Advertisement

Breeding Apple (Malus x Domestica Borkh)

  • S. Pereira-Lorenzo
  • A.M. Ramos-Cabrer
  • M. Fischer
Chapter

Introduction

The apple tree is a hybrid originating from a combination of wild species (Malus sieversii is supposed to be the main contributor). Growers at first selected the best specimens by seedlings, but when grafting was discovered as a mean of vegetative propagation, improvement in fruit quality became faster. Apple is cultivated in most of the temperate regions due to the fruit’s quality, its easiness to propagate, and its natural aptitude to bear. Apples are considered a healthy fruit, as the saying goes ‘an apple a day keeps the doctor away’. An apple tree can reach up to 10 m height above its own roots, having a globose canopy and the longevity between 60 and 100 years. Depending on the rootstock and the age of the tree, the roots can occupy between 2 and 104 m2, although most frequently they range between 10 and 30 m2 (Atkinson 1980).

Reproductive Biology

The apple tree is a monoecious species with hermaphroditic flowers. Three to six flowers in cymes (the first flower is...

Keywords

Amplify Fragment Length Polymorphism Apple Juice Apple Tree Powdery Mildew Resistance Apple Cultivar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank USDA, ARS, Plant Genetic Resources Unit (PGRU) for the pictures the author made in the apple collection at PGRU.

References

  1. Aldwinckle, H.S., Lamb, R.C., and Gustafson, H.L. (1977). Nature and inheritance of resistance to Gymnosporangium jumperi-virginianae in apple cultivars. Phytopathology. 67: 259–266.Google Scholar
  2. Al-Hinai, Y.K., and Roper, T.R. (2004). Rootstock effects on growth, cell number, and cell size of 'Gala' apples. J. Amer. Soc. Hort. Sci. 129(1): 37–41.Google Scholar
  3. Alston, F.H. (1970). Resistance to collar rot Phytophthora cactorum (Leb and Cohn) Schroet in apple. Report, East Malling Research Station for 1969: 143–145.Google Scholar
  4. Alston, F.H. (1976). Dwarfing and lethal genes in apple progenies. Euphytica. 25: 505–514.Google Scholar
  5. Alston, F.H., and Briggs, J.B. (1968). Resistance to Sappaphis devecta (WIk.) in apple. Euphytica. 17: 468–472.Google Scholar
  6. Alston, F.H., and Briggs, J.B. (1970). Inheritance of hypersensitivity to rosy apple aphid Dysaphis plantaginea in apple. Can. J. Genet. Cytolo. 12: 257–258.Google Scholar
  7. Alston, F.H., and Briggs, J.B. (1977). Resistance genes in apple and biotypes of Dysaphis devecta. Ann. Appl. Biol. 97: 75–81.Google Scholar
  8. Alston, F.H., and Watkins, R. (1975). Apple breeding at East Malling Proceedings EUCARPIA Symposium on Tree Fruit Breeding 1973, Canterbury, pp. 14–29.Google Scholar
  9. Alston, F.H., Phillips, K.L., and Evans, K.M. (2000). A Malus gene list. Acta Hort. 538: 561–570.Google Scholar
  10. Atkinson, D. (1980). The distribution and effectiveness of the roots of tree crops. Hort. Rev. 2: 425–490.Google Scholar
  11. Atkinson, C.J., Else, M.A., Taylor, L., and Dover, C.J. (2003). Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.). J. Exp. Bot. 54: 1221–1229.PubMedGoogle Scholar
  12. Barbieri, M., Belfanti, E., Tartarini, S., Vinatzer, B.A., Sansavini, S., Dilworth, E., Gianfranceschi, L., Hermann, D., Patocchi, A., and Gessler, C. (2003). Progress of the map based cloning of the Vf-resistance gene and functional verification: preliminary results from expression studies in transformed apple. HortScience. 38: 1–3.Google Scholar
  13. Batlle, I. (1993). Linkage of isoenzymic genes with agronomic characters in apple. PhD thesis, University of London, 181p.Google Scholar
  14. Batlle, I., and Alston, F.H. (1994). Isoenzyme aided selection in the transfer of mildew (Podosphaera leucotricha) resistance from Malus hupehensis to the cultivated apple. Euphytica. 77: 11–14.Google Scholar
  15. Batlle, I., and Alston, F.H. (1996). Genes determining leucine aminopeptidase and mildew resistance from ornamental apple, 'White Angel'. Theor. Appl. Genet. 93: 179–182.Google Scholar
  16. Beach, S.A., Booth, N.O., and Taylor, O.M. (1905). The Apples of New York, Vol I. J.B. Lyon Company Printers, Albany, New York.Google Scholar
  17. Beers, E.H., Suckling, D.M., Prokopy, R.J., and Avilla, J. (2003). Ecology and management of apple arthropod pests. In: D.C. Ferree and I.J. Warrington (eds.), Apples: Botany, Production and Uses. CAB International, Wallington, Oxford, UK, pp. 489–519.Google Scholar
  18. Benaouf, G., and Parisi, L. (2000). Genetics of host-pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology. 90: 236–242.PubMedGoogle Scholar
  19. Benson, L.L., Lamboy, W.F., and Zimmerman, R.H. (2001). Molecular identification of Malus hupehensis (Tea crabapple) accessions using simple sequence repeats. HortScience. 36(5): 961–966.Google Scholar
  20. Boré, J.M., and Fleckinger, J. (1997). Pommiers à cidre, variétés de France. INRA, Paris, 771 pp.Google Scholar
  21. Bošković, R., and Tobutt, K.R. (1999). Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in apple. Euphytica. 107: 29–43.Google Scholar
  22. Boudichevskaia, A., Flachowsky, H., Fischer, C., Hanke, V., and Dunemann, F. (2004). Development of molecular markers for Vr1, a scab resistance factor from R12740-7ª apple. XIth Eucarpia Symposium on Fruit Breed & Genetics. F. Laurens and K. Evans (eds.). Acta Hort. 663, ISHS 2004. Vol I, 171–175.Google Scholar
  23. Bourne, M.C. (1979a). Rupture tests vs. small-strain tests in predicting consumer response to texture. Food Technol. 10: 67–70.Google Scholar
  24. Bourne, M.C. (1979b). Fruit texture-an overview of trends and problems. J. Texture Stud. 10: 83–94.Google Scholar
  25. Bourne, M.C. (1979c). Texture of temperate fruits. J. Texture Stud. 10: 25–44.Google Scholar
  26. Bretaudeau, J., and Faure, Y. (1991). Atlas d'Arboriculture Fruitière. Lavoisier, 2, 207 pp.Google Scholar
  27. Broothaerts, W. (2003). New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor. Appl. Genet. 106: 703–714.PubMedGoogle Scholar
  28. Broothaerts, W., Janssens, G.A., Proost, P., and Broekaert, W.F. (1995). cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol. Biol. 27: 499–511.PubMedGoogle Scholar
  29. Broothaerts, W., Van Nerum, I., Boscovic, R. and Tobutt, K. (2003). Apple selfincompatibility genotypes: An overview. Acta Hort. 622: 379–387.Google Scholar
  30. Broothaerts, W., Van Nerum, I, and Keulemans, J. (2004). Update on and review of the incompatibility (S-) genotypes of apple cultivars. HortScience. 39(5): 943–947.Google Scholar
  31. Brown, S.K., and Maloney, K.E. (2005). Malus x domestica apple. In: R.E. Litz (ed.), Biotechnology of Fruit and Nut Crops. Cambridge, MA: CABI Publishing, pp. 475–511.Google Scholar
  32. Bump, V.L. (1989). Apple pressing and juice extraction. In: D.L. Downing (ed.), Processed Apple Products. New York: Van Nostrand Reinhold Publishing Co. pp. 53–82.Google Scholar
  33. Bus, V.G.M., van de Weg, W.E., Durel, C.E., Gessler, C., Parisi, L., Rikkerink, E.H.A., Gardiner, S.E., Meulenbroek, E.J., Calenge, F., Patocchi, A., and Laurens, F.N.D. (2004). Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hort. 663: 57–62.Google Scholar
  34. Büttner, R., Fischer, M., Forsline, P.L., Geibel, M., and Ponomarenko, V.V. (2000). Genebank work for preservation of the genetic diversity of apple. Acta Hort. 538: 39–42.Google Scholar
  35. Cabe, P.R., Baumgarten, A., Onan, K., Luby, J.J., and Bedford, D.S. (2005). Using microsatellite analysis to verify breeding records: a study of 'Honeycrisp' and other cold-hardy apple cultivars. HortScience. 40(1): 15–17.Google Scholar
  36. Calenge, F., Faure, A., Goerre, M., Gebhardt, C., van de Weg, W.E., Parisi, L., and Durel, C.E. (2004). Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology. 94(4): 370–379.PubMedGoogle Scholar
  37. Callen, D.F., Thompson, A.D., Shen, Y., Philips, H.A., Richards, R.I., and Mulley, J.C. (1993). Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 52: 922–927.PubMedGoogle Scholar
  38. Castiglione, S., Pirola, B., Sala, F., Ventura, M., Pancaldi, M., and Sansavini, S. (1999). Molecular studies of ACC synthase and acc oxidase genes in apple. Acta Hort. 484: 305–310.Google Scholar
  39. Cevik, V., and King, G.J. (2002a). High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor. Appl. Genet. 105: 346–354.PubMedGoogle Scholar
  40. Cevik, V., and King, G.J. (2002b). Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45: 939–945.Google Scholar
  41. Cheng, F.S., Weeden N.F., and Brown, S.K. (1996). Identification of co-dominant DNA markers tightly linked to fruit skin color in apple. Theor. Appl. Genet. 93: 222–227.Google Scholar
  42. Cheng, F.S., Weeden N.F., Brown S.K., Aldwinckle H.S., Gardiner S.E., and Bus, V.G. (1998). Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome. 41: 208–214.Google Scholar
  43. Chevreau, E. (1984). Contributions a l’etude de la genetique du Pommier: apport de l’analyse enzymatique. These de Doctor Ingenieur, Orsay, 101 pp.Google Scholar
  44. Chevreau, E., and Laurens, F. (1987). The pattern of inheritance in apple (Malus x domestica Borkh): further results from leaf isozyme analysis. Theor. Appl. Genet. 71: 268–277.Google Scholar
  45. Chevreau, E., Lespinasse, Y., and Gallet, M. (1985). Inheritance of pollen enzymes and polyploid origin of apple (Malus x domestica Borkh). Theor. Appl. Genet. 71: 268–277.Google Scholar
  46. Chevreau, E., Manganaris A.G., and Gallet, M. (1999). Isozyme segregation in five apple progenies and potential use for map construction. Theor. Appl. Genet. 98: 329–336.Google Scholar
  47. Chyi, Y.S., and Weeden, N.F. (1984). Relative isozyme band intensities permit the identification of the 2n gamete parent of triploid apple cultivars. HortScience. 19(6): 818–819.Google Scholar
  48. Coart, E., Vekemans, X., Smulders, M.J.M., Wagner, I., Van Huylenbroeck, J., Van Bockstaele, E., and Roldan-Ruiz, I. (2003). Genetic variation in the endangered wild apple (M. sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol. Ecol. 12: 845–857.PubMedGoogle Scholar
  49. Conner, P.J., Brown S.K., and Weeden, N.F. (1997). Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Am. Soc. Hort. Sci. 122: 350–359.Google Scholar
  50. Conner, P.J., Brown S.K., and Weeden, N.F. (1998). Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor. Appl. Genet. 96: 1027–1035.Google Scholar
  51. Coque, M., Díaz, M.B., and García, J.C. (1996). El cultivo del manzano en Asturias. Servicio de Publicaciones del Principado de Asturias, Asturias, 223 pp.Google Scholar
  52. Costa, F., Stella, S., Magnani, R., and Sansavini, S. (2004). Characterization of apple expansion sequences for the development of ssr markers associated with fruit firmness. Acta Hort. 663: 341–344.Google Scholar
  53. Costa, F., Stella, S., Weg, W., Guerra, W., Cecchinel, M., Dallavia, J., Koller, B., and Sansavini, S. (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica. 141: 181–190.Google Scholar
  54. Crane, M.B., and Lawrence, W.J.C. (1933). Genetical studies in cultivated apples. J. Genet. 28: 265–296.Google Scholar
  55. Dapena, E. (1996). Review of Spanish collections. In: H.J. Case (ed.) European Malus Germplasm. Proceedings, 21–24 June 1995, Wye College, University of London, IPGRI, 42.Google Scholar
  56. Dayton, D.F. (1977). Genetic immunity to apple mildew incited by Podosphaera leucotricha. HortScience. 12: 225–226.Google Scholar
  57. Dayton, D.F., and Williams, E.B. (1968). Independent genes in Malus for resistance to Venturia inaequalis. Proc. Am. Soc. Hort. Sci. 92: 89–94.Google Scholar
  58. Decourtye, L. (1967). Étude de quelques caractères a controle génétique simple chez le pommier (Malus sp) et le poirier (Pyrus communis). Les Annales de l'Amélioration des Plantes. 17: 243–266.Google Scholar
  59. Decourtye, L., and Brian, C. (1967). Détermination des desoins en froid de pépins pomacées interprétation des courbes de germination. Les Annales de l'Amélioration des Plantes. 17: 375–391.Google Scholar
  60. Decourtye, L., and Lantin, B. (1969). Contribution a la connaissance de mutants spurs de pommier; hérédité du caractère. Les Annales de l'Amélioration des Plantes. 19: 227–238.Google Scholar
  61. De Nettancourt, D. (2001). Incompatibility and Incongruity in Wild and Cultivated Plants. Springer-Verlag, Berlin.Google Scholar
  62. Dennis, F.G. (1986). Apple. In: S.P. Monseline (ed.), Handbook of Fruit Set and Development. CRC Press, Boca Raton, FL, pp. 1–45.Google Scholar
  63. Dennis, F.J. (2003). Flower, pollination and fruit set and development. In: D.C. Ferree and I.J. Warrington (eds.), Apples: Botany, Production and Uses. London, UK: CAB International, pp. 153–166.Google Scholar
  64. Díaz-Hernández, B., Ciordia-Ara, M., Coque-Fuertes, M., and Pereira-Lorenzo, S. (2003). Agronomic behaviour of six Asturian apple (Malus x domestica) cultivars for cider production over two rootstocks. J. Am. Pomol. Soc. 57(3): 121–127.Google Scholar
