Advertisement

Cowpea, a Multifunctional Legume

  • Michael P. Timko
  • B.B. Singh
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)

Abstract

Cowpea [Vigna unguiculata (L.) Walp.] is an important warm-season legume grown primarily in the semi-arid tropics. The majority of cowpea is grown by subsistence farmers in west and central sub-Saharan Africa, where its grain and stover are highly valued for food and forage. Despite its economic and social importance in developing parts of the world, cowpea has received relatively little attention from a research standpoint. To a large extent it is an underexploited crop where relatively large genetic gains can likely be made with only modest investments in both applied plant breeding and molecular genetics. A major goal of many cowpea breeding and improvement programs is combining resistance to numerous pests and diseases and other desirable traits, such as those governing maturity, photoperiod sensitivity, plant type, and seed quality. New opportunities for improving cowpea exist by leveraging the emerging genomic tools and knowledge gained through research on other major legume crops and model species. The use of marker-assisted selection and other molecular breeding systems for tracking single gene traits and quantitatively inherited characteristics will likely increase the overall efficiency and effectiveness of cowpea improvement programs in the foreseeable future and provide new opportunities for development of cowpea as a food staple and economic resource.

Keywords

Quantitative Trait Locus Vigna Unguiculata Cowpea Variety Cowpea Aphid Cowpea Accession 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahenkora K, Adu-Dapaah HK, Agyemang A (1998) Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp.) leaves. Plant Foods Hum Nutr 52:221–229PubMedCrossRefGoogle Scholar
  2. Ajibade SR, Weeden NF, Chite SM (2000) Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111:47–55CrossRefGoogle Scholar
  3. Amirhusin B, Shade RE, Koiwa H, Hasegawa PM, Bressan RA, et al. (2004) Soyacystatin N inhibits proteolysis of wheat alpha-amylase inhibitor and potentiates toxicity against cowpea weevil. J Econ Entomol 97:2095–2100Google Scholar
  4. Anand RP, Ganapathi A, Vengadesan G, Selvaraj N, Anbazhagan VR, et al. (2001) Plant regeneration from immature cotyledon-derived callus of Vigna unguiculata (L). Walp (cowpea). Curr Sci 80:671–674Google Scholar
  5. Avenido RA, Dimaculangan JG, Welgas JN, Del Rosario EE (2004) Plant regeneration via direct shoot organogenesis from cotyledons and cotyledonary node explants of pole sitao (Vigna unguiculata [L] Walp. var sesquipedalis [L.] Koern.). Philippine Agric Sci 87:457–462Google Scholar
  6. Ba FS, Pasquet RE, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resource Crop Evol 51:539–550CrossRefGoogle Scholar
  7. Barone A, del Guidice A, Ng NQ (1992) Barriers to interspecific hybridization in V. unguiculata and V. vexillata. Sexual Plant Reproduction 5:195–200CrossRefGoogle Scholar
  8. Baudoin JP, Maréchal R (1985) Genetic diversity in Vigna. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 3–9Google Scholar
  9. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, et al. (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:e13Google Scholar
  10. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500PubMedCrossRefGoogle Scholar
  11. Botanga CJ and Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49: 1351–1365Google Scholar
  12. Boukar O, Kong L, Singh BB, Murdock L, Ohm HW (2004) AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44:1259–1264CrossRefGoogle Scholar
  13. Boutin SR, Young ND, Olson TC, Yu ZH, Shoemaker RC, et al. (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937CrossRefPubMedGoogle Scholar
  14. Bressani R (1985) Nutritive value of cowpea. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 353–359Google Scholar
  15. Carsky RJ, Vanlauwe B, Lyasse O (2002) Cowpea rotation as a resource management technology for cereal-based systems in the savannas of West Africa. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp. 252–266Google Scholar
  16. Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94CrossRefGoogle Scholar
  17. Chen X Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics 8:129.CrossRefGoogle Scholar
  18. Chida Y, Okazaki K, Karasawa A, Akashi K, Nakazawa-Nasu Y, et al. (2000) Isolation of molecular markers linked to the Cry locus conferring resistance to cucumber mosaic cucumovirus infection in cowpea. J Gen Plant Pathol 66:242–250CrossRefGoogle Scholar
  19. Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294PubMedCrossRefGoogle Scholar
  20. Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:258–266CrossRefGoogle Scholar
  21. Craufurd PQ, Summerfield RJ, Ell RH, Roberts EH (1997) Photoperiod, temperature and the growth and development of cowpea (Vigna unguiculata). In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 75–86Google Scholar
  22. Daoust RA, Roberts DW, Das Neves BP (1985) Distribution, biology and control of cowpea pests in Latin America. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 249–264Google Scholar
  23. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32PubMedCrossRefGoogle Scholar
  24. Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters. (I) Costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234CrossRefGoogle Scholar
  25. Dubcovsky J (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898CrossRefGoogle Scholar
  26. Duivenbooden Van H, Abdoussalam S, Mohamed AB (2002) Impact of climate change on agricultural production in the Sahel-Part 2. Case study for groundnut and cowpea in Niger. Climate Change 54:349–368CrossRefGoogle Scholar
  27. Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679CrossRefGoogle Scholar
  28. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp). Field Crops Res 53:187–204CrossRefGoogle Scholar
  29. Ehlers JD, Fery RL, Hall AE (2002a) Cowpea breeding in the USA: new varieties and improved germplasm. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp 62–77Google Scholar
  30. Ehlers JD, Matthews WC, Hall AE, Roberts PA (2002b) Breeding and evaluation of cowpeas with high levels of broad-based resistance to root-knot nematodes. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 41–51Google Scholar
  31. Elawad HOA, Hall AE (1987) Influences of early and late nitrogen fertilization on yield and nitrogen fixation of cowpea under well-watered and dry field conditions. Field Crops Res 15:229–244CrossRefGoogle Scholar
  32. Fatokun CA, Singh BB (1987) Interspecific hybridization between V. pubescence and V. unguiculata through embryo rescue. Plant Cell Tissue Organ Cult 9:229–233CrossRefGoogle Scholar
  33. Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologus seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132: 841–846PubMedGoogle Scholar
  34. Fatokun CA, Danesh D, Young ND, Stewart EL (1993a) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86:97–104CrossRefGoogle Scholar
  35. Fatokun CA, Danesh D, Menancio-Hautea D, Young ND (1993b) A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 6.256–6.258Google Scholar
  36. Federoff NV (1989) About maize transposable elements and development. Cell 56:181–191Google Scholar
  37. Feleke Y, Pasquet RS, Gepts P (2006) Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp unguiculata var unguicalata) and highlight its crop-weed complex. Plant Syst Evol 262:75–87CrossRefGoogle Scholar
  38. Fery RL (1985) The genetics of cowpea: a review of the world literature. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 25–62Google Scholar
  39. Fery RL (1990) The cowpea: production, utilization, and research in the United States. Hort Rev 12:197–222Google Scholar
  40. Fery RL (2002) New opportunities in Vigna. In: Janick J, Whipkey A (eds) Trends in New Crops and New Uses. ASHS, Alexandria, VA, pp. 424–428.Google Scholar
  41. Flavell AJ, Pearce S, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844PubMedCrossRefGoogle Scholar
  42. Galasso I, Harrison GE, Pignone D, Brandes A, Heslop-Harrison JS (1997) The distribution and organization of Ty1-copia-like retrotransposable elements in the genome of Vigna unguiculata (L.) Walp. (cowpea) and its relatives. Ann Bot 80:327–333CrossRefGoogle Scholar
  43. Garcia JA, Hillie J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46CrossRefGoogle Scholar
  44. Garcia JA, Hillie J, Goldbach R (1987) Transformation of cowpea Vigna unguiculata cells with a full length DNA copy of cowpea mosaic virus m-RNA. Plant Sci 44:89–98CrossRefGoogle Scholar
  45. Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for Food nd Feed Report of the Cross-Legume Advances through Genomics Conference. Plant Physiol 137: 1228–1235PubMedCrossRefGoogle Scholar
  46. Gomathinayagam P, Ram SG, Rathnaswanmy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.). Walp and V. vexillata (L.). A. Rich, through in vitro embryo culture. Euphytica 102:203–209CrossRefGoogle Scholar
  47. Gowda BS, Miller JL, Rubin SS, Sharma DR, Timko MP (2002) Isolation, sequence analysis, and linkage mapping of resistance-gene analogs in cowpea (Vigna unguiculata L. Walp.). Euphytica 126:365–377CrossRefGoogle Scholar
  48. Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454CrossRefGoogle Scholar
  49. Hall AE, Patel PN (1985) Breeding for resistance to drought and heat. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 137–151Google Scholar
  50. Hall AE, Singh BB, Ehlers JD (1997) Cowpea breeding. Plant Breed Rev 15:215–274Google Scholar
  51. Hall AE, Ismail AM, Ehlers JD, Marfo KO, Cisse N, et al. (2002) Breeding cowpeas for tolerance to temperature extremes and adaptation to drought. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 14–21Google Scholar
  52. Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD, et al. (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Res 82:103–134CrossRefGoogle Scholar
  53. Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218Google Scholar
  54. Kaga A, Tomooka N, Egawa Y, Hosaka K, Kamijima O (1996a) Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88:17–24CrossRefGoogle Scholar
  55. Kaga A, Ohnishi M, Ishii T, Kamijima O (1996b) A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis xV. nakashimae). Theor Appl Genet 93:658–663CrossRefGoogle Scholar
  56. Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154CrossRefGoogle Scholar
  57. Koona P, Osisanya EO, Jackai LEN, Tamo M, Markham RH (2002) Resistance in accessions of cowpea to the Coreid Pod-Bug Clavigralla tomentosicollis (Hemiptera: Coreidae). J Econ Entomol 95:1281–1288PubMedCrossRefGoogle Scholar
  58. Kwapata MB, Hall AE (1985) Effects of moisture regieme and phosphorus on mycorrhizal infection, nutrient uptake, and growth of cowpeas [Vigna unguiculata (L.) Walp.]. Field Crops Res 12:241–250CrossRefGoogle Scholar
  59. Lale NES, Kolo AA (2007) Susceptibility of eight genetically improved local cultivars of cowpea to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Nigeria. Intl J Pest Management 44:25–27Google Scholar
  60. Lane JA, Moore THM, Child DV, Cardwell KF (1996) Characterization of virulence and geographic distribution of Striga gesnerioides on cowpea in West Africa. Plant Dis 80:299–301CrossRefGoogle Scholar
  61. Lane JA, Child DV, Reiss GC, Entcheva V, Bailey JA (1997) Crop resistance to parasitic plants. In: Crute IR, et al. (eds) The Gene-for-Gene Relationship in Plant-Parasite Interactions. CAB, Wallingford, UK, pp. 81–97Google Scholar
  62. Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lamber D, Ibro G, et al. (2003) Cowpea supply and demand in West Africa. Field Crops Res 82:215–231CrossRefGoogle Scholar
  63. Li J, He G, Gepts P, Prakash CS (1999) Development of a genetic map for cowpea (Vigna unguiculata) using DNA markers. Plant & Animal Genome Conf VII:P327Google Scholar
  64. Machuka J (2002) Potential role of transgenic approaches in the control of cowpea insect pests. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 213–232Google Scholar
  65. Machuka J, Adesoye A, Obembe OO (2002) Regeneration and genetic transformation in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 185–196Google Scholar
  66. Maréchal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un group complexe d’especes des genres Phaseolus et Vigna (Papillionaceae) sur la base de donnees morphologiques et polliniques traitees par lánalyse informatique. Boissiera 28:1–273Google Scholar
  67. Matsui T and Singh BB (2003) Root characteristics in cowpea realted to drought tolerance at the seedling stage. Experimental Agriculture 39:29–38CrossRefGoogle Scholar
  68. Menancio-Hautea D, Kumar L, Danesh D, Young ND (1993a) A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2N=2X=22). In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 6.259–6.261Google Scholar
  69. Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993b) Comparative genome analysis of mung bean (Vigna radiata L. Wilczek) and cowpea (V unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810CrossRefGoogle Scholar
  70. Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217CrossRefGoogle Scholar
  71. Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337CrossRefGoogle Scholar
  72. Muthukumar B, Mariamma M, Gnanam A (1995) Regeneration of plants from primary leaves of cowpea. Plant Cell Tissue Organ Cult 42:153–155CrossRefGoogle Scholar
  73. Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L. Walp.). Euphytica 91:181–187Google Scholar
  74. Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, et al. (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44CrossRefGoogle Scholar
  75. Ng NQ (1995) Cowpea. In: Smart J, Simonds NW (eds) Evolution of Crop Plants (2mathrm nd Edition), Longman, London, UK, pp. 326–332Google Scholar
  76. Ng NQ, Marechal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 11–21Google Scholar
  77. Ng NQ, Padulosi S (1988) Cowpea genepool distribution and crop improvement. In: Ng NQ, Perrino P, Attere F, Zedan H (eds.), Crop Genetic Resources of Africa, Vol II. IBPGR, Rome, pp. 161–174Google Scholar
  78. Nielson SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Sci 33:469–472CrossRefGoogle Scholar
  79. Nielson SS, Ohler TA, Mitchell CA (1997) Cowpea leaves for human consumption: production, utilization, and nutrient composition. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 326–332Google Scholar
  80. Ogundiwin EA, Fatokun CA, Thottappilly G, Akenóva ME, Pillay M (2000) Genetic linkage map of Vigna vexillata based on DNA markers and its potential usefulness in cowpea improvement. (abstr) World Cowpea Res Conf III, p. 19Google Scholar
  81. Ogundiwin EA, Thottappilly G, Akenóva ME, Ekpo EJA, Fatokun CA (2002) Resistance to cowpea mottle carmovirus in Vigna vexillata. Plant Breed 121:517–520CrossRefGoogle Scholar
  82. Ogundiwin EA, Thottappilly G, Akenóva ME, Pillay M, Fatokun CA (2005) A genetic linkage map for Vigna vexillata. Plant Breed 124:392–398CrossRefGoogle Scholar
  83. Ouédraogo JT, Maheshwari V, Berner D, St-Pierre C-A, Belzile F, et al. (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036CrossRefGoogle Scholar
  84. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, et al.(2002a) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome 45:175–188CrossRefGoogle Scholar
  85. Ouédraogo JT, Tignegre J-B, Timko MP, Belzile FJ (2002b) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45:787–793CrossRefGoogle Scholar
  86. Padulosi S (1987) Plant exporation and germplsam collection in Zimbabwe. IITA Genetic Resources Unit Exploration Report. IITA, Ibadan, NigeriaGoogle Scholar
  87. Padulosi S (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (V. unguicullata). Ph.D. Thesis. University Catholique Lovain-la-Neuve, BelgiqueGoogle Scholar
  88. Padulosi S, Ng NQ (1997) Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 1–12Google Scholar
  89. Padulosi S, Laghetti G, Ng NQ, Perrino P (1990) Collecting in Swaziland and Zimbabwe. FAO/IBPGR Plant Genetic Resources Newsl 78/79, pp. 38Google Scholar
  90. Padulosi S, Laghetti G, Pienaar B, Ng NQ, Perrino P (1991) Survey of wild Vigna in southern Africa. FAO/IBPGR Plant Genetic Resources Newsl 83/84, pp. 4–8Google Scholar
  91. Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, et. al. (2003) Maize genome sequencing by methylation filteration. Science 302:2115–2117PubMedCrossRefGoogle Scholar
  92. Pant KC, Chandel KPS, Joshi BS (1982) Analysis of diversity in Indian cowpea genetic resources. SABRO J 14:103–111Google Scholar
  93. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119CrossRefGoogle Scholar
  94. Pasquet RS, Baudoin J-P (2001) Cowpea. In: Charrier A, Jacquot M, Harmon S, Nicolas D (eds) Tropical Plant Breeding, Science Publishers, Enfield. pp. 177–198Google Scholar
  95. Phillips RD, McWatters KH, Chinannan MS, Hung Y, Beuchat LR, et al. (2003) Utilization of cowpeas for human food. Field Crops Res 82:193–213CrossRefGoogle Scholar
  96. Penza R, Lurquin PF, Filippone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculataWalp). J Plant Physiol 138:39–43Google Scholar
  97. Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJ (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312PubMedCrossRefGoogle Scholar
  98. Purseglove JW (1968) Tropical Crops - Dicotyledons. Longman, London, UKGoogle Scholar
  99. Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, et al. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics 23:305–308PubMedCrossRefGoogle Scholar
  100. Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, et al. (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440PubMedCrossRefGoogle Scholar
  101. Rangel A, Saraiva K, Schwengber P, Narciso MS, Domont GB, et al. (2004) Biological evaluation of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chem 87:491–499CrossRefGoogle Scholar
  102. Roberts PA, Matthews WC, Ehlers JD (1996) New resistance to virulent root-know nematodes linked to the Rk locus of cowpea. Crop Sci 36:889–894CrossRefGoogle Scholar
  103. Roberts PA, Ehlers JD, Hall AE, Matthews WC (1997) Characterization of new resistance to root-knot nematodes in cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 207–214Google Scholar
  104. Sanginga N, Dashiell KE, Diels J, Vanlauwe B, Lyasse O, et al. (2003) Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain–legume–livestock systems in the dry savanna. Agric Ecosyst Environ 100:305–314CrossRefGoogle Scholar
  105. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395CrossRefGoogle Scholar
  106. Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 3–13Google Scholar
  107. Singh BB (2005) Cowpea [Vigna unguiculata (L.) Walp. In: Singh RJ, Jauhar PP (eds) Genetic Resources, Chromosome Engineering and Crop Improvement. Volume 1, CRC Press, Boca Raton, FL, USA, pp. 117–162Google Scholar
  108. Singh BB, Tarawali SA (1997) Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. In: Renard C (ed) Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems, CAB in Association with ICRISAT and ILRI, Wallingford, UK, pp. 79–100Google Scholar
  109. Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2002) Recent progress in cowpea breeding. In: : Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 22–40Google Scholar
  110. Singh S, Kundu SS, Negi AS, Singh PN (2006) Cowpea (Vigna unguiculata) legume grains as protein source in the ration of growing sheep. Small Ruminant Res 64:247–254CrossRefGoogle Scholar
  111. Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278CrossRefGoogle Scholar
  112. Sonnante G, Piergiovanni AR Ng NQ, Perrino P (1996) Relationships of Vigna unguiculata (L.) Walp., V. vexillata (L.) A. Rich., and species of section Vigna based on isozyme variation. Genet. Resource Crop Evol 43:157–165CrossRefGoogle Scholar
  113. Steele WM (1976) Cowpea, Vigna unguiculata (Leguminosae-Papillionatae). In: Simmonds NW (ed) Evolution of Crop Plants., Longman, London, pp. 183–185Google Scholar
  114. Steele WM, Mehra KL (1980) Structure, evolution and adaptation to farming systems and environments in Vigna. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. Royal Botanic Gardens, Kew, UK, pp. 393–404Google Scholar
  115. Tarawali SA, Singh BB, Peters M, Blade SF (1997) Cowpea haulms as fodder. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 313–325Google Scholar
  116. Tarawali SA, Singh BB, Gupta SC, Tabo R, Harris F, et al. (2002) Cowpea as a key factor for a new approach to integrated crop–livestock systems research in the dry savannas of West Africa. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 233–251Google Scholar
  117. Thottappilly G, Ng NQ, Rossel HW (1994) Screening germplasm of Vigna vexillata for resistance to cowpea mottle carmovirus. Int J Trop Plant Dis 12:75–80Google Scholar
  118. Timko MP, Ehlers JD, Roberts PA (2007a) Cowpea. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Volume 3, Pulses, Sugar and Tuber Crops, Springer Verlag, Berlin Heidelberg. pp. 49–67Google Scholar
  119. Timko MP, Gowda BS, Ouedraogo J, Ousmane B (2007b) Molecular markers for analysis of resistance to Striga gesnerioides in cowpea. In: Ejeta G, Gressell J (eds) Integrating New Technologies for Striga Control: Towards Ending the Witch-hunt, World Scientific Publishing Co. Pte Ltd, .Singapore, pp. In PressGoogle Scholar
  120. Tosti N, Negri V (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata ssp. unguiculata) landraces. Genome 45:656–660CrossRefGoogle Scholar
  121. Ubi BE, Mignouna H, Thottappilly G (2000) Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breed Sci 50:161–172Google Scholar
  122. Vaillancourt RE, Weeden NF (1992) Chloroplast DNA polymorphism suggests a Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). Am J Bot 79: 1194–1199CrossRefGoogle Scholar
  123. Vaillancourt RE, Weeden NF (1996) Vigna unguiculata and its position within the genus Vigna. In: Pickersgill B, Lock JM (eds) Advances in Legume Systematics, 8: Legumes of Economic Importance. Royal Botanic Gardens, Kew, UK, pp. 89–93Google Scholar
  124. Vaillancourt RE, Weeden NF, Barnard JD (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33:606–613CrossRefGoogle Scholar
  125. Van Boxtel J, Singh BB, Thottappilly G, Maule AJ (2000) Resistance of (Vigna unguiculata (L.) Walp.) breeding lines to blackeye cowpea mosaic and cowpea aphid borne mosaic potyvirus isolates under experimental conditions. J Plant Dis Protect 107:197–204Google Scholar
  126. VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131: 840–865CrossRefGoogle Scholar
  127. Van Le B, de Carvalho MHC, Zully-Fodil Y, Thi ATP, Van KTT (2002) Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin layer explants. J Plant Physiol 159:1255–1258CrossRefGoogle Scholar
  128. Verdcourt B (1970) Studies of the Leguminosae-Papilionoideae for ‘Flora of Tropical East Africa’: IV. Kew Bull pp. 507–569Google Scholar
  129. Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung, F., et al. (2003) Enrichment of gene-coding sequences in maize by geneome filteration. Science 302:2118–2120Google Scholar
  130. Wein HC, Summerfield RJ (1980) Adaptation of cowpeas in West Africa: Effects of photoperiod and temperature responses in cultivars of diverse origin. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. Royal Botanic Gardens, Kew, UK, pp. 405–417Google Scholar
  131. Yan HH, Mudge J, Kim DJ, Shoemaker RC, Cook DR, Young ND (2004) Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 47:141–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael P. Timko
    • 1
  • B.B. Singh
  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations