Pear Breeding

  • Manfred Fischer

Origin of Pears

The genus Pyrus, the pears, includes a wide range of species used partially as rootstocks but not or very rarely as human food. The genus Pyrus is a part of the family of Rosaceae with 34 chromosomes (2n). Judging by the supposed geographic origin, some wild species could be considered to be the ancestors of the cultivated pear: P. pyraster (L.), P. elaeagrifolia (Pallas), P. spinosa (Forssk.), P. syriaca (Bois.), P. × nivalis (Jacq.), P. caucasica (Fed.), etc. There is no doubt that the first one is the base of Central European varieties, but the lack of evidence makes it impossible to exactly determine the participation of other species in the evolution in terms of time and geography. P. pyraster (L.), the wild pear or wood-pear played an important role in the domestication of the cultivated pear—the European pear—P. communis(L.). Pears might have the same paleontological background as apples. The centres of genetic diversity of apples and pears are Central Asia;...


Fruit Quality Fruit Size Fire Blight European Pear Early Bearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andreies, N. (2002) Achievements and prospectives in pear breeding at the Fruit Research Station Voinesti, Romania. Acta Hort. 596, 261–264.Google Scholar
  2. Bell, R.L., Scorza, R., Srinivasan, C. and Webb, K. (1999) Transformation of ‘Beurre Bosc’ pear with the rolC Gene. J. Amer. Soc. Hort. Sci. 124,570–574.Google Scholar
  3. Bell, R.L. and Puterka, G.L. (2004) Modes of host resistance to pear psylla, a review. Acta Hort. 663,183–188.Google Scholar
  4. Bellini, E. and Nin, S. (2002) Breeding for new traits in pear. Acta Hort. 596, 217–224.Google Scholar
  5. Bouvier, L., Guerif, M., Djulbic, M. and Lespinasse, Y. (2002) First doubled haploid plants of pear (Pyrus communis). Acta Hort. 596,173–175.Google Scholar
  6. Brown, S.K. (2003) Pome fruit breeding: Progress and prospects. Acta Hort. 622, 19–34Google Scholar
  7. Chevreau, E. (2002) Pear biotchnology: Resent progresses and future breeding applications. Acta Hort. 596, 133–140.Google Scholar
  8. Chevreau, E. and Skirvin, R.M. (1992) Pear biotechnology. In: Biotechnology of perennia fruit crops (Hammerschlag, F.A. and Litz, R. eds.) C.A.B. Int., 263–276.Google Scholar
  9. Chevreau, E., Brisset, M.N., Paulin, J.P. and James, D.J. (1998) Fire blight resistance and genetic trueness-to-type of four somaclonal variants from the apple cultivar Greensleeves. Euphytica. 104,199–205.CrossRefGoogle Scholar
  10. Dondini, L., Tartarini, S., Norelli, E. and Sansavini, S. (2002) Cloning and characterisation of resistance gene Angolus (RGA) in European pears (Pyrus communis). Acta Hort. 596, 207–210.Google Scholar
  11. Durel, C.E., Guerif, P., Belounin, A. and Lezec, M. (2004) Estimation of fire blight resistance heritability in the French pear breeding program using a pedigree-based approach. Acta Hort. 663, 251–255.Google Scholar
  12. FAO (2004) Faostat-database,, March 2004.
  13. Fischer, M. (1969) Verklonung von Unterlagenzuchtmaterial von Malus, Pyrus und Prunus mahaleb unter Sprühnebel. Arch. Gartenbau, Berlin, 17, 15–32.Google Scholar
  14. Fischer, M. (1996) Results of resistance tests to Erwinia amylovora (Burrill) Winslow et al. of Malus and Pyrus progenies within the rootstock selection programme. Acta Hort. 411, 401–407.Google Scholar
  15. Fischer, M. (2004) New pear rootstocks from Dresden-Pillnitz. Int. Symposium on integrating canopy, rootstock and environmental physiology in orchard systems. Budapest 2004, abstr. 116.Google Scholar
  16. Fischer, M. and Mildenberger, G. (1998) The Naumburg/Pillnitz pear breeding programme results. Acta Hort. 484, 135–138.Google Scholar
  17. Fischer, M. and Mildenberger, G. (2000) New Naumburg/Pillnitz pear breeding results. Acta Hort. 538, 735–739.Google Scholar
  18. Fischer, M. and Mildenberger, G. (2004) New pear cultivars from Dresden-Pillnitz. Acta Hort. 663, 899–901.Google Scholar
  19. Fischer, M. and Weber, H.J. (2005) Birnenanbau, integriert und biologisch. Eugen Ulmer, Stuttgart, 164 pp.Google Scholar
  20. Grzyb, Z. (1987) Selected quince rootstocks suitable for rootstocks (polish). Ogrodnictwo 3, 6–7.Google Scholar
  21. Hirata, N. (1989) Self-compatible mutant in Japanese pear. Gamma Field Symposia.Production of mutants in tree crops. July 20–21, Institute of Radiation Breeding, NIAR MAFF, Ibaraki, Japan, 28, 71–78.Google Scholar
  22. Hunter, D.M. and Layne, R.E.C. (1999) Tree fruit breeding programmes at Harrow, Ontario, Canada. Acta Hort. 484, 187–192.Google Scholar
  23. Jacob, H. (2002) New pear rootstocks from Geisenheim, Germany. Acta Hort. 596, 337–344.Google Scholar
  24. Janick, J. (2004) Genetic alterations with the origins of fruit culture. Acta Hort. 663, 683–692.Google Scholar
  25. Jones, A.L. and Aldwinckle, H.S. (1990) Compendium of Apple and Pear Diseases. APS Press, The Am. Phytopath. Soc., 100 pp.Google Scholar
  26. Lebedev, V.G., Dolgov, S.V. and Skryabin, K.G. (2002) Transgenic pear clonal rootstocks resistant to herbicide ‘Basta’. Acta Hort. 596, 193–197.Google Scholar
  27. Malnoy, M., Reynoird, J.P. and Chevreau, E. (2000) Preliminary evaluation of new gene transfer strategies for resistance to fire blight in pear. Acta Hort. 538, 635–638.Google Scholar
  28. Masuda, T., Yoshioka, T., Inoue, K., Murata, K., Kitagawa, K., Tabira, H., Yoshida, A., Kotobuki, K. and Sanada, T. (1997) Selection of mutants resistant to black spot disease by chronic irradiation of gamma-rays in Japanese pear ‘Osanijisseiki’. J. Japan. Soc. Hort. Sci. 66, 85–92.CrossRefGoogle Scholar
  29. Monte-Corvo, L., Goulao, L. and Oliviera, C. (2002) Discrimination of pear varieties with RAPD and ALFP and ISSR. Acta Hort. 596:187–191.Google Scholar
  30. Moore, J.N. and Ballington, J.R. (1992) Genetic resources of temperate fruit and nut crops. Acta Hort. 290, 655 ff.Google Scholar
  31. Oliveira, C.M., Mota, M., Monte-Corvo, L., Goulao, L. and Silva, D.M. (1999) Molecular typing of Pyrus based on RAPD markers. Scientia Hort. 79, 163–174.CrossRefGoogle Scholar
  32. Paprstein, F. and Bouma, J. (2000) New pears from the Czech Republic. Acta Hort. 538, 741–744.Google Scholar
  33. Petzold, H. (1989) Birnensorten. Neumann, Radebeul, 3th ed., 256 pp.Google Scholar
  34. Predieri, S. (2002) The importance of induced mutations in pear improvement. Acta Hort. 596, 161–166.Google Scholar
  35. Reynoird, J.P., Morgues, F., Norelli, J., Aldwinkckle, H.S., Brisset, M.N. and Chevreau, E. (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyaloptera cecropia. Plant Sci. 149, 23–31CrossRefGoogle Scholar
  36. Schuricht, W. (1995) Birnensorten, In: Farbatlas Obstsorten (Fischer, M., ed.) Eugen Ulmer, Stuttgart, pp. 90–113.Google Scholar
  37. Tartarini, S. and Sanasavini, S. (2003) The use of molecular markers in pome fruit breeding. Acta Hort. 622, 129–140.Google Scholar
  38. Weber, H.J. (2001) Birnenunterlagen für den Intensivanbau. Erwerbsobstbau 43, 99–105Google Scholar
  39. Webster, A.D. (2003) Breeding, selection of apple and pear rootstocks. Acta Hort. 622, 499–505.Google Scholar
  40. Wertheim, J. (2000) Rootstocks for European pear: A review. Acta Hort. 596, 299–307.Google Scholar
  41. Zuccherelli, S., Broothaerts, W., Tassinari, P., Tartarini, S., Dondini, L., Bester, A. and Sansavini, S. (2002) S-allele characterisation in self-incompatible pear (Pyrus communis): Biochemical, molecular and field analysis. Acta Hort. 596, 147–152.Google Scholar
  42. Zwet, T. van der and Keil, H.L. (1979) Fire blight, a bacterial disease of Rosaceous plants. Agriculture handbook, Beltsville, 510 pp.Google Scholar
  43. Zwet, T. van der, Oitto, W.A. and Westwood, M.N. (1974) Variability in degree of fire blight resistance within and between Pyrus species, interspecific hybrids, and seedling progenies. Euphytica 23, 259–304.CrossRefGoogle Scholar
  44. Zwet, T. van der, Zoller, B.G. and Thomson, S.V. (1988) Controlling fire blight of pear and apple by accurate prediction of the blossom blight phase. Plant Disease 72, 464–472.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.IPK Gatersleben, Genbank Obst Dresden-Pillnitz (former affiliation), Söbrigener, Str. 15Germany

Personalised recommendations