Advertisement

Almond (Prunus dulcis) Breeding

  • Thomas M. Gradziel
Chapter

Introduction

An adaptation to harsh climates combined with an ability to develop a deep and extensive root system has allowed cultivated and wild almond to exploit a wide variety of ecological niches in its ancestral range in central Asia extending from the Takla Makan desert in western China to the Mediterranean (Kester et al. 1991; Ladizinsky 1999). Almond is also well adapted to mild winter and dry, hot summer conditions due to its low chilling requirement for early bloom, rapid early shoot growth, and high tolerance to summer heat and drought. It is the earliest temperate tree crop to bloom, which limits production to areas relatively free from spring frosts. Because almond is self-sterile, it requires cross-pollination that further acts to promote genetic variability and, therefore, adaptability to new environments.

Commercial production is often limited by the need for cross-pollination in orchard systems, particularly in areas where spring storms can reduce both flowering...

Keywords

Crown Gall Almond Cultivar Bitter Almond Wild Almond Almond Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdallah, A., M.H. Ahumada, and T.M. Gradziel (1998) Oil content and fatty acid composition of almond kernels from different genotypes and California production regions. J Am Soc Hort Sci 123:1029–1033.Google Scholar
  2. Almond Board of California (2005) Almond Almanac. Almond Board of California. Modesto.Google Scholar
  3. Arteaga, N. and R. Socias i Company (2002) Heritability of fruit and kernel traits in almond. Acta Hort 591:269–274.Google Scholar
  4. Arulsekar, S., D.E. Parfitt, and D.E. Kester (1989) Comparison of isozyme variability in peach and almond cultivars. J Hered 77:272–274.Google Scholar
  5. Asai, W.K., W.C. Micke, D.E. Kester, and D. Rough (1996) The evaluation and selection of current varieties. In: W.C. Micke (ed.) Almond Production Manual. Univ. California, Publ. 3364, pp. 52–60.Google Scholar
  6. Bacarella, A., G. Chironi, and G. Barbera (1991) Aspetti tecnici, economici e di mercato del mandorlo in Sicilia. Quarderni di Ricerca di Sperimentazione (Palermo, Sicily) 40: 1–191.Google Scholar
  7. Ballester J., R. Boškovic, I. Batlle, P. Arús, F. Vargas, and M.C. de Vicente (1998) Location of the self-incompatibility gene on the almond linkage map. Plant Breed 117: 69–72.CrossRefGoogle Scholar
  8. Ballester J., R. Socias i Company, P. Arús, and M.C. de Vicente (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120: 268–270.CrossRefGoogle Scholar
  9. Barbera, G., L. Di Marco, T. La Mantia, and M. Schirra (1994) Effect of rootstock on productive and qualitative response of two almond varieties. Acta Hort 373:129–134.Google Scholar
  10. Barckley, K.K., S.L. Uratsu, T.M. Gradziel, and A.M. Dandekar (2006) Multidimensional analysis of S-alleles from cross-incompatible groups of California almond cultivars. J Amer Soc Hort Sci 131:632–636.Google Scholar
  11. Bartolozzi F., M.L. Warburton, S. Arulsekar, and T.M. Gradziel (1998) Genetic characterization and relatedness among California almond cultivars and breeding lines detected by randomly amplified polymorphic DNA (RAPD) analysis. J Am Soc Hort Sci 123:381–387.Google Scholar
  12. Boškovic R, K.R. Tobutt, I. Batlle, H. Duval, P. Martínez-Gómez, and T.M. Gradziel (2003) Stylar ribonucleases in almond: correlation with and prediction of self-incompatibility genotypes. Plant Breed 122:70–76.CrossRefGoogle Scholar
  13. Brooks, R.M. and H.P. Olmo (1997) The Brooks and Olmo register of fruit and nut varieties, 3rd ed. ASHS Press, Alexandria, VA.Google Scholar
  14. Browicz, K (1969) Amygdalus. In: K.H. Rechinger (eds.). Flora Iranica. 66:166–68.Google Scholar
  15. Browicz, K. and D. Zohary (1996) The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Reso Crop Evol 43:229–247.CrossRefGoogle Scholar
  16. Campalans A., M. Pages, and R. Messeguer (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol 21:633–643.PubMedCrossRefGoogle Scholar
  17. Certal A.C., R.B. Almeida, R. Boškovic, M.M. Oliveira, and J.A. Feijo (2002) Structural and molecular analysis of self-incompatibility in almond (Prunus dulcis). Sex Plant Reprod 15:13–20.CrossRefGoogle Scholar
  18. Channuntapipat, C., M. Wirthensohn, S.A. Ramesh, I. Batlle, P. Arús, M. Sedgley, and G. Collins (2003) Identification of incompatibility genotypes in almond using specific primers based on the introns of the S-alleles. Plant Breed 122:164–168.CrossRefGoogle Scholar
  19. Corredor E, M. Román, E. García, E. Perera, P. Arús, and T. Naranjo (2004) Physical mapping of rDNA genes to establish the karyotype of almond. Ann Appl Biol 144:219–222.CrossRefGoogle Scholar
  20. Denisov, V.P. (1988) Almond genetic resources in the USSR and their use in production and breeding. Acta Hort 224:299–306.Google Scholar
  21. Dicenta, F. and J.E. García (1993a) Inheritance of self-compatibility in almond. Heredity 70:313–317.Google Scholar
  22. Dicenta, F. and J.E. García (1993b) Inheritance of kernel flavour in almond. Heredity 70:313–317.Google Scholar
  23. Dicenta, F., J.E. García, and E. Carbonell (1993a) Heritability of flowering, productivity and maturity in almond. J Horti Sci 68:113–120.Google Scholar
  24. Dicenta, F., J.E. García, and E. Carbonell (1993b) Heritability of fruit characters in almond. J Horti Sci 68:121–126.Google Scholar
  25. Dicenta, F., P. Martínez-Gómez, E. Martinez-Pato, and T. Gradziel (2003) Screening for Aspergillus flavus resistance in almond. HortScience 38:266–268.Google Scholar
  26. DiGrandi-Hoffman, G., R. Thorp, G. Lopez, and D. Eisikowitch (1994) Describing the progression of almond bloom using accumulated heat units. J Appl Ecol 82:1–17.Google Scholar
  27. Dirlewanger, E., P. Cosson, W. Howad, G. Capdeville, N. Bosselut, M. Claverie, R. Voisin, C. Poizat, B. Lafargue, O. Baron,, F. Laigret, M. Kleinhentz,, P. Arús, and D. Esmenjaud (2004) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – Location of root-knot nematode resistance genes. Theor Appl Genet 109:827–832.PubMedCrossRefGoogle Scholar
  28. Felipe, A.J. (1975) F1 hybrids of peach and almond trees as a model for both species. Agricultura 44:661–663 (Spanish).Google Scholar
  29. Felipe, A.J. and R. Socias i Company (1992) Almond germplasm. HortScience 27:718,863.Google Scholar
  30. Felipe, A.J. (2000) El Almendro, I. El material vegetal. University of Zaragoza, Spain.Google Scholar
  31. Fraser, G.E., H.W. Bennett, K.B. Jaceldo, and J. Sabate (2002) Effect on body weight of a free 76 kilojoule (320 calorie) daily supplement of almonds for six months. J Am Coll Nutr 21:275–283.PubMedGoogle Scholar
  32. Fulgoni, V.L., M. Abbey, P. Davis, D. Jenkins, J. Lovejoy, M. Most, J. Sabate, and G. Spiller (2002) Almonds lower blood cholesterol and LDL-cholesterol but not HDL-cholesterol in human subjects: results of a meta-analysis. FASEB J 16:A981-A982.Google Scholar
  33. García-López, C., N. Grané-Teruel, V. Berenguer-Navarro, J.E. García-García, and M.L. Martín-Carratalá (1996) Major fatty acid composition of 19 almond cultivars of different origins: a chemometric approach. J Agr Food Chem 44:1751–1755.CrossRefGoogle Scholar
  34. García-Mas, J., R. Messeguer, P. Arús, and P. Puigdomènech (1996) Accumulation of specific mRNAs during almond fruit development. Plant Sci 113:185–192.CrossRefGoogle Scholar
  35. Godini, A (2000) About the possible relationship between Amygdalus webbii Spach and Amygdalus communis L. Nucis 9:17–19.Google Scholar
  36. Godini, A. (2002) Almond fruitfulness and role of self-fertility. Acta Hort 591:191–203.Google Scholar
  37. Gradziel, T.M. and D.E. Kester (1994) Breeding for resistance to Aspergillus flavus in almond. Acta Hort 373:111–117.Google Scholar
  38. Gradziel, T.M. and D. Wang (1994) Susceptibility of California almond cultivars to aflatoxigenic Aspergillus flavus. HortScience 29:33–35.Google Scholar
  39. Gradziel T.M. and D.E. Kester (1998) Breeding for self-fertility in California almond cultivars. Acta Hort 470:109–117.Google Scholar
  40. Gradziel, T.M. and S.A. Weinbaum (1999) High relative humidity reduces anther dehiscence in apricot, peach and almond. HortScience 34:322–325.Google Scholar
  41. Gradziel, T.M., N. Mahoney, and A. Abdallah (2000) Aflatoxin production among almond genotypes is not related to either kernel composition or Aspergillus flavus growth rate. HortScience 34:937–939.Google Scholar
  42. Gradziel, T.M., P. Martínez-Gómez, and A.M. Dandekar (2001a) The use of S-allele specific PCR analysis to improve breeding efficiency for self-fertility in almond. HortScience 36:440–440.Google Scholar
  43. Gradziel, T.M., P. Martínez-Gómez, F. Dicenta, and D.E. Kester (2001b) The utilization of related almond species for almond variety improvement. J Am Pomol Soc 55:100–109.Google Scholar
  44. Gradziel, T.M. and P. Martínez-Gómez (2002) Shell seal breakdown in almond is associated with the site of secondary ovule abortion. J Am Soc Hort Sci 127:69–74.Google Scholar
  45. Gradziel, T.M., D.E. Kester, and P. Martínez-Gómez (2002a) A development based classification for shoot form in almond. J Amer Pom Soc 2002:1–12.Google Scholar
  46. Gradziel, T.M., P. Martínez-Gómez, A. Dandekar, S. Uratsu, and E. Ortega (2002b) Multiple genetic factors control self-fertility in almond. Acta Hort 591:221–227.Google Scholar
  47. Gradziel, T.M. (2003a) Almond Species as Sources of New Genes for Peach Improvement. Acta Hort 592:81–88.Google Scholar
  48. Gradziel, T.M. (2003b) Interspecific hybridizations and subsequent gene introgression within Prunus subgenus. Acta Hort 622:249–255Google Scholar
  49. Grant-Downton, R.T. and H.G. Dickinson (2006) Epigenetics and its implications for plant biology 2. The ‘Epigenetic Epiphany’ epigenetics, evolution and beyond. Ann Bot 97:11–27.PubMedCrossRefGoogle Scholar
  50. Grasselly, C. (1972) L'Amandier; caracteres morphologiques et physiologiques des varietes, modalite de leurs transmissions chez les hybrides de premiere generation. University of Bordeaux.Google Scholar
  51. Grasselly, C. (1978) Observations sur l'utilization d'un mutant l'Amandier a' floraison tardize dans un programme d'hybridizaiton. Ann Amelior Plantes 28:685–695.Google Scholar
  52. Grasselly, C. and P. Crossa-Raynaud (1980) L‘amandier. G.P. Maisonneuve et Larose.Paris, XII 446 pp.Google Scholar
  53. Gülcan, R. (1985) Almond descriptors (revised). IBPGR, Rome.Google Scholar
  54. Hartmann, H.T., D.E. Kester, R.L. Geneve, and F.T. Davies, Jr (2002) Hartmann and Kester's Plant Propagation: Principles and Practices. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  55. Hauagge, R., D.E. Kester, and R.A. Asay (1987) Isozyme variation among California almond cultivars: inheritance. J Am Soc Hort Sci 112:687–693.Google Scholar
  56. IPM Manual Group of U.C. Davis (1985) Integrated pest management for almonds. Pub. 3308. University of California Division of Agriculture and Natural Resources, Berkeley.Google Scholar
  57. Jáuregui, B., M.C. de Vicente, R. Messeguer, A. Felipe, A. Bonnet, G. Salesses, and P. Arús (2001) A reciprocal translocation between 'Garfi' almond and 'Nemared' peach. Theor Appl Genet 102:1169–1176.CrossRefGoogle Scholar
  58. Kendall, C.W., D.J. Jenkins, A. Marchie, Y. Ren, P.R. Ellis, and K.G. Lapsley (2003) Energy availability from almonds: implications for weight loss and cardiovascular health. A randomized controlled dose-response trial. FASEB J 17:A339.Google Scholar
  59. Kester, D.E. and T.M. Gradziel (1996) Almonds (Prunus). In: J.N. Moore and J. Janick (eds.). Fruit Breeding. Wiley, New York, pp. 1–97.Google Scholar
  60. Kester, D.E., T.M. Gradziel, and C. Grasselly (1991) Almonds (Prunus). In: J.N. Moore and H.J. Ballington (eds.). Genetic Resources of Temperate Fruit and Nut Crops. International Society for Horticultural Science, The Netherlands, pp. 701–758.Google Scholar
  61. Kester, D.E., P.E. Hansche, W. Beres, and R.N. Asay (1977) Variance components and heritability of nut and kernel traits in almond. J Amer Soc Hort Sci 102:264–266.Google Scholar
  62. Kester, D.E. (1970) Graft incompatibility of almond seedling populations to Marianna 2624 plum. HortScience 5:349 (Abstr.).Google Scholar
  63. Kester, D.E. and C. Grasselly (1987) Almond rootstocks. In: R.C. Rom and R.F. Carlson (eds.). Rootstocks for Fruit Crops. John Wiley, New York, pp.265 93.Google Scholar
  64. Kester, D.E. and T.M. Gradziel (1990) Growth habit trait nomenclature in almond and peach phenotypes. HortScience 25:72 (Abstr.).Google Scholar
  65. Kester, D.E., C.J. Hansen, and C. Panetsos (1965) Effect of scion and interstock variety on incompatibility of almond on Marianna 2624 rootstocks. Proc Am Soc Hort Sci 86:169–177.Google Scholar
  66. Kester, D.E., K.A. Shackel, W.C. Micke, M, Viveros, and T.M. Gradziel (2004) Noninfectious bud failure in ‘Carmel’ almond: I. Pattern of development in vegetative progeny trees. J Amer Soc Hort Sci 127:244–249.Google Scholar
  67. Kester, D.E., A. Kader, and S. Cunningham (1993) Almonds. Encyclopedia of Food Science. Academic Press Limited, London, pp. 44–55.Google Scholar
  68. Kodad, O., M.S. Gracia Gómez, and R. Socias i Company (2005) Fatty acid composition as evaluation criterion for kernel quality in almond breeding. Acta Hort 663:301–304.Google Scholar
  69. Kodad, O., R. Socias i Company, M.S. Prats, and M.C. López Ortiz (2006) Variability in tocopherol concentrations in almond oil and its use as a selection criterion in almond breeding. J Hort Sci Biotechnol 81:501–507.Google Scholar
  70. Kumar, K. and D.K. Uppal (1990) Performance of almond (Prunus amygdalus Batsch) selections in the subtropics. Acta Hort 279:199–207.Google Scholar
  71. Ladizinsky, G. (1999) On the origin of almond. Gen Resour Crop Evol 46:143–147.CrossRefGoogle Scholar
  72. López, M, M. Mnejja, M. Rovira, G. Colins, F.J. Vargas, P. Arús, and I. Batlle (2004) Self-incompatibility genotypes in almond re-evaluated by PCR, stylar ribonucleases, sequencing analysis and controlled pollinations. Theor Appl Genet 109:954–964.PubMedCrossRefGoogle Scholar
  73. Lovejoy, J.C., M.M. Most, M. Lefevre, F.L. Greenway, and J.C. Rood (2002) Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr 76:1000–1006.PubMedGoogle Scholar
  74. Martínez-Gómez, P., S. Arulsekar, D. Potter, T.M. Gradziel (2003b) Relationships among peach and almond and related species as detected by SSR markers. J Amer Soc Hort Sci 128:667–671.Google Scholar
  75. Martínez-Gómez, P. and T.M. Gradziel (2003) Sexual polyembryony in almond. Sex Plant Reprod 16:135–139.CrossRefGoogle Scholar
  76. Martínez-Gómez, P., S. Arulsekar, D. Potter, and T.M. Gradziel (2003a) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322.Google Scholar
  77. Martínez-Gómez, P., G.O. Sozzi, R. Sánchez-Pérez, M. Rubio, and T.M. Gradziel (2003) New approaches to Prunus tree crop breeding. J Food Agr Env 1:52–63.Google Scholar
  78. Martínez-Gómez, P., R. Sánchez-Pérez, F. Dicenta, W. Howard, P. Arús, and T.M. Gradziel (2006) Almond. In: C. Kole (ed.). Genome Mapping and Molecular Breeding: Vol. 4, Fruits and Nuts, Chap. 11. Springer-Verlag, Heidelberg, Berlin, pp. 229–242.Google Scholar
  79. Martínez-Gómez, P., M. Rubio, F. Dicenta, and T.M. Gradziel (2004) Resistance to Plum Pox Virus (Dideron isolate RB3.30) in a group of California almonds and transfer of resistance to peach. J Amer Soc Hort Sci 129:544–548.Google Scholar
  80. Martínez-Gómez, P., R. Sánchez-Pérez, F. Dicenta, W. Howard, T.M. Gradziel (2006) Almond. In: Kole C (ed.). Genome Mapping & Molecular Breeding. Springer, Heidelberg, Berlin, New York, Tokyo.Google Scholar
  81. Martínez-Gómez, P., G.O. Sozi, R. Sánchez-Pérez, M. Rubio, T.M. Gradziel (2003). New approach to Prunus tree crop breeding. Food, Agric. & Envir. 1(1):52–63.Google Scholar
  82. Martins, M., R. Tenreiro, and M.M. Oliveira (2003) Genetic reladness of Portuguese almond cultivars assessed by RAPD and ISSR markers. Plant Cell Rep 22:71–78.PubMedCrossRefGoogle Scholar
  83. McHenry, M.V. and J. Kretsch (1987) Survey of nematodes associated with almond production in California. Plant Dis 71:71–73.CrossRefGoogle Scholar
  84. Micke, W.C. (1994) Almond Orchard Management. Univ. of Calif., Berkeley, Div. Agr. Sci. Publ. 3364.Google Scholar
  85. Monastra, F.A. F. Crisafulli, G. Marchese, R. Ondradu, R. Pavia, and L. Rivalta (1982) Monografia di cultivar di mandorlo. Istituto Sperimentale per la Frutticoltura, Roma.Google Scholar
  86. Niklasson, M. (ed.) (1989) The European almond catalogue. Alnarp, Nordic Gene Bank.Google Scholar
  87. Ogawa, J. and H. English (1991) Diseases of temperate zone tree fruit and nut crops. Univ. Calif. Div. Agr. Nat. Res. Publ. 3345.Google Scholar
  88. Polito, V. and W. C. Micke (1994) Bud development, pollination and fertilization. In: W.C. Micke (ed.). Almond Orchard Management. Univ. of Calif., Berkeley, Div. Agr. Sci. Publ. 3364.Google Scholar
  89. Rehder, A. (1940) Manual of Cultivated Trees and Shrubs. MacMillan, New York, 996 pp.Google Scholar
  90. Rehder, A. (1967). Manual of Cultivated Trees and Shrubs. 2nd. ed. Macmillan, New York.Google Scholar
  91. Rice, R.E., W.W. Barnett, and R.A. Van Steenwyk (1996) Insect and mite pests. In: W.C. Micke (ed.) Almond Production Manual. Univ. California, Publ. 3364, pp. 202–213.Google Scholar
  92. Rikhter, A.A. (1969) Ways and methods of almond breeding (in Russian). Tr Gos Nikit Bot Sad 43:81–94.Google Scholar
  93. Rom, R.C. and R.F. Carlson (1985) Rootstocks for Fruit Crops. John Wiley, New York.Google Scholar
  94. Rosengarten, F. Jr (1984) The Book of Edible Nuts. Walker and Company, New York.Google Scholar
  95. Sabate, J. and E. Haddad (2001) Almond-rich diets simultaneously improve plasma lipoproteins and alpha-tocopherol levels in men and women. Ann Nutr Metab 45:596.Google Scholar
  96. Sánchez-Pérez, R., F. Dicenta, and P. Martínez-Gómez (2004) Identification of S-alleles in almond using multiplex-PCR. Euphytica 138:263–269.CrossRefGoogle Scholar
  97. Sathe S.K., S.S. Teuber, T.M. Gradziel, and K.H. Roux (2001) Electrophoretic and immunological analyses of almond genotypes and hybrids. J Agr Food Chem 49:2043–2052.CrossRefGoogle Scholar
  98. Saura-Calixto, F., M. Bauzá, F. Martínez de Toda, and A. Argamentería (1981) Amino acids, sugars, and inorganic elements in the sweet almond. J Agr Food Chem 29:509–511.CrossRefGoogle Scholar
  99. Saura-Calixto, F. and J. Cañellas (1982) Mineral composition of almond varieties (Prunus amygdalus). Z. Lebensm.-Unters Forsch. 174:129–131.CrossRefGoogle Scholar
  100. Schirra, M. (1997) Postharvest technology and utilization of almonds. Hort Rev 20:267–292.Google Scholar
  101. Socias i Company, R. (1990) Breeding self-compatible almonds. Plant Breed Rev 8:313–338.Google Scholar
  102. Socias i Company, R. (1998) Fruit tree genetics at a turning point: the almond example. Theor Appl Genet 96:588–601.CrossRefGoogle Scholar
  103. Socias i Company, R. (2002) The relationship of Prunus webbii and almond revisited. Nucis-Newsletter 11:17–19.Google Scholar
  104. Socias i Company, R. and A.J. Felipe (1988) Self-compatibility in almond: transmission and recent advances. Acta Hort 224: 307–317.Google Scholar
  105. Socias i Company, R., A.J. Felipe, and J. Gomez Aparisi (1999) A major gene for flowering time in almond. Plant Breed 118:443–448.CrossRefGoogle Scholar
  106. Socias i Company, R., O. Kodad, J.M. Alonso, and J.T.M. Gradziel (2007) Almond Quality: A Breeding Perspective. In J. Janick (ed.). Horticultural Reviews 33:1–33.Google Scholar
  107. Spiegel-Roy, P. and J. Kochba (1981) Inheritance of nut and kernel traits in almond (Prunus amygdalus Batsch). Euphytica 30:167–174.CrossRefGoogle Scholar
  108. Suelves M. and P. Puigdomenech (1998) Molecular cloning of the cDNA coding for the (R)-(+)-mandelonitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds. Planta 206:388–393.PubMedCrossRefGoogle Scholar
  109. Tabachnik, L. and D.E. Kester (1977) Shoot culture for almond and almond-peach hybrid clones in vitro. HortScience 12:545–547.Google Scholar
  110. Tamura, M., K. Ushijima, H. Sassa, H. Hirano, R. Tao, T.M. Gradziel, and A.M. Dandekar (2000) Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor Appl Genet 101:344–349.CrossRefGoogle Scholar
  111. Thorp, R. and G.M. Roper (1994) Bee management for almond pollination. In: W.C. Micke (ed.). Almond Orchard Management. Univ. of Calif., Berkeley, Div. Agr. Sci. Publ. 3364.Google Scholar
  112. Ushijima, K., H. Sassa, R. Tao, H. Yamane, A.M. Dandekar, T.M. Gradziel, and H. Hirano (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268.PubMedCrossRefGoogle Scholar
  113. Ushijima, K., H. Sassa, M. Kusaba, R. Tao, M. Tamura, T.M. Gradziel, A.M. Dandekar, and H. Hirano (2001) Characterization of the S-locus region of almond (Prunus dulcis): analysis of a somaclonal mutant and a cosmid conting for an S haplotype. Genetics 158:379–386.PubMedGoogle Scholar
  114. Ushijima, K., , H. Sassa, A.M. Dandekar, T.M. Gradziel, R. Tao, and H. Hirano (2003). Structural and transcriptional analysis of self-incompatibility (S) locus of almond (Prunus dulcis): identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15(3):771–781.PubMedCrossRefGoogle Scholar
  115. Uyemoto, J.K and S.A. Scott (1992) Important disease of Prunus caused by viruses and other graft transmissible pathogens in California and South Carolina. Plant Dis 76(1):5–11.CrossRefGoogle Scholar
  116. Vargas, F.J., M.A. Romero, and I. Batlle (2001) Kernel taste inheritance in almond. Options Méditerr 56:129–134.Google Scholar
  117. Vezvaei, A., T.W. Hancock, L.C. Giles, G.R. Clarke, and J.F. Jackson (1995) Inheritance and linkage of isozyme loci in almond. Theor Appl Genet 91:432–438.CrossRefGoogle Scholar
  118. Vezvaei, A. and J.F. Jackson (1996) Almond nut analysis. In: H.F. Linskens and J.F. Jackson (eds.). Modern Methods of Plant Analysis. Vol. 18. Fruit Analysis. Springer-Verlag, Berlin.Google Scholar
  119. Vlasic, A. (1976) La cultivazione del mandorlo in Jugoslavia. In: l'amandier. Options Mediterraneennes 32:75–77.Google Scholar
  120. Watkins, R. (1979) Cherry, plum, peach, apricot and almond. Prunus spp. In: N.W. Simmonds (ed.). Evolution of Crop Plants. Longman, London, pp. 242, 247.Google Scholar
  121. Woodroof, J.G. (1979) Tree nuts, production and processing products. Vol. III, 2nd ed. AVI Publ., Westport, CT.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations