Treatment Planning for Stereotactic Radiosurgery

  • David M. Shepard
  • Cedric Yu
  • Martin Murphy
  • Marc R. Bussière
  • Frank J. Bova


This chapter provides an introduction to treatment-planning procedures for stereotactic radiosurgery (SRS). The chapter begins with a brief history of SRS planning. Next, the basic steps followed in the development of an SRS treatment plan are described including imaging, contouring, selection of plan parameters, and evaluating treatment plan quality. The remainder of the chapter focuses on treatment planning for specific SRS delivery techniques including the Gamma Knife, linear accelerator-based SRS, CyberKnife, and proton radiosurgery.


Radiat Oncol Biol Phys Gamma Knife Stereotactic Radiosurgery Conformity Index Gamma Knife Radiosurgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganz JC. Gamma Knife Surgery, 2nd ed. New York: Springer-Verlag, 1997:205.Google Scholar
  2. 2.
    Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 1983; 46(9):797–803.CrossRefPubMedGoogle Scholar
  3. 3.
    Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand 1968; 134(8):585–595.PubMedGoogle Scholar
  4. 4.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 1951; 102(4):316–319.PubMedGoogle Scholar
  5. 5.
    Wagner TH. Optimal delivery techniques for intracranial stereotactic radiosurgery using circular and multileaf collimators. In: Nuclear and Radiological Engineering. Gainesville, FL: University of Florida, 2000.Google Scholar
  6. 6.
    Takeuchi H, Yoshida M, Kubota T, et al. Frameless stereotactic radiosurgery with mobile CT, mask immobilization and micro-multileaf collimators. Minim Invasive Neurosurg 2003; 46(2):82–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Ryken TC, Meeks SL, Pennington EC, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Radiat Oncol Biol Phys 2001; 51(4):1152–1158.PubMedGoogle Scholar
  8. 8.
    Murphy MJ, Cox RS. The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys 1996; 23(12):2043–2049.CrossRefPubMedGoogle Scholar
  9. 9.
    Murphy MJ, Chang SD, Gibbs IC, et al. Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys 2003; 55(5):1400–1408.PubMedGoogle Scholar
  10. 10.
    Kamath R, Ryken TC, Meeks SL, et al. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys 2005; 61(5):1467–1472.PubMedGoogle Scholar
  11. 11.
    Gerszten PC, Ozhasoglu C, Burton SA, et al. Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg 2003; 81(1–4):84–89.CrossRefPubMedGoogle Scholar
  12. 12.
    Bova FJ, Buatti JM, Friedman WA, et al. The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys 1997; 38(4):875–882.CrossRefPubMedGoogle Scholar
  13. 13.
    Meeks SL, Bova FJ, Wagner TH, et al. Image localization for frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2000; 46(5):1291–1299.PubMedGoogle Scholar
  14. 14.
    Buatti JM, Bova FJ, Friedman, et al. Preliminary experience with frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1998; 42(3):591–599.PubMedGoogle Scholar
  15. 15.
    Gehring MA, Mackie TR, Kubsad SS, et al. A three-dimensional volume visualization package applied to stereotactic radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 1991; 21(2):491–500.PubMedGoogle Scholar
  16. 16.
    Friedman WA, Bova FJ. The University of Florida radiosurgery system. Surg Neurol 1989; 32(5):334–342.CrossRefPubMedGoogle Scholar
  17. 17.
    Coy SR, Houdek PV. Radiosurgery treatment planning. Semin Radiat Oncol 1995; 5(3):213–219.CrossRefPubMedGoogle Scholar
  18. 18.
    Ferris MC, Lim J, Shepard DM. Radiosurgery treatment planning via nonlinear programming. Ann Operations Res 2003; 119:247–260.CrossRefGoogle Scholar
  19. 19.
    Ferris MC, Shepard DM. Optimization of Gamma Knife radiosurgery. In: Du Pardolas DZ, Wang J, eds. Discrete Mathematical Problems with Medical Applications. iProvidence, RI: AMS, 2000.Google Scholar
  20. 20.
    Flickinger JC, Lunsford LD, Wu A, et al. Treatment planning for gamma knife radiosurgery with multiple isocenters. Int J Radiat Oncol Biol Phys 1990; 18(6):1495–1501.PubMedGoogle Scholar
  21. 21.
    Luo L, Shu H, Yu W, et al. Optimizing computerized treatment planning for the Gamma Knife by source culling. Int J Radiat Oncol Biol Phys 1999; 45(5):1339–1346.CrossRefPubMedGoogle Scholar
  22. 22.
    Shepard DM, Ferris MC, Ove R, Ma L. Inverse treatment planning for Gamma Knife radiosurgery. Med Phys 2000; 27(12):2748–2756.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang P, Wu J, Dean D, et al. Plug pattern optimization for gamma knife radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 2003; 55(2):420–427.PubMedGoogle Scholar
  24. 24.
    Zhang P, Dean D, Metzger A, Sibata C. Optimization of Gamma knife treatment planning via guided evolutionary simulated annealing. Med Phys 2001; 28(8):1746–1752.CrossRefPubMedGoogle Scholar
  25. 25.
    Kubo HD, Pappas CT, Wilder RB. A comparison of arc-based and static mini-multileaf collimator-based radiosurgery treatment plans. Radiother Oncol 1997; 45(1):89–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Podgorsak EB, Pike GB, Olivier A, et al. Radiosurgery with high energy photon beams: a comparison among techniques. Int J Radiat Oncol Biol Phys 1989; 16(3):857–865.PubMedGoogle Scholar
  27. 27.
    Alheit H, Dornfeld S, Dawel M, et al. Patient position reproducibility in fractionated stereotactically guided conformal radiotherapy using the BrainLab mask system. Strahlenther Onkol 2001; 177(5):264–268.CrossRefPubMedGoogle Scholar
  28. 28.
    Bourland JD, McCollough KP. Static field conformal stereotactic radiosurgery: physical techniques. Int J Radiat Oncol Biol Phys 1994; 28(2):471–479.PubMedGoogle Scholar
  29. 29.
    Cardinale RM, Benedict SH, Wu Q, et al. A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys 1998; 42(2):431–436.PubMedGoogle Scholar
  30. 30.
    Grebe G, Pfaender M, Roll M, et al. Dynamic arc radiosurgery and radiotherapy: commissioning and verification of dose distributions. Int J Radiat Oncol Biol Phys 2001; 49(5):1451–1460.PubMedGoogle Scholar
  31. 31.
    Hamilton RJ, Kuchnir FT, Sweeney SJ, et al. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1995; 33(5):1221–1228.PubMedGoogle Scholar
  32. 32.
    Laing RW, Bentley RE, Nahum AE, et al. Stereotactic radiotherapy of irregular targets: a comparison between static conformal beams and non-coplanar arcs. Radiother Oncol 1993; 28(3):241–246.CrossRefPubMedGoogle Scholar
  33. 33.
    Shiu AS, Kooy HM, Ewton JR, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 1997; 37(3):679–688.PubMedGoogle Scholar
  34. 34.
    Soanes T, Hampshire A, Vaughan C, et al. The commissioning and quality assurance of the Automatic Positioning System on the Leksell gamma knife. J Neurosurg 2002; 97(5 Suppl):574–578.PubMedGoogle Scholar
  35. 35.
    Tsai JS, Engler MJ, Ling MN, et al. A non-invasive immobilization system and related quality assurance for dynamic intensity modulated radiation therapy of intracranial and head and neck disease. Int J Radiat Oncol Biol Phys 1999; 43(2):455–467.PubMedGoogle Scholar
  36. 36.
    Tome WA, Meeks SL, Buatti JM, et al. A high-precision system for conformal intracranial radiotherapy. Int J Radiat Oncol Biol Phys 2000; 47(4):1137–1143.PubMedGoogle Scholar
  37. 37.
    Urie MM, Lo YC, Litofsky S, FitzGerald TJ. Miniature multileaf collimator as an alternative to traditional circular collimators for stereotactic radiosurgery and stereotactic radiotherapy. Stereotact Funct Neurosurg 2001; 76(1):47–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Haedinger U, Krieger T, Flentje M, Wulf J. Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets. Int J Radiat Oncol Biol Phys 2005; 61(1):239–249.PubMedGoogle Scholar
  39. 39.
    Chaves A, Lopes MC, Alves CC, et al. A Monte Carlo multiple source model applied to radiosurgery narrow photon beams. Med Phys 2004; 31(8):2192–2204.CrossRefPubMedGoogle Scholar
  40. 40.
    Pike B, Peters TM, Podgorsak E, et al. Stereotactic external beam calculations for radiosurgical treatment of brain lesions. Appl Neurophysiol 1987; 50(1–6):269–273.PubMedGoogle Scholar
  41. 41.
    Pike B, Podgorsak EB, Peters TM, Pla C. Dose distributions in dynamic stereotactic radiosurgery. Med Phys 1987; 14(5):780–789.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu A, Lindner G, Maitz AH, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1990; 18(4):941–949.PubMedGoogle Scholar
  43. 43.
    Wu X, Ting JY, Markoe AM, et al. Stereotactic dose computation and plan optimization using the convolution theorem. I. Dose computation. Stereotact Funct Neurosurg 1996; 66(Suppl 1):302–308.CrossRefPubMedGoogle Scholar
  44. 44.
    Solberg TD, Holly FE, De Salles AA, et al. Implications of tissue heterogeneity for radiosurgery in head and neck tumors. Int J Radiat Oncol Biol Phys 1995; 32(1):235–239.PubMedGoogle Scholar
  45. 45.
    Kubsad SS, Mackie TR, Gehring MA, et al. Monte Carlo and convolution dosimetry for stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1990; 19(4):1027–1035.PubMedGoogle Scholar
  46. 46.
    Dong, L, Shiu A, Tung S, Hogstrom K. A pencil-beam photon dose algorithm for stereotactic radiosurgery using a miniature multileaf collimator. Med Phys 1998; 25(6):841–850.CrossRefPubMedGoogle Scholar
  47. 47.
    Bardash M, Amols HI, Kohn S, et al. Rapid dose calculations for stereotactic radiosurgery. Med Phys 1992; 19(4):965–970.CrossRefPubMedGoogle Scholar
  48. 48.
    Ayyangar KM, Jiang SB. Do we need Monte Carlo treatment planning for linac based radiosurgery? A case study. Med Dosim 1998; 23(3):161–168.CrossRefPubMedGoogle Scholar
  49. 49.
    Verellen D, Linthout N, Bel A, et al. Assessment of the uncertainties in dose delivery of a commercial system for linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1999; 44(2):421–433.PubMedGoogle Scholar
  50. 50.
    Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys 1998; 40(2):497–505.PubMedGoogle Scholar
  51. 51.
    Smith V, Verhey L, Serago CF. Comparison of radiosurgery treatment modalities based on complication and control probabilities. Int J Radiat Oncol Biol Phys 1998; 40(2):507–513.PubMedGoogle Scholar
  52. 52.
    Shaw E, Kline R, Gillin M, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993; 27(5):1231–1239.PubMedGoogle Scholar
  53. 53.
    Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 2000; 93(Suppl 3):219–222.PubMedGoogle Scholar
  54. 54.
    Nedzi LA, Kooy HM, Alexander E 3rd, et al. Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys 1993; 25(5):859–869.PubMedGoogle Scholar
  55. 55.
    Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 2003; 55(5):1409–1419.PubMedGoogle Scholar
  56. 56.
    Leung LH, Chua DT, Wu PM. A new tool for dose conformity evaluation of radiosurgery treatment plans. Int J Radiat Oncol Biol Phys 1999; 45(1):233–241.PubMedGoogle Scholar
  57. 57.
    Knoos T, Kristensen I, Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys 1998; 42(5):1169–1176.PubMedGoogle Scholar
  58. 58.
    Borden JA, Mahajan A, Tsai JS. A quality factor to compare the dosimetry of gamma knife radiosurgery and intensity-modulated radiation therapy quantitatively as a function of target volume and shape. Technical note. J Neurosurg 2000; 93(Suppl 3):228–232.PubMedGoogle Scholar
  59. 59.
    Elekta AB.Google Scholar
  60. 60.
    Cho PS, Kuterdem HG, Marks RJ 2nd. A spherical dose model for radiosurgery plan optimization. Phys Med Biol 1998; 43(10):3145–3148.CrossRefPubMedGoogle Scholar
  61. 61.
    Ferris MC, Lim J, Shepard DM. An optimization approach for radiosurgery treatment planning. SIAM J Optimiz 2003; 13(3):921–937.CrossRefGoogle Scholar
  62. 62.
    Shepard DM, Chin LS, DiBiase SJ, et al. Clinical implementation of an automated planning system for gamma knife radiosurgery. Int J Radiat Oncol Biol Phys 2003; 56(5):1488–1494.CrossRefPubMedGoogle Scholar
  63. 63.
    Wu QJ, Bourland JD. Three-dimensional skeletonization for computer-assisted treatment planning in radiosurgery. Comput Med Imaging Graph 2000; 24(4):243–251.CrossRefPubMedGoogle Scholar
  64. 64.
    Wu QJ, Bourland JD. Morphology-guided radiosurgery treatment planning and optimization for multiple isocenters. Med Phys 1999; 26(10):2151–2160.CrossRefPubMedGoogle Scholar
  65. 65.
    Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988; 14(2):373–381.PubMedGoogle Scholar
  66. 66.
    Ma L, Yu CX, Earl M, et al. Optimized intensity-modulated arc therapy for prostate cancer treatment. Int J Cancer 2001; 96(6):379–384.CrossRefPubMedGoogle Scholar
  67. 67.
    Kramer BA, Wazer DE, Engler MJ, et al. Dosimetric comparison of stereotactic radiosurgery to intensity modulated radiotherapy. Radiat Oncol Invest 1998; 6(1):18–25.CrossRefGoogle Scholar
  68. 68.
    Adler JR Jr, Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery 1999; 44(6):1299–1306; discussion 1306–1307.CrossRefPubMedGoogle Scholar
  69. 69.
    Chang SD, Murphy M, Geis DP, et al. Clinical experience with image-guided robotic radiosurgery (the CyberKnife) in the treatment of brain and spinal cord tumors. Neurol Med Chir (Tokyo) 1998; 38(11):780–783.CrossRefGoogle Scholar
  70. 70.
    Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 2003; 52(1):140–146; discussion 146–147.CrossRefPubMedGoogle Scholar
  71. 71.
    Heilbrun MP. CyberKnife Radiosurgery: A Practical Guide. The CyberKnife Society, 2003.Google Scholar
  72. 72.
    Mawad ME, Silver AJ, Hilal SK, Ganti SR. Computed tomography of the brain stem with intrathecal metrizamide. Part I: the normal brain stem. AJR Am J Roentgenol 1983; 140(3):553–563.PubMedGoogle Scholar
  73. 73.
    Sisterson J. Sponsored by the Particle Therapy Co-Operative Group (PTCOG). Particles Newsletter 2005;35.Google Scholar
  74. 74.
    Kahn FM. The Physics of Radiation Therapy, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2003:560.Google Scholar
  75. 75.
    Slater J, Miller D, Archambeau J. Development of a hospital based proton therapy center. Int J Radiat Oncol Biol Phys 1988; 14(4):761–775.PubMedGoogle Scholar
  76. 76.
    Flanz J, Bailey J, Bradley S, et al. Recent performance of the NPTC equipment compared with the clinical specifications. In: Proceedings of 15th Conference on the Application of Accelerators in Research and Industry. AIP Press, 1999.Google Scholar
  77. 77.
    Raju MR. Proton radiobiology, radiosurgery and radiotherapy. Int J Radiat Biol 1995; 67(3):237–259.CrossRefPubMedGoogle Scholar
  78. 78.
    Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 2002; 53(2):407–421.PubMedGoogle Scholar
  79. 79.
    Chu W, Ludewigt B, Renner T. Instrumentation for treatment of cancer using proton and light-ion beams. Rev Sci Instrum 1993; 64(8):2055–2122.CrossRefGoogle Scholar
  80. 80.
    Russell KR, Isacsson U, Saxner M, et al. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys Med Biol 2000; 45(1):9–27.CrossRefPubMedGoogle Scholar
  81. 81.
    Hong L, Goitein M, Bucciolini M, et al. A pencil beam algorithm for proton dose calculations. Phys Med Biol 1996; 41(8):1305–1330.CrossRefPubMedGoogle Scholar
  82. 82.
    Gall KP, Verhey LJ, Wagner M. Computer-assisted positioning of radiotherapy patients using implanted radiopaque fiducials. Med Phys 1993; 20(4):1153–1159.CrossRefPubMedGoogle Scholar
  83. 83.
    Wells WM 3rd, Viola H, Atsumi S, et al. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996; 1(1):35–51.CrossRefPubMedGoogle Scholar
  84. 84.
    van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med Phys 1994; 21(7):1163–1178.CrossRefPubMedGoogle Scholar
  85. 85.
    Bussiere MR, Adams JA. Treatment planning for conformal proton radiation therapy. Technol Cancer Res Treat 2003; 2(5):389–399.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David M. Shepard
    • 1
  • Cedric Yu
    • 2
  • Martin Murphy
    • 3
  • Marc R. Bussière
    • 4
  • Frank J. Bova
    • 5
  1. 1.Swedish Cancer InstituteSeattleUSA
  2. 2.Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Department of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA
  4. 4.Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  5. 5.University of FloridaGainesvilleUSA

Personalised recommendations