Advertisement

Complications and Management in Radiosurgery

  • Isaac Yang
  • Penny K. Sneed
  • David A. Larson
  • Michael W. McDermott

Abstract

Radiosurgery is the precise application of focused radiation to a targeted volume within the brain or spine, in one to five sessions, identified on magnetic resonance (MR) or computed tomography (CT) imaging using multiple beams to deposit a large dose to a defined region while limiting the exposure of normal tissue [1]–[6]. This new definition of radiosurgery, involving one to five treatment sessions for the treatment of brain or spinal lesions, was recently approved by the American Society of Therapeutic Radiation Oncology and the American Association of Neurological Surgeons and Congress of Neurologic Surgeons. Although initially conceptualized by Leksell for use in functional neurosurgery, radiosurgery has progressively widened its scope and is now also an option for numerous neoplastic and vascular indications [7], [8]. Differing from standard fractionated radiotherapy (6 to 30 sessions), radiosurgery requires the precise delivery of radiation to smaller volumes without affecting large portions of normal parenchyma, thus allowing for a powerful radiobiologic effect on the targeted volume [2], [9]–[11].

Keywords

Radiat Oncol Biol Phys Gamma Knife Stereotactic Radiosurgery Radiation Necrosis Vestibular Schwannoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedman WA, Foote KD. Linear accelerator radiosurgery in the management of brain tumours. Ann Med 2000; 32:64–80.PubMedGoogle Scholar
  2. 2.
    Nguyen DK, Spencer SS. Recent advances in the treatment of epilepsy. Arch Neurol 2003; 60:929–935.PubMedGoogle Scholar
  3. 3.
    Hong TS, Tome WA, Hayes L, et al. Acute sequelae of stereotactic radiosurgery. In: Kondziolka D, ed. Radiosurgery. Basel: Karger, 2004:38–45.Google Scholar
  4. 4.
    Lunsford LD, Linskey ME. Stereotactic radiosurgery in the treatment of patients with acoustic tumors. Otolaryngol Clin North Am 1992; 25:471–491.PubMedGoogle Scholar
  5. 5.
    Linskey ME, Lunsford LD, Flickinger JC. Radiosurgery for acoustic neurinomas: early experience. Neurosurgery 1990; 26:736–744; discussion 744–735.PubMedGoogle Scholar
  6. 6.
    Shoshan Y, Wygoda M, Umansky F. Stereotactic radiosurgery and fractionated stereotactic radiotherapy: background, definitions, applications. Isr Med Assoc J 2005; 7:597–599.PubMedGoogle Scholar
  7. 7.
    Kitchen N. Experimental and clinical studies on the putative therapeutic efficacy of cerebral irradiation (radiotherapy) in epilepsy. Epilepsy Res 1995; 20:1–10.PubMedGoogle Scholar
  8. 8.
    Sun B, DeSalles AA, Medin PM, et al. Reduction of hippocampalkindled seizure activity in rats by stereotactic radiosurgery. Exp Neurol 1998; 154:691–695.PubMedGoogle Scholar
  9. 9.
    Kondziolka D, Lunsford LD, Witt TC, Flickinger JC. The future of radiosurgery: radiobiology, technology, and applications. Surg Neurol 2000; 54:406–414.PubMedGoogle Scholar
  10. 10.
    Dillon WP, Barbaro N. Noninvasive surgery for epilepsy: the era of image guidance. AJNR Am J Neuroradiol 1999; 20:185.PubMedGoogle Scholar
  11. 11.
    Regis J, Rey M, Bartolomei F, et al. Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia 2004; 45:504–515.PubMedGoogle Scholar
  12. 12.
    Spiegelmann R, Gofman J, Alezra D, Pfeffer R. Radiosurgery for acoustic neurinomas (vestibular schwannomas). Isr Med Assoc J 1999; 1:8–13.PubMedGoogle Scholar
  13. 13.
    Pollock BE, Lunsford LD, Kondziolka D, et al. Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery 1995; 36:215–224; discussion 224–219.PubMedCrossRefGoogle Scholar
  14. 14.
    Chin LS, Lazio BE, Biggins T, Amin P. Acute complications following gamma knife radiosurgery are rare. Surg Neurol 2000; 53:498–502; discussion 502.PubMedGoogle Scholar
  15. 15.
    Smith MC, Ryken TC, Buatti JM. Radiotoxicity after conformal radiation therapy for benign intracranial tumors. Neurosurg Clin N Am 2006; 17:169–180.PubMedGoogle Scholar
  16. 16.
    Shaw E, Scott C, Souhami L, et al. Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol (90-05). Int J Radiat Oncol Biol Phys 1996; 34:647–654.PubMedGoogle Scholar
  17. 17.
    Tago M, Terahara A, Nakagawa K, et al. Immediate neurological deterioration after gamma knife radiosurgery for acoustic neuroma. Case report. J Neurosurg 2000; 93(Suppl 3):78–81.PubMedGoogle Scholar
  18. 18.
    Majhail NS, Chander S, Mehta VS, et al. Factors influencing early complications following Gamma Knife radiosurgery. A prospective study. Stereotact Funct Neurosurg 2001; 76:36–46.PubMedGoogle Scholar
  19. 19.
    Westbury C, Hines F, Hawkes E, et al. Advice on hair and scalp care during cranial radiotherapy: a prospective randomized trial. Radiother Oncol 2000; 54:109–116.PubMedGoogle Scholar
  20. 20.
    Alexander E 3rd, Loeffler JS. Radiosurgery for primary malignant brain tumors. Semin Surg Oncol 1998; 14:43–52.PubMedGoogle Scholar
  21. 21.
    Gannett D, Stea B, Lulu B, et al. Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Radiat Oncol Biol Phys 1995; 33:461–468.PubMedGoogle Scholar
  22. 22.
    Gelblum DY, Lee H, Bilsky M, et al. Radiographic findings and morbidity in patients treated with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1998; 42:391–395.PubMedGoogle Scholar
  23. 23.
    Werner-Wasik M, Rudoler S, Preston PE, et al. Immediate side effects of stereotactic radiotherapy and radiosurgery. Int J Radiat Oncol Biol Phys 1999; 43:299–304.PubMedGoogle Scholar
  24. 24.
    Hudgins WR. Patients’ attitude about outcomes and the role of gamma knife radiosurgery in the treatment of vestibular schwannomas. Neurosurgery 1994; 34:459–463; discussion 463–455.PubMedGoogle Scholar
  25. 25.
    Sakamoto M, Oya N, Mizowaki T, et al. Initial experiences of palliative stereotactic radiosurgery for recurrent brain lymphomas. J Neurooncol 2006; 77:53–58.PubMedGoogle Scholar
  26. 26.
    Cmelak AJ, Abou-Khalil B, Konrad PE, et al. Low-dose stereotactic radiosurgery is inadequate for medically intractable mesial temporal lobe epilepsy: a case report. Seizure 2001; 10:442–446.PubMedGoogle Scholar
  27. 27.
    Mehta MP, Rozental JM, Levin AB, et al. Defining the role of radiosurgery in the management of brain metastases. Int J Radiat Oncol Biol Phys 1992; 24:619–625.PubMedGoogle Scholar
  28. 28.
    Noren G, Greitz D, Hirsch A, Lax I. Gamma knife surgery in acoustic tumours. Acta Neurochir Suppl (Wien) 1993; 58:104–107.Google Scholar
  29. 29.
    Ito K, Shin M, Matsuzaki M, et al. Risk factors for neurological complications after acoustic neurinoma radiosurgery: refinement from further experiences. Int J Radiat Oncol Biol Phys 2000; 48:75–80.PubMedGoogle Scholar
  30. 30.
    Lee JY, Niranjan A, McInerney J, et al. Stereotactic radiosurgery providing long-term tumor control of cavernous sinus meningiomas. J Neurosurg 2002; 97:65–72.PubMedGoogle Scholar
  31. 31.
    Park YG, Chung SS, Kim DI, et al. Complications following Gamma Knife radiosurgery. Stereotact Funct Neurosurg 1995; 64(Suppl 1):239–248.PubMedGoogle Scholar
  32. 32.
    Engenhart R, Kimmig BN, Hover KH, et al. Long-term follow-up for brain metastases treated by percutaneous stereotactic single high-dose irradiation. Cancer 1993; 71:1353–1361.PubMedGoogle Scholar
  33. 33.
    Flickinger JC, Kondziolka D, Lunsford LD, et al. A multiinstitutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Radiat Oncol Biol Phys 1994; 28:797–802.PubMedGoogle Scholar
  34. 34.
    Thomsen J, Mirz F, Wetke R, et al. Intracranial sarcoma in a patient with neurofibromatosis type 2 treated with gamma knife radiosurgery for vestibular schwannoma. Am J Otol 2000; 21:364–370.PubMedGoogle Scholar
  35. 35.
    Shamisa A, Bance M, Nag S, et al. Glioblastoma multiforme occurring in a patient treated with gamma knife surgery. Case report and review of the literature. J Neurosurg 2001; 94:816–821.PubMedGoogle Scholar
  36. 36.
    Yu JS, Yong WH, Wilson D, Black KL. Glioblastoma induction after radiosurgery for meningioma. Lancet 2000; 356:1576–1577.PubMedGoogle Scholar
  37. 37.
    Kaido T, Hoshida T, Uranishi R, et al. Radiosurgery-induced brain tumor. Case report. J Neurosurg 2001; 95:710–713.PubMedGoogle Scholar
  38. 38.
    Ganz JC. Gamma knife radiosurgery and its possible relationship to malignancy: a review. J Neurosurg 2002; 97:644–652.PubMedGoogle Scholar
  39. 39.
    Sanno N, Hayashi S, Shimura T, et al. Intracranial osteosarcoma after radiosurgery—case report. Neurol Med Chir (Tokyo) 2004; 44:29–32.Google Scholar
  40. 40.
    Loeffler JS, Niemierko A, Chapman PH. Second tumors after radiosurgery: tip of the iceberg or a bump in the road? Neurosurgery 2003; 52:1436–1440; discussion 1440–1432.PubMedGoogle Scholar
  41. 41.
    Adler JR, Cox RS, Kaplan I, Martin DP. Stereotactic radiosurgical treatment of brain metastases. J Neurosurg 1992; 76:444–449.PubMedGoogle Scholar
  42. 42.
    Muthukumar N, Kondziolka D, Lunsford LD, Flickinger JC. Stereotactic radiosurgery for anterior foramen magnum meningiomas. Surg Neurol 1999; 51:268–273.PubMedGoogle Scholar
  43. 43.
    Iwai Y, Yamanaka K, Yasui T, et al. Gamma knife surgery for skull base meningiomas. The effectiveness of low-dose treatment. Surg Neurol 1999; 52:40–44; discussion 44–45.PubMedGoogle Scholar
  44. 44.
    Subach BR, Lunsford LD, Kondziolka D, et al. Management of petroclival meningiomas by stereotactic radiosurgery. Neurosurgery 1998; 42:437–443; discussion 443–435.PubMedGoogle Scholar
  45. 45.
    Chin LS, Szerlip NJ, Regine WF. Stereotactic radiosurgery for meningiomas. Neurosurg Focus 2003; 14:e6.PubMedGoogle Scholar
  46. 46.
    Roche PH, Regis J, Dufour H, et al. Gamma knife radiosurgery in the management of cavernous sinus meningiomas. J Neurosurg 2000; 93(Suppl 3):68–73.PubMedGoogle Scholar
  47. 47.
    Pamir MN, Kilic T, Bayrakli F, Peker S. Changing treatment strategy of cavernous sinus meningiomas: experience of a single institution. Surg Neurol 2005; 64(Suppl 2):S58–66.PubMedGoogle Scholar
  48. 48.
    Nicolato A, Ferraresi P, Foroni R, et al. Gamma Knife radiosurgery in skull base meningiomas. Preliminary experience with 50 cases. Stereotact Funct Neurosurg 1996; 66(Suppl 1):112–120.PubMedGoogle Scholar
  49. 49.
    Pollock BE. Stereotactic radiosurgery for intracranial meningiomas: indications and results. Neurosurg Focus 2003; 14:e4.PubMedGoogle Scholar
  50. 50.
    Kobayashi T, Kida Y, Mori Y. Long-term results of stereotactic gamma radiosurgery of meningiomas. Surg Neurol 2001; 55:325–331.PubMedGoogle Scholar
  51. 51.
    Singh VP, Kansai S, Vaishya S, et al. Early complications following gamma knife radiosurgery for intracranial meningiomas. J Neurosurg 2003; 93(Suppl 3):57–61.Google Scholar
  52. 52.
    Kondziolka D, Flickinger JC, Perez B. Judicious resection and/or radiosurgery for parasagittal meningiomas: outcomes from a multicenter review. Gamma Knife Meningioma Study Group. Neurosurgery 1998; 43:405–413; discussion 413–404.PubMedGoogle Scholar
  53. 53.
    Kamiryo T, Yamamoto M, Barfod B, Urakawa Y. Dose absorbed by normal brainstem and optic apparatus in gamma knife surgery for ten or more metastasis. In: Kondziolka D, ed. Radiosurgery. Basel: Karger, 2004:77–81.Google Scholar
  54. 54.
    Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg 1998; 88:43–50.PubMedGoogle Scholar
  55. 55.
    Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 1993; 27:215–221.PubMedGoogle Scholar
  56. 56.
    Duma CM, Lunsford LD, Kondziolka D, et al. Stereotactic radiosurgery of cavernous sinus meningiomas as an addition or alternative to microsurgery. Neurosurgery 1993; 32:699–704; discussion 704–695.PubMedGoogle Scholar
  57. 57.
    Kondziolka D, Lunsford LD, Coffey RJ, Flickinger JC. Stereotactic radiosurgery of meningiomas. J Neurosurg 1991; 74:552–559.PubMedGoogle Scholar
  58. 58.
    Kreil W, Luggin J, Fuchs I, et al. Long term experience of gamma knife radiosurgery for benign skull base meningiomas. J Neurol Neurosurg Psychiatry 2005; 76:1425–1430.PubMedGoogle Scholar
  59. 59.
    Morita A, Coffey RJ, Foote RL, et al. Risk of injury to cranial nerves after gamma knife radiosurgery for skull base meningiomas: experience in 88 patients. J Neurosurg 1999; 90:42–49.PubMedGoogle Scholar
  60. 60.
    Stafford SL, Pollock BE, Leavitt JA, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2003; 55:1177–1181.PubMedGoogle Scholar
  61. 61.
    Stafford SL, Pollock BE, Foote RL, et al. Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery 2001; 49:1029–1037; discussion 1037–1028.PubMedGoogle Scholar
  62. 62.
    Friedman WA, Murad GJ, Bradshaw P, et al. Linear accelerator surgery for meningiomas. J Neurosurg 2005; 103:206–209.PubMedGoogle Scholar
  63. 63.
    Hudgins WR, Barker JL, Schwartz DE, Nichols TD. Gamma Knife treatment of 100 consecutive meningiomas. Stereotact Funct Neurosurg 1996; 66(Suppl 1):121–128.PubMedGoogle Scholar
  64. 64.
    Chang JH, Chang JW, Choi JY, et al. Complications after gamma knife radiosurgery for benign meningiomas. J Neurol Neurosurg Psychiatry 2003; 74:226–230.PubMedGoogle Scholar
  65. 65.
    Hakim R, Alexander E 3rd, Loeffler JS, et al. Results of linear accelerator-based radiosurgery for intracranial meningiomas. Neurosurgery 1998; 42:446–453; discussion 453–444.PubMedGoogle Scholar
  66. 66.
    Shafron DH, Friedman WA, Buatti JM, et al. Linac radiosurgery for benign meningiomas. Int J Radiat Oncol Biol Phys 1999; 43:321–327.PubMedGoogle Scholar
  67. 67.
    Iwai Y, Yamanaka K, Ishiguro T. Gamma knife radiosurgery for the treatment of cavernous sinus meningiomas. Neurosurgery 2003; 52:517–524; discussion 523–514.PubMedGoogle Scholar
  68. 68.
    DiBiase SJ, Kwok Y, Yovino S, et al. Factors predicting local tumor control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 2004; 60:1515–1519.PubMedGoogle Scholar
  69. 69.
    Chang SD, Adler JR Jr. Treatment of cranial base meningiomas with linear accelerator radiosurgery. Neurosurgery 1997; 41:1019–1025; discussion 1025–1027.PubMedGoogle Scholar
  70. 70.
    Kondziolka D, Levy EI, Niranjan A, et al. Long-term outcomes after meningioma radiosurgery; physician and patient perspectives. J Neurosurg 1999; 91:44–50.PubMedGoogle Scholar
  71. 71.
    Shin M, Kurita H, Sasaki T, et al. Analysis of treatment outcome after stereotactic radiosurgery for cavernous sinus meningiomas. J Neurosurg 2001; 95(3):435–439.PubMedGoogle Scholar
  72. 72.
    Nakamura S, Hiyama H, Arai K, et al. Gamma Knife radiosurgery for meningiomas: four cases of radiation-induced edema. Stereotact Funct Neurosurg 1996; 66(Suppl 1):142–145.PubMedGoogle Scholar
  73. 73.
    Ganz JC, Schrottner O, Pendl G. Radiation-induced edema after Gamma Knife treatment for meningiomas. Stereotact Funct Neurosurg 1996; 66(Suppl 1):129–133.PubMedGoogle Scholar
  74. 74.
    Nakano T, Asano K, Miura H, et al. Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging 2002; 26:243–249.PubMedGoogle Scholar
  75. 75.
    Kim CH, Kim DG, Paek SH, et al. Delayed bleeding after gamma knife surgery for meningioma. Acta Neurochir (Wien) 2004; 146:741–742.Google Scholar
  76. 76.
    Kwon Y, Ahn JS, Jeon SR, et al. Intratumoral bleeding in meningioma after gamma knife radiosurgery. J Neurosurg 2002; 97:657–662.PubMedGoogle Scholar
  77. 77.
    Bui QC, Lieber M, Withers HR, et al. The efficacy of hyperbaric oxygen therapy in the treatment of radiation-induced late side effects. Int J Radiat Oncol Biol Phys 2004; 60(3):871–878.PubMedGoogle Scholar
  78. 78.
    Charabi S, Tos M, Thomsen J, et al. Cystic vestibular schwannoma—clinical and experimental studies. Acta Otolaryngol 2000; 543(Suppl):11–13.Google Scholar
  79. 79.
    Ottaviani F, Neglia CB, Ventrella L, et al. Hearing loss and changes in transient evoked otoacoustic emissions after gamma knife radiosurgery for acoustic neurinomas. Arch Otolaryngol Head Neck Surg 2002; 128:1308–1312.PubMedGoogle Scholar
  80. 80.
    Unger F, Walch C, Haselsberger K, et al. Radiosurgery of vestibular schwannomas: a minimally invasive alternative to microsurgery. Acta Neurochir (Wien) 1999; 141:1281–1285; discussion 1285–1286.Google Scholar
  81. 81.
    Friedman WA, Foote KD. Linear accelerator-based radiosurgery for vestibular schwannoma. Neurosurg Focus 2003; 14:e2.PubMedGoogle Scholar
  82. 82.
    Battista RA, Wiet RJ. Stereotactic radiosurgery for acoustic neuromas: a survey of the American Neurotology Society. Am J Otol 2000; 21:371–381.PubMedGoogle Scholar
  83. 83.
    Sekhar LN, Gormley WB, Wright DC. The best treatment for vestibular schwannoma (acoustic neuroma): microsurgery or radiosurgery? Am J Otol 1996; 17:676–682; discussion 683–679.PubMedGoogle Scholar
  84. 84.
    Kamerer DB, Lunsford LD, Moller M. Gamma knife: an alternative treatment for acoustic neurinomas. Ann Otol Rhinol Laryngol 1988; 97:631–635.PubMedGoogle Scholar
  85. 85.
    Lunsford LD, Kamerer DB, Flickinger JC. Stereotactic radiosurgery for acoustic neuromas. Arch Otolaryngol Head Neck Surg 1990; 116:907–909.PubMedGoogle Scholar
  86. 86.
    Wiet RJ, Micco AG, Bauer GP. Complications of the gamma knife. Arch Otolaryngol Head Neck Surg 1996; 122:414–416.PubMedGoogle Scholar
  87. 87.
    Ramsay HA, Luxford WM. Treatment of acoustic tumours in elderly patients: is surgery warranted? J Laryngol Otol 1993; 107:295–297.PubMedGoogle Scholar
  88. 88.
    Mendenhall WM, Friedman WA, Buatti JM, Bova FJ. Preliminary results of linear accelerator radiosurgery for acoustic schwannomas. J Neurosurg 1996; 85:1013–1019.PubMedGoogle Scholar
  89. 89.
    Linskey ME. Stereotactic radiosurgery versus stereotactic radiotherapy for patients with vestibular schwannoma: a Leksell Gamma Knife Society 2000 debate. J Neurosurg 2000; 93(Suppl 3):90–95.PubMedGoogle Scholar
  90. 90.
    Yamamoto M, Hagiwara S, Ide M, et al. Radiosurgery for acoustic neurinoma with rapid growth and relatively high staining indexes for proliferating cell nuclear antigen and MIB-1. Neurol Med Chir (Tokyo) 1996; 36:241–245.Google Scholar
  91. 91.
    Flickinger JC, Lunsford LD, Linskey ME, et al. Gamma knife radiosurgery for acoustic tumors: multivariate analysis of four year results. Radiother Oncol 1993; 27:91–98.PubMedGoogle Scholar
  92. 92.
    Linskey ME, Johnstone PA, O’Leary M, Goetsch S. Radiation exposure of normal temporal bone structures during stereotactically guided gamma knife surgery for vestibular schwannomas. J Neurosurg 2003; 98:800–806.PubMedGoogle Scholar
  93. 93.
    Mendenhall WM, Friedman WA, Bova FJ. Linear acceleratorbased stereotactic radiosurgery for acoustic schwannomas. Int J Radiat Oncol Biol Phys 1994; 28:803–810.PubMedGoogle Scholar
  94. 94.
    Spiegelmann R, Lidar Z, Gofman J, et al. Linear accelerator radiosurgery for vestibular schwannoma. J Neurosurg 2001; 94:7–13.PubMedGoogle Scholar
  95. 95.
    Foote KD, Friedman WA, Buatti JM, et al. Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 2001; 95:440–449.PubMedGoogle Scholar
  96. 96.
    Myrseth E, Moller P, Pedersen PH, et al. Vestibular schwannomas: clinical results and quality of life after microsurgery or gamma knife radiosurgery. Neurosurgery 2005; 56:927–935; discussion 927–935.PubMedGoogle Scholar
  97. 97.
    Miller RC, Foote RL, Coffey RJ, et al. Decrease in cranial nerve complications after radiosurgery for acoustic neuromas: a prospective study of dose and volume. Int J Radiat Oncol Biol Phys 1999; 43:305–311.PubMedGoogle Scholar
  98. 98.
    Yang CC, Ting J, Wu X, Markoe A. Dose volume histogram analysis of the gamma knife radiosurgery treating twenty-five metastatic intracranial tumors. Stereotact Funct Neurosurg 1998; 70(Suppl 1):41–49.PubMedGoogle Scholar
  99. 99.
    Muacevic A, Jess-Hempen A, Tonn JC, Wowra B. Results of outpatient gamma knife radiosurgery for primary therapy of acoustic neuromas. Acta Neurochir Suppl 2004; 91:75–78.PubMedGoogle Scholar
  100. 100.
    Flickinger JC, Kondziolka D, Lunsford LD. Dose and diameter relationships for facial, trigeminal, and acoustic neuropathies following acoustic neuroma radiosurgery. Radiother Oncol 1996; 41:215–219.PubMedGoogle Scholar
  101. 101.
    Linskey ME, Flickinger JC, Lunsford LD. Cranial nerve length predicts the risk of delayed facial and trigeminal neuropathies after acoustic tumor stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1993; 25:227–233.PubMedGoogle Scholar
  102. 102.
    Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD. Results of acoustic neuroma radiosurgery: an analysis of 5 years’ experience using current methods. J Neurosurg 2001; 94:1–6.PubMedGoogle Scholar
  103. 103.
    Ito K, Kurita H, Sugasawa K, et al. Analyses of neuro-otological complications after radiosurgery for acoustic neurinomas. Int J Radiat Oncol Biol Phys 1997; 39:983–988.PubMedGoogle Scholar
  104. 104.
    Andrews DW, Suarez O, Goldman HW, et al. Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys 2001; 50:1265–1278.PubMedGoogle Scholar
  105. 105.
    Rowe J, Radatz M, Walton L, Kemeny A. Gamma knife stereotactic radiosurgery for type 2 neurofibromatosis acoustic neuromas. In: Kondziolka D, ed. Radiosurgery. Basel: Karger, 2004:100–106.Google Scholar
  106. 106.
    Kobayashi T, Tanaka T, Kida Y. The early effects of gamma knife on 40 cases of acoustic neurinoma. Acta Neurochir Suppl 1994; 62:93–97.PubMedGoogle Scholar
  107. 107.
    Niranjan A, Lunsford LD, Flickinger JC, et al. Dose reduction improves hearing preservation rates after intracanalicular acoustic tumor radiosurgery. Neurosurgery 1999; 45:753–762; discussion 762–755.PubMedGoogle Scholar
  108. 108.
    Meijer OW, Wolbers JG, Baayen JC, Slotman BJ. Fractionated stereotactic radiation therapy and single high-dose radiosurgery for acoustic neuroma: early results of a prospective clinical study. Int J Radiat Oncol Biol Phys 2000; 46:45–49.PubMedGoogle Scholar
  109. 109.
    Shin YJ, Lapeyre-Mestre M, Gafsi I, et al. Neurotological complications after radiosurgery versus conservative management in acoustic neuromas: a systematic review-based study. Acta Otolaryngol 2003; 123:59–64.PubMedGoogle Scholar
  110. 110.
    Chung WY, Liu KD, Shiau CY, et al. Gamma knife surgery for vestibular schwannoma: 10-year experience of 195 cases. J Neurosurg 2005; 102(Suppl):87–96.PubMedGoogle Scholar
  111. 111.
    Thomsen J, Tos M, Borgesen SE. Gamma knife: hydrocephalus as a complication of stereotactic radiosurgical treatment of an acoustic neuroma. Am J Otol 1990; 11:330–333.PubMedGoogle Scholar
  112. 112.
    Kondziolka D, Lunsford LD, McLaughlin MR, Flickinger JC. Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med 1998; 339:1426–1433.PubMedGoogle Scholar
  113. 113.
    Prasad D, Steiner M, Steiner L. Gamma surgery for vestibular schwannoma. J Neurosurg 2000; 92:745–759.PubMedGoogle Scholar
  114. 114.
    Paek SH, Chung HT, Jeong SS, et al. Hearing preservation after gamma knife stereotactic radiosurgery of vestibular schwannoma. Cancer 2005; 104:580–590.PubMedGoogle Scholar
  115. 115.
    Combs SE, Thilmann C, Debus J, Schulz-Ertner D. Long-term outcome of stereotactic radiosurgery (SRS) in patients with acoustic neuromas. Int J Radiat Oncol Biol Phys 2006; 64:1341–1347.PubMedGoogle Scholar
  116. 116.
    Unger F, Walch C, Papaefthymiou G, et al. Radiosurgery of residual and recurrent vestibular schwannomas. Acta Neurochir (Wien) 2002; 144:671–676; discussion 676–677.Google Scholar
  117. 117.
    Rowe JG, Radatz MW, Walton L, et al. Gamma knife stereotactic radiosurgery for unilateral acoustic neuromas. J Neurol Neurosurg Psychiatry 2003; 74:1536–1542.PubMedGoogle Scholar
  118. 118.
    Rowe JG, Radatz MW, Walton L, et al. Clinical experience with gamma knife stereotactic radiosurgery in the management of vestibular schwannomas secondary to type 2 neurofibromatosis. J Neurol Neurosurg Psychiatry 2003; 74:1288–1293.PubMedGoogle Scholar
  119. 119.
    Petit JH, Hudes RS, Chen TT, et al. Reduced-dose radiosurgery for vestibular schwannomas. Neurosurgery 2001; 49:1299–1306; discussion 1306–1297.PubMedGoogle Scholar
  120. 120.
    Ito K, Kurita H, Sugasawa K, et al. Neuro-otological findings after radiosurgery for acoustic neurinomas. Arch Otolaryngol Head Neck Surg 1996; 122:1229–1233.PubMedGoogle Scholar
  121. 121.
    Suh JH, Barnett GH, et al. Results of linear accelerator-based stereotactic radiosurgery for recurrent and newly diagnosed acoustic neuromas. Int J Cancer 2000; 90:145–151.PubMedGoogle Scholar
  122. 122.
    Linskey ME, Lunsford LD, Flickinger JC. Tumor control after stereotactic radiosurgery in neurofibromatosis patients with bilateral acoustic tumors. Neurosurgery 1992; 31:829–838; discussion 838–829.PubMedGoogle Scholar
  123. 123.
    Kondziolka D, Lunsford LD. Preservation of hearing in acoustic neurinoma surgery. J Neurosurg 1993; 78:154–156.PubMedGoogle Scholar
  124. 124.
    Hirato M, Inoue H, Nakamura M, et al. Gamma knife radiosurgery for acoustic schwannoma: early effects and preservation of hearing. Neurol Med Chir (Tokyo) 1995; 35:737–741.Google Scholar
  125. 125.
    Iwai Y, Yamanaka K, Shiotani M, Uyama T. Radiosurgery for acoustic neuromas: results of low-dose treatment. Neurosurgery 2003; 53:282–287; discussion 287–288.PubMedGoogle Scholar
  126. 126.
    Andrade-Souze YM, Zadeh G, Ramani M, et al. Testing the radiosurgery-based arteriovenous malformation score and the modified Spetzler-Martin grading system to predict radiosurgical outcome. J Neurosurg 2005; 103:642–648.Google Scholar
  127. 127.
    Barker FG 2nd, Butler WE, Lyons S, et al. Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations. J Neurosurg 2003; 99:254–263.PubMedGoogle Scholar
  128. 128.
    Bollet MA, Anxionnat R, Buchheit I, et al. Efficacy and morbidity of arc-therapy radiosurgery for cerebral arteriovenous malformations: a comparison with the natural history. Int J Radiat Oncol Biol Phys 2004; 58:1353–1363.PubMedGoogle Scholar
  129. 129.
    Chang TC, Shirato H, Aoyama H, et al. Stereotactic irradiation for intracranial arteriovenous malformation using stereotactic radiosurgery or hypofractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2004; 60:861–870.PubMedGoogle Scholar
  130. 130.
    Flickinger JC, Kondziolka D, Lunsford LD, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys 2000; 46:1143–1148.PubMedGoogle Scholar
  131. 131.
    Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 2003; 52:296–307.PubMedGoogle Scholar
  132. 132.
    Izawa M, Hayashi M, Chernov M, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg 2005; 102(Suppl):34–37.PubMedGoogle Scholar
  133. 133.
    Karlsson B, Lax I, Soderman M. Risk for hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 2001; 49:1045–1051.PubMedGoogle Scholar
  134. 134.
    Lindvall P, Bergstrom P, Lofroth PO, et al. Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery 2003; 53:1036–1042; discussion 1042–1043.PubMedGoogle Scholar
  135. 135.
    Maruyama K, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for brainstem arteriovenous malformations: factors affecting outcome. J Neurosurg 2004; 100(3):407–413.PubMedGoogle Scholar
  136. 136.
    Levy EI, Niranjan A, Thompson TP, et al. Radiosurgery for childhood intracranial arteriovenous malformations. Neurosurgery 2000; 47(4):834–841; discussion 841–842.PubMedGoogle Scholar
  137. 137.
    Maesawa S, Flickinger JC, Kondziolka D, Lunsford LD. Repeated radiosurgery for incompletely obliterated arteriovenous malformations. J Neurosurg 2000; 92:961–970.PubMedGoogle Scholar
  138. 138.
    Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg 2004; 100:210–214.PubMedGoogle Scholar
  139. 139.
    Pollock BE, Gorman DA, Coffey RJ. Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5-to 14-year follow-up study. Neurosurgery 2003; 52:1291–1296; discussion 1296–1297.PubMedGoogle Scholar
  140. 140.
    Schlienger M, Atlan D, Lefkopoulos D, et al. Linac radiosurgery for cerebral arteriovenous malformations: results in 169 patients. Int J Radiat Oncol Biol Phys 2000; 46:1135–1142.PubMedGoogle Scholar
  141. 141.
    Shin M, Maruyama K, Kurita H, et al. Analysis of nidus obliteration rates after gamma knife surgery for arteriovenous malformations based on long-term follow-up data: the University of Tokyo experience. J Neurosurg 2004; 101(1):18–24.PubMedGoogle Scholar
  142. 142.
    Sirin S, Kondziolka D, Niranjan A, et al. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery 2006; 58:17–27; discussion 17–27.PubMedGoogle Scholar
  143. 143.
    Smyth MD, Sneed PK, Ciricillo SF, et al. Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco experience. J Neurosurg 2002; 97(1):48–55.PubMedGoogle Scholar
  144. 144.
    Veznedaroglu E, Andrews DW, Benitez RP, et al. Fractionated stereotactic radiotherapy for the treatment of large arteriovenous malformations with or without previous partial embolization. Neurosurgery 2004; 55(3):519–530; discussion 530–531.PubMedGoogle Scholar
  145. 145.
    Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J. Stereotactic linac-based radiosurgery in the treatment of cerebral arteriovenous malformations located deep, involving corpus callosum, motor cortex, or brainstem. Int J Radiat Oncol Biol Phys 2006 15; 64(4):1044–1048. Epub 2005 Dec 20.PubMedGoogle Scholar
  146. 146.
    Smyth MD, Sneed PK, Ciricillo SF, et al. Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco Experience. J Neurosurg 2002; 97:48–55.PubMedGoogle Scholar
  147. 147.
    Shin M, Maruyama K, Kurita H, et al. Analysis of nidus obliteration rates after gamma knife surgery for arteriovenous malformations based on long-term follow-up data: the University of Tokyo experience. J Neurosurg 2004; 101(1):18–24.PubMedGoogle Scholar
  148. 148.
    Kaido T, Hoshida T, Uranishi R, et al. Radiosurgery-induced brain tumor. Case report. J Neurosurg 2001; 95:710–713.PubMedGoogle Scholar
  149. 149.
    Levy EI, Niranjan A, Thompson TP, et al. Radiosurgery for childhood intracranial arteriovenous malformations. Neurosurgery 2000; 47:834–841; discussion 841–842.PubMedGoogle Scholar
  150. 150.
    Flickinger JC, Kondziolka D, Lunsford LD, et al. A multiinstitutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 1999; 44:67–74.PubMedGoogle Scholar
  151. 151.
    Sakamoto T, Shirato H, Takeichi N, et al. Medication for hearing loss after fractionated stereotactic radiotherapy (SRT) for vestibular schwannoma. Int J Radiat Oncol Biol Phys 2001; 50:1295–1298.PubMedGoogle Scholar
  152. 152.
    Kalamarides M, Grayeli AB, Bouccara D, et al. Hearing restoration with auditory brainstem implants after radiosurgery for neurofibromatosis type 2. J Neurosurg 2001; 95:1028–1033.PubMedGoogle Scholar
  153. 153.
    Meeks SL, Buatti JM, Bova FJ, et al. Treatment planning optimization for linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 1998; 41:183–197.PubMedGoogle Scholar
  154. 154.
    Meeks SL, Buatti JM, Foote KD, et al. Calculation of cranial nerve complication probability for acoustic neuroma radiosurgery. Int J Radiat Oncol Biol Phys 2000; 47:597–602.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Isaac Yang
    • 1
  • Penny K. Sneed
    • 2
  • David A. Larson
    • 3
  • Michael W. McDermott
    • 1
  1. 1.Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Department of Neurological Surgery and Radiation OncologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations