 10 November 2006. www.monsanto.com

    Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930

    PubMed  CAS  Google Scholar 

  • Gaut BS, Le Thierry I’ EM, Peek AS, Saukins MC (2000) Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA 97:7008–7015

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:1–5

    Article  CAS  Google Scholar 

  • Grohn S, González-de-León D, Khairallah MM, Jiang C, Bergvinson M, et al. (1998) QTL mapping in tropical maize: III. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL populations. Crop Sci 38:1062–1072

    Article  Google Scholar 

  • Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, et al. (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19

    Google Scholar 

  • Haberer G, Young S, Bharati AK, Gundlach H, Raymond C, et al. (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Aquadro CF (1999) DNA sequence variation and the recombinational landscape in Drosophila pseudoobscura: a study of the second chromosome. Genetics 153:859–869

    PubMed  CAS  Google Scholar 

  • Iniguez AL, Gardiner J, Hogan M, Smith A, Buell R, et al. (2006) Antisense expression analysis in the maize transcriptome and microarray crossplatform comparisons. Maize Genet Conf (abstr) 48:P2

    Google Scholar 

  • Jansen RC, Nap J-P (2001) Genetical genomics: the added value from segregation. Trends Genetics 17:388–391

    Article  CAS  Google Scholar 

  • Jia J, Fu J, Zheng J, Zhou X, Huai J, et al. (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J 48:710–727

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, et al. (2004) Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm. Theor Appl Genet 109:681–689

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM (1997) Quantitative trait locus mapping using sets of near-isogenic lines: relative power comparisons and technical considerations. Theor Appl Genet 95:384–192

    Article  Google Scholar 

  • Khairallah MM, Bohn M, Jiang C, Deutsch JA, Jewell DC, et al. (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117:309–318

    Article  Google Scholar 

  • Kolkman JM, Conrad LJ, Farmer PR, Hardeman K, Ahern KR, et al. (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169:981–995

    Article  PubMed  CAS  Google Scholar 

  • Kollipara KP, Saab IN, Wych RD, Lauer MJ, Singletary GW (2002) Expression profiling of reciprocal maize hybrids divergent for cold germination and desiccation tolerance. Plant Physiol 129:974–992

    Article  PubMed  CAS  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, et al. (2003) LAX and SPA: major regulations of shoot branching in rice. Proc Natl Acad Sci USA 100:11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Koumbaris G, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–659

    Article  PubMed  CAS  Google Scholar 

  • Krill A, Hoenkenga O, Kirst M, Kochian L, Buckler E (2006) Association analysis of candidate genes for aluminum tolerance in maize. Maize Genet Conf (abstr) 48:P210

    Google Scholar 

  • Krivanek AF, De Groote H, Gunaratna NS, Diallo AO, Friesen D (2007) Breeding and disseminating quality protein maize (QPM) for Africa. African J Biotechnol 6:312–324

    CAS  Google Scholar 

  • Kronmiller B, Werner K, Wise R (2006) TE Nest: Automated chronological annotation and visualization of maize nested transposable elements. Maize Genet Conf (abstr) 48:P58

    Google Scholar 

  • Lanza LLB, Souza Jr CL, Ottoboni LLM, Vieira MLC, Souza AP (1997). Genetic distance of inbred lines and prediction of maize single cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Laurie CC, Chasalow SD, LeDeaux JR, McCarrol R, Rush D, et al. (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155

    Article  PubMed  Google Scholar 

  • Lê Q, Gutièrrez-Marcos JF, Costa LM, Meyer S, Dickinson HG, et al. (2005) Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J 44:167–178

    PubMed  Google Scholar 

  • Leach K, Davis D, Maltman R, Hejlek L, Nguyen H, et al. (2006) Genetic diversity of maize primary root growth and abscisic acid content to water stress. Maize Genet Conf (abstr) 48:P219

    Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, et al. (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, et al. (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  • Lima MLA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Lin C, Shen B, Xu Z, Dooner H (2006) Isolation and characterization of maize sesquiterpene cyclase2 (stc2) gene involved in insect resistance. Maize Genet Conf (abstr) 48:P21

    Google Scholar 

  • Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler ED, et al. (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Liu W, Gao Y, Teng F, Shi Q, and Zheng Y (2006) Construction and genetic analysis of mutator insertion mutant population in maize Construction and Genetic analysis of the maize mutator-transposon insertional mutant pool. Chinese Sci Bull 51:2604–2610

    Article  CAS  Google Scholar 

  • Lizarraga Guerra R, Gibbon B, Larkins B (2006) Genetic analysis of opaque2 modifier genes. Maize Genet Conf (abstr) 48:P15

    Google Scholar 

  • Lübberstedt TL, Zein I, Andersen JR, Wenzel G, Krützfeldt B, et al. (2005) Development and application of functional markers in maize. Euphytica 146:101–108

    Article  CAS  Google Scholar 

  • Luo LJ, Li ZK, Mei HW, Shu QY, Tabein R, et al. (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158:1755–1771

    PubMed  CAS  Google Scholar 

  • Ma Z, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37:92–103

    Article  PubMed  CAS  Google Scholar 

  • Mangolin CA, Souza Jr CL, Garcia AAF, Garcia AF, Sibov ST, et al. (2004) Mapping QTLs for kernel oil content in a tropical maize population. Euphytica 137:251–259

    Article  CAS  Google Scholar 

  • May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, et al. (2003) Maize-targeted mutagenesis: A knockout resource for maize . Proc Natl Acad Sci USA 100:11541–11546

    Article  PubMed  CAS  Google Scholar 

  • Meaburn E, Butcher LM, Schalkwyk LC, Plomin R (2006) Genoptyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans. Nucleic Acids Res 34:No.4, e28

    Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, et al. (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Ann Rev. Plant Physiol Plant Mol Biol 47:23–48

    Article  CAS  Google Scholar 

  • Monde R-A, Till BJ, Sahm H, Laport R, Haywood N, et al. (2006) The Maize TILLING Project: progress report for year 3. Maize Genet Conf (abstr) 48:P31

    Google Scholar 

  • Moose S, Schneerman M, Zhang M, Zhang K, Schneeberger R, et al. (2006) Transcript profiling of the Illinois protein strains and derived germplasm. Maize Genet Conf (abstr) 48:P201

    Google Scholar 

  • Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148:1353–1365

    PubMed  CAS  Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111–118

    Article  CAS  Google Scholar 

  • NCI-NHGRI Working Group on Replication in Association Studies (2007) Replicating genotype-phenotype associations. Nature 447:655–660

    Article  CAS  Google Scholar 

  • Nicholas FW (2006) Discovery, validation and delivery of DNA markers. Aus J Exp Agric 46:155–158

    Article  CAS  Google Scholar 

  • Niebur WS, Rafalski JA, Smith OS, Cooper M (2004) Applications of genomics technologies to enhance rate of genetic progress for yield of maize within a commercial breeding program. In: Fhisher T (ed) New Directions for a Diverse Planet. Proc 4th Intl Crop Sci Congr, www.cropscience.org.au

    Google Scholar 

  • Okagaki RJ, Kynast RG, Livingston SM, Russell CD, Rines HW, et al. (2001) Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol 125:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Okagaki R, Jacobs M, Schneerman M, Kynast R, Buescher E, et al. (2006a) A comparison of centromere mapping techniques. Maize Genet Conf (abstr) 48:P68

    Google Scholar 

  • Okagaki R, Kynast R, Stec A, Schmidt C, Jacobs M, et al. (2006b) Oat-maize addition and radiation hybrid lines for the physical and genetic mapping of the maize genome. Maize Genet Conf (abstr) 48:P149

    Google Scholar 

  • Ortiz R, Crouch JH, Iwanaga M, Sayre K, Warburton M, et al. (2006) Agriculture and energy in developing countries: Bio-energy and Agricultural Research-for-Development. IFPRI “2020 Focus” Policy Brief #14 (www.ifpri.org/pubs/catalog. htm#focus)

    Google Scholar 

  • Rosegrant MW, Msangi S, Sulser T, Valmonte-Santos R (2006) Biofuels and the Global food Balance. IFPRI “2020 Focus” Policy Brief #14 (www.ifpri.org/pubs/catalog. htm#focus)

    Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:795–1806

    Article  CAS  Google Scholar 

  • Paliwal RL (2000) Introduction to maize and its importance. pp. 1–3. In: Paliwal RL, Granados G, Lafitte HR, Violic AD, Marathee JP (eds) Tropical Maize: Improvement and Production. FAO, Rome

    Google Scholar 

  • Paliwal RL, Granados G, Lafitte HR, Violic AD, Marathee JP (2000) Tropical Maize: Improvement and Production. FAO, Rome. 363 pp

    Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, et al. (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117

    Article  PubMed  Google Scholar 

  • Pandey S, Gardner CO (1992) Recurrent selection for population, variety, and hybrid improvement in tropical maize. Adv Agron 48:1–87

    Article  Google Scholar 

  • Pea G, Ferron S, Gianfranceschi L, Krajewski P, Pe ME (2006) Wide-scale survey of transcriptional heterosis in F1 maize immature ear. Maize Genet Conf (abstr) 48:P207

    Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Article  Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Current Sci 81:1308–1319

    CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    Article  PubMed  CAS  Google Scholar 

  • Quint M, Mihaljevic R, Dussle C, Xu ML, Melchinger A, et al. (2002) Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theor Appl Genet 105:355–363

    Article  PubMed  CAS  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:41–543

    Article  CAS  Google Scholar 

  • Ragot M, Gay G, Muller J-P, Durovray J (2000) Efficient selection for the adaptation to the environment through QTL mapping and manipulation in maize. pp. 128–130. In: Ribaut J-M, Poland D (eds) Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. CIMMYT, México, D.F.

    Google Scholar 

  • Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, et al. (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    Article  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, et al. (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Ribaut, JM, Ragot M (2007) Marker-assisted selection to improve drought adaptations in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360.

    Article  PubMed  CAS  Google Scholar 

  • Ribaut J-M, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize 1. Flowering parameters and the anthesis-silking-interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Ribaut J-M, Jiang C, Gonzalez-de-Leon D (1997) Identification of quantitative trait loci under drought condition in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Ribaut JM, Bänziger M, Betran J, Jiang C, Edmeades GO, et al. (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In: Kang MS (ed) Quantitative Genetics, Genomics, and Plant Breeding. CABI Publishing, pp. 85–99

    Google Scholar 

  • Ribaut J-M, Bänziger M, Setter T, Edmeades G, Hoisington D (2004) Genetic dissection of drought tolerance in maize: a case study. pp. 571–611. In: Nguyen H, Blum A (eds) Physiology and Biotechnology Integration for Plant Breeding. Marcel Dekker Inc., New York

    Google Scholar 

  • Rosegrant MW, Msangi S, Sulser T, Valmonte-Santos R (2006) Biofuels and the Global food Balance. IFPRI “2020 Focus” Policy Brief #14 (www.ifpri.org/pubs/catalog. htm#focus)

    Google Scholar 

  • Schaeffer M, Sanchez-Villeda H, Gerau M, McMullen M, Coe E (2006) The New IBM Neighbors: genetic and physical probed sites. Maize Genet Conf (abstr) 48:P151

    Google Scholar 

  • Scheuring C, Barthelson R, Galbraith D, Betran J, Cothren JT, et al. (2006) Preliminary analysis of differential gene expression between a maize superior hybrid and its parents using the 57K maize gene-specific long-oligonucleotide microarray. Maize Genet Conf (abstr) 48:P193

    Google Scholar 

  • Schon CC, Utz HF, Groh S, Truberg B, Openshaw S, et al. (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Schroeder S, Sanchez-Villeda H, Flint-Garcia S, Houchins K, Yamasaki M, et al. (2006) Integrated software for SNP discovery in maize. Maize Genet Conf (abstr) 48:P50

    Google Scholar 

  • Settles AM (2005) Maize community resources for forward and reverse genetics. Maydica 50:405–414

    Google Scholar 

  • Settles M, Holding D, Tan B-C, Latshaw S, Suzuki M, et al. (2006) Maize sequence indexed knockouts using the UniformMu transposon-tagging population. Maize Genet Conf (abstr) 48:P180

    Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Lewis PE, Hardeman K, Bai L, Rose JK, et al. (2003) Activator mutagenesis of the pink scutellum 1 vivparous 7 locus of maize. Plant Cell 15:874–884

    Article  PubMed  CAS  Google Scholar 

  • Smith ME, Paliwal RL (1996) Contributions of genetic resources and biotechnology to sustainable productivity increases in maize. In: Watanabe K, Pebu E (eds.) Plant Biotechnology and Plant Genetic Resources for Sustainability and Productivity. Lande and Academic Press, Austin, TX

    Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, et al. (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Stevens R, Paul C, Islam S, Wong J, Harjes C, et al. (2006) Genetic approaches to enhance provitamins A and total carotenoids in maize grain. Maize Genet Conf (abstr) 48:P217

    Google Scholar 

  • Stich B, Yu J, Melchinger AE, Piepho H, Utz HF, et a. (2007) Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 176:563–570

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrids. Genetics 173:2199–2210

    Article  PubMed  CAS  Google Scholar 

  • Swanson-Wagner R, Jia Y, Borsuk L, DeCook R, Nettleton D, Schnable P (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    Article  PubMed  CAS  Google Scholar 

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39:277–287

    PubMed  CAS  Google Scholar 

  • Tarter JA, Goodman MM, Holland JB (2004) Recovery of exotic alleles in semiexotic maize inbreds derived from crosses between Latin American accessions and a temperate line. Theor Appl Genet 109:609–617

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, et al. (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, et al. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, et al. (2004) Discovery of induced point mutations in maize by TILLING. BMC Plant Biol 4:12

    Article  PubMed  CAS  Google Scholar 

  • Tomkins JP, Frisch DA, Byrum JR, Jenkins MR, Barnett LJ, et al. (2000a) Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line LH132. Maize Genet Coop Newsl 74:18

    Google Scholar 

  • Tomkins JP, Frisch DA, Jenkins MR, Barnett LJ, Luo M, et al. (2000b) Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line B73. Maize Genet Coop Newsl 74:18–19

    Google Scholar 

  • Tracy WF, Chandler MA (2006) The historical and biological basis of the concept of heterotic patterns in corn belt dent maize. pp. 219–233. In: Lamkey KR, Lee M (eds) Plant Breeding: the Arnel R. Hallauer International Symposium. Blackwell Publishing, Ames, IA

    Google Scholar 

  • Troyer AF, Rocheford TR (2002) Germplasm ownership: related corn inbreds. Crop Sci 42:3–11.

    Article  PubMed  Google Scholar 

  • Tsotsis B (1972) Objectives of industry breeders to make efficient and significant advances in the future. pp. 93–107. In: Wilkinson D (ed) Proc 27th Ann Corn and Sorghum Res Conf. American Seed Trade Association, Washington D.C.

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trend Plant Sci 11: 405–412

    Article  CAS  Google Scholar 

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut J-M (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, et al. (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Springer PS, Gol L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chapman SC, Bonnett DB, Rebetzke GJ and Crouch JH (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Science 47:582–588.

    Article  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, et al. (2005) The origin of naked grains of maize. Nature 436:714–719

    Article  PubMed  CAS  Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  PubMed  CAS  Google Scholar 

  • Warburton ML, Xia X, Crossa J, Franco J, Melchinger AE, et al. (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Wen T, Qiu F, Guo L, Lee M, Russell K, et al. (2002) High-throughput mapping tools for maize genomics. Maize Genet Conf (abstr) 44:8

    Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    Article  PubMed  Google Scholar 

  • Widstrom NW, Butron A, Guo BZ, Wilson DM, Snook ME, et al. (2003) Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aaperigillus spp. Eur J Agron 19:563–572

    Article  CAS  Google Scholar 

  • Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, et al. (2002) Selection for resistance to Southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42:1516–1528

    Article  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez-Carranza AM, Goodman MM, Rocheford TR, et al. (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Wilson R, Wing R, McCombie WR, Martienssen R, Ware D, et al. (2006) Sequencing the maize genome. Maize Genet Conf (abstr) 48:T11

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, et al. (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Zeng Z-B (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899–909

    PubMed  CAS  Google Scholar 

  • Wu R, Ma C-S, Casella G (2002) Joint linkage and linkage disequilibrium mapping of qualtitative trait loci in natural mapping populations. Genetics 160:779–792

    PubMed  CAS  Google Scholar 

  • Xia XC, Reif JC, Hoisington DA, Melchinger AE, Frisch M, (2004) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci 44:2230–2237

    Article  Google Scholar 

  • Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, et al. (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Sci 45:2573–2582

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    PubMed  CAS  Google Scholar 

  • Xiao W, Xu M, Zhao J, Wang F, Li J, Dai J (2006) Genome-wide isolation and mapping of resistance gene analogs. Theor Appl Genet 113:63–72

    Article  CAS  Google Scholar 

  • Xu Y (2003) Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breed Rev 23:73–174

    CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted plant breeding: from publications to practice. Crop Sci (in press)

    Google Scholar 

  • Yang W, Zheng Y, Zheng W, Feng R (2005) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effects with opaque-2 in maize. Mol Breed 15:257–269

    Article  CAS  Google Scholar 

  • Yim Y-S, Davis GL, Duru NA, Musket TA, Linton EW, et al. (2002). Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    Google Scholar 

  • Yu L-X, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131:568–582

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, et al. (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Yuan LX, Fu JH, Zhang SH, Liu X, Peng Z, et al. (2001) Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agron Sinica 27:149–156

    Google Scholar 

  • Zhang J, Lv X, Song X, Yan J, Song T, et al. (2006) Quantitative trait loci mapping for starch, protein, and oil concentrations with high-oil maize by SSR markers. Maize Genet Conf (abstr) 48:P233

    Google Scholar 

  • Zheng Y, Gao Y, Liu W, Yang W, Shi Q, et al. (2006) Construction and Genetic analysis of the maize mutator-transposon insertional mutant pool. Maize Genet Conf (abstr) 48:P165

    Google Scholar 

  • Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, et al. (2002) The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crops Res 73:111–121

    Article  Google Scholar 

  • Zhu T, Xia Y, Chilcott C, Dunn M, Dace G, et al. (2006) Maize ultra high-density gene map for genome-assisted breeding. Maize Genet Conf (abstr) 48:P181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, Y., Crouch, J.H. (2008). Genomics of Tropical Maize, a Staple Food and Feed across the World. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_14

Download citation

Publish with us

Policies and ethics