  65. Dickson, E.E., Kresovich, S., and Weeden, N.F. (1991). Isozymes in North American Malus (Rosaceae): hybridization and species differentiation. Syst. Bot. 16: 363–375.Google Scholar
  66. Dong, J.G., Kim, W.T., Yip, W.K., Thompson, G.A., Li, L., Bennett, A.B., and Yang, S.F. (1991). Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta. 185: 38–45.Google Scholar
  67. Dong, J.G., Olson, D., Silverstone, A, and Yang, S.F. (1992). Sequence of a cDNA coding for a 1-arninocyclopropane-1-carboxylate oxidase homolog from apple- fruit. Plant Physiol. 98: 1530–1531.PubMedGoogle Scholar
  68. Dong, Y.-H., Kvarnheden, A., Yao, J.-L., Sutherland, P.W., Atkinson, R.G., Morris, B.A., and Gardner, R.C. (1998). Identification of pollination-induced genes from the ovary of apple (Malus domestica). Sex. Plant Reprod. 11: 277–283.Google Scholar
  69. Downing, D.L. (1989). Apple cider. In: D.L. Downing (ed.), Processed Apple Products. Avi Book, New York, pp. 169–187.Google Scholar
  70. Dunemann, F., Bräcker, G., Markussen, T., and Roche, P. (1999). Identification of molecular markers for the major mildew resistance gene Pl 2 in apple. Acta Hort. 484: 411–416.Google Scholar
  71. Durel, C.E., Calenge, F., Parisi, L., van de Weg, W.E., Kodde, L.P., Liebhard, R., Gessler, C., Thiermann, M., Dunemann, F., Gennari, F., Tartarini, S., and Lespinasse, Y. (2004). An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic maps of five apple progenies. Eucarpia Symposium in fruit breeding and genetics, 1–5 Sept. 2003, Angers, France. ISHS. Acta Hort. 663: 135–140.Google Scholar
  72. Evans, K.M., and James, C.M. (2003). Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor. Appl. Genet. 106: 1178–1183.PubMedGoogle Scholar
  73. Fernández-Fernández, F., Clarke, J.B., and Tobutt, K.R. (2004). Preferential amplification of microsatellite alleles: an example in apple. XIth Eucarpia Symposium on Fruit Breed & Genetics. F. Laurens and K. Evans (eds.). ISHS. Acta Hort. 663: 87–89.Google Scholar
  74. Ferree, D.C., and Carlson, R.F. (1987). Apple rootstocks. In: R.C. Rom and R.F. Carlson (eds.), Rootstocks for Fruit Crops. John Wiley and Sons, New York, USA, pp. 107–143.Google Scholar
  75. Fischer, C. (1994). Breeding apple cultivars with multiple resistance. In: M. Kellerhals and H. Schmidt (eds.), Progress in Fruit Breeding. Kluwer Academic Publishers, Dordrecht, pp. 45–50.Google Scholar
  76. Fischer, C. (2000). Multiple resistant apple cultivars and consequences for the apple breeding in the future. Acta Hort. 538: 229–234.Google Scholar
  77. Fischer, C., and Fischer, M. (1996). Results in apple breeding at Dresden-Pillnitz – Review. Gartenbauwissenschaft. 61: 139–146.Google Scholar
  78. Fischer, C., and Richter, K. (1999). Results in fire blight resistance in the Pillnitz apple breeding program. Acta Hort. 489: 279–285.Google Scholar
  79. Fischer, C., Schreiber, H., Büttner, R., and Fischer, M. (1998). Testing of scab resistance stability of new resistant cultivars within the apple breeding program. Acta Hort. 484: 449–454.Google Scholar
  80. Fischer, C., Fischer, M., and Dierend, W. (2001b). Stability of scab resistance – Evaluation, problems and chances of durability. Eucarpia Fruit Breeding Section Newsletter. 5: 11–12.Google Scholar
  81. Fischer, M., and Dunemann, F. (2000). Search of polygenic scab and mildew resistance in the varieties of apple cultivated at the Fruit Genebank Dresden-Pillnitz. Acta Hort. 538: 71–77.Google Scholar
  82. Fischer, M., and Fischer, C. (2000). Evaluation of the species and cultivars of Malus at the Fruit Genebank Dresden-Pillnitz and using the results in apple resistance breeding. Proc. 11th Fruit Congress in Yugoslavia, Nov. 2000, pp. 29–30.Google Scholar
  83. Fischer, M., and Fischer, C. (2002). The Dresden-Pillnitz long-term apple breeding program and its results. Compact Fruit Tree. 35: 21–25.Google Scholar
  84. Fischer, M., Fischer, C., and Dierend, W. (2005). Evaluation of the stability of scab resistance in apple: a co-operation between gene bank curator, breeder and fruit grower. Plant Genetic Resources Newsletter. 142: 36–42.Google Scholar
  85. Fischer, M., Geibel, M., and Büttner, R. (2003). Zwischen 'Anacuta' und 'Pinova' – Bilanz 10 jähriger Genbankarbeit für Obst in Dresden-Pillnitz. Vorträge Pflanzenzüchtung. 57: 25–36.Google Scholar
  86. Fischer, M., Schüler, W., Fischer, C., and Gerber, H.-J. (2001a). Eignung Pillnitzer Apfelsorten-Neuzüchtungen für die Herstellung von Verarbeitungsprodukten aus biologisch orientiertem Anbau. Flüssiges Obst. 68(H.1): 20–24.Google Scholar
  87. Forsline, P.L. (2000). Procedures for collection, conservation, evaluation and documentation of germplasm using Malus as an example. Acta Hort. 522: 223–234.Google Scholar
  88. Forsline, P.L., and Aldwinckle, H.S. (2004). Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. Acta Hort. 663: 529–534.Google Scholar
  89. Forsline, P.L., Aldwinckle, H.S., Dickson, E.E., Luby, J.J., and Hokanson, S. (2003). Chap. 1: Collection, maintenance, characterization and utilization of wild apples of Central Asia A. p. 1–61. In: J. Janick, P. Forsline, E. Dickscon, R. Way and M. Thompson (eds.), Horticultural Reviews, vol. 29. Wild Apple and Fruit Trees of Central Asia.Google Scholar
  90. Forsline, P.L, McFerson, J.R., Lamboy, W.F., and Towill, L.E. (1998). Development of base and active collection of Malus germplasm with cryopreserved dormant buds. Acta Hort. 484: 75–78.Google Scholar
  91. Forte, A.V., Ignatov, A.N., Ponomarenko, V.V., Dorokhov, D.B., and Savelyev, N.I. (2002). Phylogeny of the Malus (Apple Tree) species, inferred from the morphological traits and molecular DNA analysis. Russ. J. Genet. 38(10): 1150–1161.Google Scholar
  92. Gardiner, S.E., Bassett, H.C.M., and Madie, C. (1996). Isozyme, randomly amplified polymorphic DNA (RAPD), and restriction fragment-length polymorphism (RFLP) markers used to deduce a putative parent for the 'Braeburn' apple. J. Amer. Soc. Hort. Sci. 121(6): 996–1001.Google Scholar
  93. Gianfranceschi, L., and Soglio, V. (2004). The European 589 project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hort. 663: 327–330.Google Scholar
  94. Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M., and Gessler, C. (1998). Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 96: 1069–1076.Google Scholar
  95. Goulão, L., and Oliveira, C.M. (2001). Molecular characterisation of cultivars of apple (Malus domestica Borkh.) using microsatellite (ISSR and SSR) markers. Euphytica. 122: 81–89.Google Scholar
  96. Grove, G.G., Eastwell, K.C., Jones, A.L., and Sutton, T.B. (2003). Diseases of apple. In: D.C. Ferree, and I.J. Warrington (eds.), Apples: Botany, Production and Uses. CAB International, Wallington, Oxford, UK, pp. 459–488.Google Scholar
  97. Guilford, P., Prakash, S., Zhu, J.M., Rikkerink, E., Gardiner, S., Bassett, H., and Forster, R. (1997). Microsatellites in Malus x domestica (apple) abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 94: 249–254.Google Scholar
  98. Guinea, E. (1957). Manzanas de España (Pomografía hispánica). Instituto Nacional de Investigaciones Agronómicas. Ministerio de Agricultura. Madrid, 248 pp.Google Scholar
  99. Gygax, M. (2004). The use of different PCR-based technologies to analyse the genetics of apple scab resistance conferred by the resistance genes Vbj and Vf. Dissertation 15384, Swiss Federal Institute of Technology, Zurich, Switzerland.Google Scholar
  100. Hampson, C.R., Quamme, H.A., Hall, J.W., MacDonald, R.A., King, M.C., and Cliff, M.A. (2000). Sensory evaluation as a selection tool in apple breeding. Euphytica. 111: 79–90.Google Scholar
  101. Harada, T., Sunako, T., Wakasa, Y., Soejima, J., Satoh, T., and Niizeki, M. (2000). An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor. Appl. Genet. 102: 742–746.Google Scholar
  102. Harris, S.A., Robinson, J.P., and Juniper, B.E. (2002). Genetic clues to the origin of the apple. Trends Genet. 18: 416–430.Google Scholar
  103. Heilborn, O. (1935). Reductive division pollen lethality. Acta Hort. 11: 129–184.Google Scholar
  104. Hemmat, M., Brown, S.K., and Weeden, N.F. (2002). Tagging and mapping scab resistance genes from R1270-7A apple. J. Am. Soc. Hort. Sci. 127: 365–370.Google Scholar
  105. Hemmat, M., Weeden, N.F., Aldwinckle, H.S., and Brown, S.K. (1998). Molecular markers for the scab resistance (Vf) region in apple. J. Am. Soc. Hort. Sci. 123: 992–996.Google Scholar
  106. Hemmat, M., Weeden, N.F., and Brown, S.K. (2003). Mapping and evaluation of Malus X domestica microsatellites in apple and pear. J. Am. Soc. Hort. Sci. 128: 515–520.Google Scholar
  107. Hemmat, M., Weeden, N.F., Conner, P.J., and Brown, S.K. (1997). A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J. Am. Soc. Hort. Sci. 122: 347–349.Google Scholar
  108. Hemmat, M., Weeden, N.F., Manganaris, A.G., and Lawson, D.M. (1994). Molecular marker linkage map of apple. J. Hered. 85: 4–11.PubMedGoogle Scholar
  109. Henning, W. (1947). Morphologisch, systematische und genetische Untersuchungen an Arten und Artbastarden der Gattung Malus. Der Züchter. 17: 289–349.Google Scholar
  110. Hofer, M., Gomez, A., Aguiriano, E., Manzanera, J.A., and Bueno, M.A. (2002). Analysis of simple sequence repeat markers in homozygous lines of apple. Plant Breed. 121: 159–162.Google Scholar
  111. Höhne, F. (2001). Schorfresistenz bei Apfel am Standort Rostock durchbrochen. Obstbau. 26: 458–459.Google Scholar
  112. Hokanson, S.C., Lamboy, W.F., Szewc-McFadden, A.K., and McFerson, J.R. (2001). Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica. 118: 281–294.Google Scholar
  113. Hokanson, S.C., Szewc-McFadden, A.K., Lamboy, W.F., and McFerson, J.R. (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity, and relationships in a Malus x domestica Borkh. core subset collection. Theor. Appl. Genet. 97: 671–683.Google Scholar
  114. Hu, C.G., Hao, Y.J., Honda, C., Kita, M., and Moriguchi, T. (2003). Putative PIP1 genes isolated from apple: expression analyses during fruit development and under osmotic stress. J . Exp. Bot. 54: 2193–2194.PubMedGoogle Scholar
  115. Hunter, R.L., and Markert, C.L. (1957). Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science. 125: 1294–1295.PubMedGoogle Scholar
  116. IBPGR. (1982). Descriptor list for apple (Malus). In: R. Watkins, and R.A., Smith, (eds.), International Board for Plant Genetic Resources, Rome (Italy); Commission of the European Communities, Brussels (Belgium). Committee on Disease Resistance Breeding and Use of Genebanks Division: AGP Publ.place: Brussels (Belgium) Publisher: CEC; IBPGR Publ.date: Nov 1982, 46p.Google Scholar
  117. Iglesias, I., Carbó, J., Bonany, J., Dalmau, R., Guanter, G., Montserrat, R., Moreno, A., and Pagès, J. (2000). Manzano, las variedades de más interés. Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, 240 pp.Google Scholar
  118. IPGRI. (1996). European Malus germplasm. In: H.J. Case (ed.), Proceedings of a Workshop, 21–24 June 1995. Wye College, University of London.Google Scholar
  119. Itoiz, R., and Royo, B. (2003). Isoenzymatic variability in an apple germplasm bank. Genet. Resour. Crop. Ev. 50: 391–400.Google Scholar
  120. Janick, J., Cummins, J.N., Brown, S.K., and Hemmat, M. (1996). Apples. In: J. Janick and J.N. Moore (eds.), Fruit Breeding, Tree and Tropical Fruits. John Wiley & Sons, Inc., Vol I pp. 1–77.Google Scholar
  121. James, C.M., and Evans, K.M. (2004). Identification of molecular markers linked to the mildew resistance genes Pl-d and Pl-w in apple. Acta Hort. 663: 123–127.Google Scholar
  122. Jensen, P.J., Rytter, J., Detwiler, E.A., Travis, J.W., and McNellis, T.W. (2003). Rootstock effects on gene expression patterns in apple tree scions. Plant Mol. Biol. 493: 493–511.Google Scholar
  123. Kamboj, J.S., Browning, G., Blake, P.S., Quinlan, J.D., and Baker, D.A. (1999). GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regul. 28(1): 21–27.Google Scholar
  124. Kamboj, J.S., Quinlan, J.D., Guardiola, J.L., and Garcia Martinez, J.L. (1998). The apple rootstock and its influence on endogenous hormones. Acta Hort. 463: 143–152.Google Scholar
  125. Karp, A., and Edwards, K.J. (1998). DNA markers: a global overview. In: G. Caetano-Anollés and P.M. Gresshoff (eds.), DNA Markers: Protocols, Aplications and Overviews., Wiley, New York, pp. 1–13.Google Scholar
  126. Karp, A., Kresovich, S., Bhat, K.V., Ayad, W.G., and Hodgkin, T. (1997). Molecular tools in plant genetic resources conservation: a guide to the technologies. IPGRI Technical Bulletin N.2, Rome, 27 pp.Google Scholar
  127. Kemp, H., Van der Maas, M.P., Voorrips, R.E., Groenwold, R., and van de Weg, W.E. (2004). An assessment of the durability and susceptibility of scab resistance in apple cultivars. Acta Hort. 663: 221–224.Google Scholar
  128. Kenis, K., and Keulemans, J. (2004). QTL analysis of growth characteristics in apple. XIth Eucarpia Symposium on Fruit Breed & Genetics. Acta Hort. 663(1): 369–374.Google Scholar
  129. Kim, M.Y., Song, K.J, Hwang, J.H., Shin, Y.U., and Lee, H.J. (2003). Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill). J. Hort. Sci. Biotechnol. 78: 512–517.Google Scholar
  130. King, G.J., Alston, F.H., Batlle, I., Chevreau, E., Gessler, C., Janse, J., Lindhout, P., Manganaris, A.G., Sansavini, S., Schmidt, H., and Tobutt, K. (1991). The ‘European Apple Genome Mapping Project’ – developing a strategy for mapping genes coding for agronomic characters in tree species. Euphytica. 56: 89–94.Google Scholar
  131. King, G., Tartarini, S., Brown, L., Gennari, F., and Sansavini, S. (1999). Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theor. Appl. Genet. 99: 1039–1046.Google Scholar
  132. King, G.J., Maliepaard, C., Lynn, J.R., Alston, F.H., Durel, C.E., Evans, K.M., Griffon, B., Laurens, F., Manganaris, A.G., Schrevens, E., and Tartarini, S. (2000). Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor. Appl. Genet. 100: 1074–1084.Google Scholar
  133. Kitahara, K., and Matsumoto, S. (2002a). Sequence of the S10 cDNA from “McIntosh” apple and a PCR-digestion identification method. HortScience. 37: 187–190.Google Scholar
  134. Kitahara, K., and Matsumoto, S. (2002b). Cloning of the S25 cDNA from 'McIntosh' apple and an S25-allele identification method. J. Hort. Sci. Biotechnol. 77: 724–728.Google Scholar
  135. Kitahara, K., Matsumoto, S., Yamamoto, T., Soejima, J., Kimura, T., Komatsu, H., and Abe, K. (2005). Parent identification of eight apple cultivars by S-RNase analysis and simple sequence repeat markers. HortScience. 40: 314–317.Google Scholar
  136. Klein, L.G., Way, R.D., and Lamb, R.C. (1961). The inheritance of a lethal factor in apples. Proc. Am. Soc. Hort. Sci. 77: 50–53.Google Scholar
  137. Knight, R.L., and Alston, F.H. (1968). Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can. J. Genet. Cytol. 10: 294–298.Google Scholar
  138. Knight, R.L., Briggs, J.B., Massee, A.M., and Tydeman, H.M. (1962). The inheritance of resistance to woolly aphid. Eriosoma lanigerum (Hausmm.) in the apple. J. HortScience. 37: 207–218.Google Scholar
  139. Kobel, F., Steinegger, P., and Anliker, J. (1939). Weitere Untersuchungen über die Befruchtungsverhältnisse der Apfel und Birnsorten. Landwirtschaftliches Jahrbuch der Schweiz. 53: 160–191.Google Scholar
  140. Kondo, S., Hiraoka, K., Kobayashi, S., Honda, C., and Terahara, N. (2002). Changes in the expression of anthocyanin biosynthetic genes during apple development, J. Am. Soc. Hort. Sci. 127: 971–976.Google Scholar
  141. Korban, S.S., and Dayton, D.F. (1983). Evaluation of Malus germplasm for sources of resistance to powdery mildew. HortScience. 18: 219–220.Google Scholar
  142. Korban, S.S., and Swiader, J.M. (1984). Genetic and nutritional status in bitter pit resistant and susceptible seedlings. J. Amer. Soc. Hort. Sci. 109: 428–432.Google Scholar
  143. Krens, F.A., Pelgrom, K.T.B., Schaart, J.G., Den Nijs, A.P.M., and Rouwendsal, G.J.A. (2004). Clean vector technology for marker-free transgenic fruit crops. Acta Hort. 663: 431–435.Google Scholar
  144. Krüger, J. (1999). Vorkommen der Schorfrassen 1 bis 6 auf den Ahrensburger Apfelfeldern. Erwerbsobstbau. 41: 129–130.Google Scholar
  145. Kusaba, S., Honda, C., and Kano-Murakami, Y. (2000). Characterization of gibberellin 20-oxidase gene in apple. Acta Hort. 538: 605–608.Google Scholar
  146. Lamboy, W.F., Yu, J., Forsline, P.L., and Weeden, N.F. (1996). Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. Am. Soc. Hort. Sci. 121: 982–987.Google Scholar
  147. Lapins, K.O., and Watkins, R. (1973). Genetics of compact growth. Report of East Malling Research Station for 1972, p. 136.Google Scholar
  148. Lateur, M., and Populer, C., (1996a). Les variétés de pommier RGF (Ressources Génétiques Frutiéres). Le Fruit Belge. 459: 25–29.Google Scholar
  149. Lateur, M., and Populer, C., (1996b). Les variétés de pommier RGF diffusees pour la Station de Phytopathologie de Gembloux. Le Fruit Belge. 460: 57–60.Google Scholar
  150. Lauri, P.É., and Costes, E. 2004. Progress in whole-tree architectural studies for apple cultiva characterization at INRA, France – Contribution to the idotype approach. Acta Hort. 663, 357–362.Google Scholar
  151. Lawrens, F., Durel, C.E., and Lascostes, M. (2004). Molecular characterization of French local apple cultivars using SSRs. XIth Eucarpia Symposium on Fruit Breed & Genetics. F. Laurens and K. Evans (eds.). Acta Hort. 663: 639–642.Google Scholar
  152. Lawson, D.M., Hemmat, M., and Weeden, N.F. (1995). The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. J. Am. Soc. Hort. Sci. 120: 532–537.Google Scholar
  153. Le Lezec, M., Babin, J., Belouin, A. (1996). Variétés inscrites an catalogue. L’Arboriculture Fruitiére, 496: 25–32.Google Scholar
  154. Lea, A. (1990). Amarganess and astringency: the procyanidins of fermented apple ciders. In: R. Rouseff (ed.), Amarganess in Foods and Beverages. Elsevier, Amsterdam, pp.123–143.Google Scholar
  155. Lespinasse, Y. (1992). Le Pommier In: A. Gallais and H. Bannerot (eds.), Amélioration des espèces végétales cultivées-objectifs et critères de sélection. INRA, Paris, pp. 579–594.Google Scholar
  156. Lespinasse, Y. (2001). D.A.R.E. Newsletter No. 4, INRA, Angers.Google Scholar
  157. Li, Y.H., Han, Z.H., and Xu, X. (2004). Segregation patterns of AFLP markers in F1 hybrids of a cross between tetraploid and diploid species in the genus Malus. Plant Breed. 123: 316–320.Google Scholar
  158. Liebhard, R., Gianfranceschi, L., Koller, B., Ryder, C.D., Tarchini, R., van De Weg, E., and Gessler, C. (2002). Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol. Breed. 10: 217–241.Google Scholar
  159. Liebhard, R., Koller, B., Patocchi, A., Kellerhals, M., Pfammatter, W., Jermini, M., and Gessler, C. (2003). Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Am. Phytopathol. Soc. 93(4): 493–501.Google Scholar
  160. Luby, J.J. (2003). Taxonomic classification and brief history. In: D.C. Ferree and I.J. Warrington (eds.), Apples: Botany, Production and Uses. CAB International, Wallington, Oxford, UK, pp. 1–14.Google Scholar
  161. Maggioni, L., Janes, R., Hayes, A., Swinburne, T., and Lipman, E. (1997). Report of a working group on Malus/Pyrus. First meeting, 15–17 May. Dublin, Ireland. IPGRI, Roma.Google Scholar
  162. Maliepaard, C., Alston, F.H., van Arkel, G., Brown, L.M., Chevreau, E., Dunemann, F., Evans, K.M., Gardiner, S., Guilford, P., van Heusden, A.W., Janse, J., Laurens, F., Lynn, J.R., Manganaris, A.G., den Nijs, A.P.M., Periam, N., Rikkerink, E., Roche, P., Ryder, C., Sansavini, S., Schmidt, H., Tartarini, S., Verhaegh, J.J., Vrielink-van Ginkel, M., and King, G.J. (1998). Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97: 60–73.Google Scholar
  163. Manganaris, A.G. (1989). Isoenzymes as genetic markers in apple breeding. PhD Thesis, University of London, 430 pp.Google Scholar
  164. Manganaris, A.G., and Alston, F.H. (1987). Inheritance and linkage relationships of glutamate oxaloacetate transaminase isoenzymes in apple. I. The gene Got-l, a marker for the S incompatibility locus. Theor. Appl. Genet. 74: 154–161.Google Scholar
  165. Manganaris, A.G., and Alston, F.H. (1988a). Inheritance and linkage relationships of glutamate oxaloacetate transaminase in apple 2. The genes GOT-2 and GOT-4. Theor. Appl. Genet. 76: 449–454.Google Scholar
  166. Manganaris, A.G., and Alston, F.H. (1988b). The acid phosphatase gene ACP-1 and its linkage with the endopeptidase gene ENP-1 and the pale green lethal gene l in apple. Acta Hort. 224: 177–184.Google Scholar
  167. Manganaris, A.G., and Alston, F.H. (1992a). Genetics of esterase isoenzymes in Malus. Theor. Appl. Genet. 83: 467–475.Google Scholar
  168. Manganaris, A.G., and Alston, F.H. (1992b). Genetics of leucine aminopeptidase in apple. Theor. Appl. Genet. 83: 345–352.Google Scholar
  169. Manganaris, A.G., and Alston, F.H. (1992c). Inheritance and linkage relationships of peroxidase isoenzymes in apple. Theor. Appl. Genet. 83: 392–399.Google Scholar
  170. Manganaris, A.G., Alston, F.H., Weeden, N.F., Aldwinckle, H.S., Gustafson, H.L., and Brown, S.K. (1994). Isozyme Locus Pgm-1 is tightly linked to a gene (Vf) for scab resistance in apple. J. Am. Soc. Hort. Sci. 119(6): 1286–1288.Google Scholar
  171. MAPA. (1990). Anuario de estadística agraria. Ministerio de Agricultura, Pesca y Alimentación, 678p. ISBN: 84-7479-274-6.Google Scholar
  172. Marini, R.P., Barden, J.A., Cline, J.A., Perry, R.L., and Robinson, T. (2002). Effect of apple rootstocks on average ‘Gala’ fruit weight at four locations after adjusting for crop load. J. Am. Soc. Hort. Sci. 127: 749–753.Google Scholar
  173. Marinoni, D., Akkak, A., Bounous, G., Edwards, K.J., and Botta, R. (2003). Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol. Breed. 11:127–136.Google Scholar
  174. Markussen, T., Kruger, J., Schmidt, H., and Dunemann, F. (1995). Identification of PCR-based markers linked to the powdery mildew resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breed. 114: 530–534.Google Scholar
  175. Masseron, A. (1989). Les porte-greffe pommier, poirier et nashi. CTIFL, pp. 112–174.Google Scholar
  176. Matityahu, A., Stern, R.A., Schjneider, D., and Goldway, M. (2005). Molecular identification of a New apple S-RNase--S29--cloned from "Anna", a low-chilling-requirement cultivar. Hortscience. 40(3): 850–851.Google Scholar
  177. Menendez, R.A., Larsen, F.E., and Fritts, R. (1986a). Fingerprinting apple cultivars by electrophoretic isozyme banding patterns. J. Environ. Hort. 4(3): 101–107.Google Scholar
  178. Menendez, R.A., Larsen, F.E., and Fritts, R. (1986b). Identification of apple rootstock cultivars by isozyme analysis. J. Am. Soc. Hort. Sci. 111(6): 933–937.Google Scholar
  179. Morgan, J., and Richards, A. (1993). The Book of Apples. Ebury Press, London, 304 pp. ISBN: 0-09-177759-3.Google Scholar
  180. Moss, D.W. (1982). Alkaline phosphatase isoenzymes. Clin. Chem. 28: 2007–2016.PubMedGoogle Scholar
  181. Mowry, J.B., and Dayton, D.F. (1964). Inheritance of susceptibility to apple blotch. J. Hered. 55: 129–132.Google Scholar
  182. Noiton, D.A.M., and Alspach, P.A. (1996). Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J. Am. Soc. Hort. Sci. 121(5): 773–782.Google Scholar
  183. Norelli, J.L., Holleran, H., Johnson, W., and Robinson, T. (2003a). Resistance pf Geneva and other apple rootstocks to Erwinia amylovora. Plant Dis. 87: 26–32.Google Scholar
  184. Norelli, J.L., Jones, A.L., and Aldwinckle, H.S. (2003b). Fire blight management in the 21st century: using new technologies that enhance host resistance in apple. Plant Dis. 87: 756–765.Google Scholar
  185. Nybom, N. (1959). On the inheritance of acidity in cultivated apples. Hereditas. 45: 332–350.Google Scholar
  186. Oraguzie, N.C., Iwanami, H., Soejima, J., Harada, T., and Hall, A. (2004). Inheritance of the Md-ACS1gene and its relationship to fruit softening in apple (Malus x domestica Borkh.). Theor. Appl. Genet. 108: 1526–1533.PubMedGoogle Scholar
  187. Oraguzie, N.C., Yamamoto, T., Soejima, J., Suzuki, T., and De Silva, H.N. (2005). DNA fingerprinting of apple (Malus spp.) rootstocks using Simple Sequence Repeats. Plant Breed. 124: 197–202.Google Scholar
  188. Orton, V. (1995). The American Cider Book. North Point Press edition, New York, 136 pp.Google Scholar
  189. Patocchi, A., Bigler, B., Koller, B., Kellerhals, M., and Gessler, C. (2004). Vr2: a new apple scab resistance gene. Theor. Appl. Genet. 109: 1087–1092.PubMedGoogle Scholar
  190. Patocchi, A., Gianfranceschi, L., and Gessler, C. (1999a). Towards the mapbased cloning of Vf: fine and physical mapping of the Vf region. Theor. Appl. Genet. 99: 1012–1017.Google Scholar
  191. Patocchi, A., Vinatzer, B.A., Gianfranceschi, L., Tartarini, S., Zhang, H.B., Sansavini, S., and Gessler, C. (1999b). Construction of a 550 kb BAC contig spanning the genomic region containing the apple resistance gene Vf. Mol. Genet. Genomics. 262: 884–891.Google Scholar
  192. Pereira-Lorenzo, S., Ascasíbar-Errasti, J., Ramos-Cabrer, A.M., and Piñeiro-Andión, J. (2002). Colección de cultivares autóctonos gallegos de manzano (Malus xdomestica) del Banco de Germoplasma de Mabegondo. Monografía INIA-Serie Agricultura.Google Scholar
  193. Pereira-Lorenzo, S., Ramos-Cabrer, A.M., Ascasíbar-Errasti, J., and Piñeiro-Andión, J. (2003). Analysis of apple germplasm in Northwestern Spain. J. Am. Soc. Hort. Sci. 128(1): 67–84.Google Scholar
  194. Pereira-Lorenzo, S., Ramos-Cabrer, A.M., and Díaz-Hernández, M.B. (2007). Evaluation of genetic identity and variation of local apple cultivars (Malus x domestica) from Spain using microsatellite markers. Genet. Resour. Crop Ev. 54: 405–420.Google Scholar
  195. Petropoulou, S.P. (1985). Temperature related factors as selection criteria in Apple breeding. PhD Thesis, University of London.Google Scholar
  196. Phipps, J.B., Robertson, K.R., Smith, P.G., and Rohrer, J.R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Can. J. Bot. 68: 2209–2269.Google Scholar
  197. Quinlan, J.D., and Tobutt, K.R. (1990). Manipulating fruit tree structure chemically and genetically for improved performance. HortScience. 25(1): 60–64.Google Scholar
  198. Ramos-Cabrer, A.M., Díaz-Hernández, M.B., and Pereira-Lorenzo, S. (2007). Use of microsatellites in the management of genetic resources of Spanish apple cultivars. J. Hort. Sci. Biotechnol. 82(2): 257–265.Google Scholar
  199. Rivas, D.M. (2004). La sidra asturiana. Picu Urriellu, Xixón, 221 pp.Google Scholar
  200. Robinson, J., Harris, S.A., and Juniper, B.J. (2001). Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst. Evol. 226: 35–58.Google Scholar
  201. Roche, P., Van Arkel, G., and Van Heusden, A.W. (1997). A specific PCRassay based on an RFLP marker closely linked to the Sd1 gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid in apple. Plant Breed. 116: 567–572.Google Scholar
  202. Royo, B.J., and Itoiz, R. (2004). Evaluation of the discriminance capacity of RAPD, isoenzymes and morphologic markers in apple (Malus x domestica Borkh.) and the congruence among classifications. Genet. Resour. Crop Ev. 51: 153–160.Google Scholar
  203. Ryugo, K. (1988). Fruit Culture. John Wiley & Sons, New York, 344p.Google Scholar
  204. Sadamori, S., Haniuda, T., Tsuchiya, S., and Yoshida, Y. (1964). Studies on aberrant leaf in apple, 1: observations on the frequency of aberrant leaf in apples and their seedlings. Bulletin of the Horticultural Research Station, Morioka, Japan, Series C, No. 2, pp. 1–7.Google Scholar
  205. Sampson, D.R., and Cameron, R.F. (1965). Inheritance of bronze foliage, extra petals and pendulous habit in ornamental crab apples. Proc. Am. Soc. Hort. Sci. 96: 717–722.Google Scholar
  206. Sandanayaka, W.R.M., Bus, V.G.M, Connolly, P., and Newman, R. (2003). Characteristics associated with wooly apple aphid resistance, Eriosoma lanigerum, of three apple rootstocks. Entomologia Experimentalis et Applicata. 109: 63–72.Google Scholar
  207. Sandskar, B., and Gustafsson, M. (2004). Classification of apple scab resistance in two assortment orchards. Genet. Resour. Crop Ev. 51: 197–203.Google Scholar
  208. Schmidt, M. (1938). Venturia inaequalis (Cooke) Aderh. VIII. Weitere Untersuchungen zur Züchtung schorfwiderstandsfähiger Apfelsorten. Züchter 10: 280–291.Google Scholar
  209. Shupert, D., Smith, A.P., Janick, J., Goldsbrough, P.B., and Hirst, P.M. (2004). Segregation of scab resistance in three apple populations: molecular marker and phenotypic. HortScience. 39(6): 1183–1184.Google Scholar
  210. Smithies, O. (1955). Zone electrophoresis in starchgels: group variation in the serum proteins of normal human adults. Biochem. J. 61: 629–641.PubMedGoogle Scholar
  211. Smock, R.M., and Neubert, A.M. (1950). Apples and Apple Products. Interscience Publishers, INC, New York.Google Scholar
  212. Soumelidou, K., Battey, N.H., John, P., and Barnett, J.R. (1994). The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann Bot. 74: 605–611.Google Scholar
  213. Stankiewicz-Kosyl, M., Pitera, E., and Gawronski, S.W. (2005). Mapping QTL involved in powdery mildew resistance of the apple clone U 211. Plant Breed. 124: 63–66.Google Scholar
  214. Sung, S.K., and An, G. (1997). Molecular cloning and characterization of a MADS-box cDNA clone of the Fuji apple. Plant Cell Physiol. 38: 484–489.PubMedGoogle Scholar
  215. Sung, S.K., Yu, G.H., and An, G.H. (1999). Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol. 120: 969–978.PubMedGoogle Scholar
  216. Sung, S.K., Yu, G.H., Nam, J., Jeong, D.H., and An, G.H. (2000). Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. 210: 519–528.PubMedGoogle Scholar
  217. Tang, X., and Zhang, W. (1992). Studies on pre-selection of dwarf apple seedlings by starch gel electrophoresis. Acta Hort. 317: 29–34.Google Scholar
  218. Tartarini, S., Gianfranceschi, L., Sansavini, S., and Gessler, C. (1999). Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed. 118(2): 183–186.Google Scholar
  219. Tartarini, S., Negri, P., and Sansavini, S. (1997). Il miglioramento genetico per la resistenza alle aversità biotiche del melo: il ruolo dei marcatori nella selezione assistita. Riv. Frutticoltura. 1: 63–66.Google Scholar
  220. Thompson, J.M., and Taylor, L. (1971). Genetic susceptibility to Glomerella leaf blotch in apple. J. Hered. 62: 303–306.Google Scholar
  221. Tignon, M., Kettmann, R., and Watillon, B. (2000). AFLP: use for the identification of apple cultivars and mutants. Acta Hort. 521: 219–226.Google Scholar
  222. Tignon, M., Lateur, M., Kettmann, R., and Watillon, B. (2001a). Distinction between closely related apple cultivars of the belle-fleur family using RFLP and AFLP markers. Acta Hort. 546: 509–513.Google Scholar
  223. Tignon, M., Watillon, B., and Kettmann, R. (2001b). Identification of copia-like retrotransportable element by apple. Acta Hort. 546: 515–520.Google Scholar
  224. Tobutt, K.R. (1985). Breeding columnar apples at East Malling. Acta Hort. 159: 63–68.Google Scholar
  225. Tobutt, K.R. (1994). Combining apetalous parthenocarpy with columnar growth habit in apple. Euphytica. 77: 51–54.Google Scholar
  226. Tobutt, K.R., Boskovic, R., and Roche, P. (2000). Incompatibility and resistance to woolly apple aphid in apple. Plant Breed. 119: 65–69.Google Scholar
  227. Torres, A.M. (1989). Isozyme analysis of tree fruits. In: D.E. Soltis and P.S. Soltis (ed.), Isozymes in Plant Biology. Chapman and Hall, London, pp. 192–205.Google Scholar
  228. Triloff, P. (2006). Das Laub-Saugen: ein neues Werkzeug in der modernen Schorfbekämpfung? Obstbau. 30: 69–73.Google Scholar
  229. Tubbs, F.R. (1973). Research fields in the interaction of rootstocks and scions in woody perennials. Hort. Abst. 43: 247–253, 325–335.Google Scholar
  230. UPOV. (1974). Draft guidelines for the conduct of test for distinctness, homogeneity and stability (APPLE). International Union for the Protection of new varieties of plants (UPOV), 23 pp.Google Scholar
  231. Ur-Rahman, H., James, D.J., Hadonou, A.M., and Caligari, P.D.S. (1997). The use of RAPD for verifying the apomictic status of seedlings of Malus species. Theor. Appl. Genet. 95: 1080–1083.Google Scholar
  232. USDA, NRCS. (2006). The plants database National Plant Data Center, Baton Rouge, LA 70874-4490 USA [en línea]. Disponible en http://plants.usda.gov [consulta 9 enero 2006].
  233. Van der Linden, C.G., Vosman, B., and Smulders, M.J.M. (2002). Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. J. Exp. Bot. 53: 1025–1036.PubMedGoogle Scholar
  234. Vavilov, N. (1951). Estudios sobre el origen de las plantas cultivadas. ACME Agency, Buenos Aires, 147 pp.Google Scholar
  235. Vinatzer, B.A., Patocchi, A., Tartarini, S., Gianfranceschi, L., Sansavini, S., and Gessler, C. (2004). Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab resistant accessions in Malus germplasm. Plant Breed. 123: 321–326.Google Scholar
  236. Volk, G.M., Reilley, A., Henk, A.D., Forsline, P.L., Aldwinckle, H.S, and Richards, C.M. (2005). Ex situ conservation of vegetatively-propagated species: development of a seed-based core collection for Malus sieversii. J. Am. Soc. Hort. Sci. 130: 203–210.Google Scholar
  237. Wagner, I., Schmitt, H.P., Maurer, W, and Tabel, U. (2004). Isoenzyme polymorphism and genetic structure of Malus sylvestris (L.) Mill. Native in western areas of Germany with respect to Malus xdomestica Borkh. XIth Eucarpia Symposium on Fruit Breed & Genetics. F. Laurens and K. Evans (eds.). Acta Hort. 663: 545–550.Google Scholar
  238. Wakasa, Y., Ishikawa, R., Niizeki, M., Harada, T., Jin, S., Senda, M., and Akada, S. (2003). Majin: A Miniature DNA element associated with the genomes of pome fruit trees. HortScience. 38: 17–20.Google Scholar
  239. Watada, A.E., Abbott, J.A., Hardenburg, R.E., and Lusby, W. (1981). Relationships of apple sensory attributes to headspace volatiles, soluble solids and titratable acids. J. Amer. Soc. Hort. Sci. 106: 130–132.Google Scholar
  240. Watillon, B., Kettmann, R., Boxus, P., and Burny, A. (1997). Knotted1-like homeobox genes are expressed during apple trees (Malus domestica [L.] Borkh) growth and development. Plant Mol. Biol. 33: 757–763.PubMedGoogle Scholar
  241. Way, R.D., Aldwinckle, H.S., Lamb, R.C., Rejman, A., Sansavini, S., Shen, T., Watkins, R., Westwood, M.N., and Toshida, Y. (1990a). Apples (Malus). In: Genetic Resources of Temperate Fruits and Nut Crops I. Netherlands, ISHS. 488p.Google Scholar
  242. Way, R.D., Aldwinckle, H.S., Lamb, R.C., Rejman, A., Sansavini, S., Shen, T., Watkins, R., Westwood, M.N., and Toshida, Y. (1990b). Apples (Malus). Acta Hort. 290: 3–62.Google Scholar
  243. Way, R.D., and McLellan, M.R. (1989). Apple cultivars for processing. In: D.L. Downing (ed.), Processed Apple Products. Avi, Van Nostrand Reinhold, New York, pp. 1–29.Google Scholar
  244. Webster, A.D., and Wertheim, S.J. (2003). Apple rootstocks. In: D. Ferree and I. Warrington (eds.), Apples: Botany, Production and Uses. CAB International, Wallingford, UK, pp. 91–124.Google Scholar
  245. Weeden, N.F., and Lamb, R.C. (1985). Identification of apple cultivars by isozyme phenotypes. J. Amer. Soc. Hort. Sci. 110(4): 509–515.Google Scholar
  246. Weeden, N.F., and Lamb, R.C. (1987). Genetics and linkage analysis of 19 isozyme loci in apple. J. Am. Soc. Hort. Sci. 112: 865–872.Google Scholar
  247. Weibel, F., Tamm, L. and Kellerhals, M. (1997). Resistenzeinbrüche bei schorfresistenten Apfelsorten. Bio Aktuell. 8: 6Google Scholar
  248. Wertheim, S.J. (1998). Apple rootstocks. In: S.J. Wertheim (ed.), Rootstock Guide. Fruit Research Station, Wilhelminadorp, pp. 19–60.Google Scholar
  249. Wilcox, A.N., and Angelo, E. (1936). Apple breeding studies, 1: fruit colour. Proc. Am. Soc. Hort. Sci. 33: 108–113.Google Scholar
  250. Xu, M.L., and Korban, S.S. (2000). Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor. Appl. Gen. 101: 844–851.Google Scholar
  251. Xu, M., and Korban, S.S. (2002). AFLP-derived SCARs facilitate construction of a sequence-ready BAC contig of a 1.1 Mb segment that spans the Vf locus in the apple genome. Plant Mol. Biol. 50: 803–818.PubMedGoogle Scholar
  252. Yao, J.-L., Dong,Y.-H., Kvarnheden, A., and Morris, B. (1999). Seven MADS-box genes in apple are expressed in different parts of the fruit. J. Am. Soc. Hort. Sci. 124: 8–13.Google Scholar
  253. Zane, L., Bargelloni, L., and Patarnello, T. (2002) Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1–16.PubMedGoogle Scholar
  254. Zhou, Z.Q. (1999). The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilisation. Genet. Resour. Crop Ev. 46: 599–609.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Pereira-Lorenzo
    • 1
  • A.M. Ramos-Cabrer
  • M. Fischer
  1. 1.Escola Politécnica Superior, Departamento Producción VegetalUniversidad de Santiago de CompostelaCampus de Lugo

Personalised recommendations