Skip to main content

Abstract

Technological advances in medical imaging, treatment planning, and radiation dose delivery have led to dramatic improvements in all treatment capabilities including radiosurgery. It is now possible to recognize intraocular tumors and other ophthalmologic diseases at an early stage because physicians are generally more aware and because of the availability and use of both direct and indirect ophthalmoscopy, fluorescein angiography, ultrasonography, and magnetic resonance imaging. The basic advantage of radiosurgery is the possibility of applying relatively high doses in a single session to well-defined intracranial targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lunsford LD, Kondziolka D, Flickinger JC. Gamma Knife Brain Surgery. Progress in Neurological Surgery, Vol. 14. Basel: Karger AG, 1998.

    Google Scholar 

  2. Gildenberg PL, Tasker RR. Textbook of Stereotactic and Functional Neurosurgery. New York: McGraw-Hill, 1998.

    Google Scholar 

  3. Tokuuye K, Akine Y, Sumi M, et al. Fractionated stereotactic radiotherapy for choroidal melanoma. Radiother Oncol 1997; 43:87–91.

    Article  CAS  PubMed  Google Scholar 

  4. Zehetmayer M, Menapace R, Kitz K, Ertl A. Suction fixation system for stereotactic radiosurgery of intraocular malignancies. Ophthalmologica 1994; 208:119–121.

    Article  CAS  PubMed  Google Scholar 

  5. Langmann G, Pendl G, Schröttner O. Gamma knife of uveal melanoma radiosurgery for intraocular melanomas. Preliminary report. Spectrum Augenheilkd 1995; 9(Suppl 1):16–21.

    Article  Google Scholar 

  6. Šimonová G, Novotný J Jr, Liščák R, Pilbauer J. Leksell gamma knife treatment of uveal melanoma. J Neurosurg 2002; 97(Suppl 5):635–639.

    PubMed  Google Scholar 

  7. Vladyka V, Liščák R, Šimonová G, et al. Progress in glaucoma tretament research: a nonrandomized prospective study of 102 patients with advanced refractory glaucoma treated by Leksell gamma knife radiation. J Neurosurg 2005; 102(Suppl):214–219.

    Article  PubMed  Google Scholar 

  8. Bellmann C, Fuss M, Holz FG. Stereotactic radiation therapy for malignant choroidal tumors, preliminary, short-term results. Ophthalmology 2000; 107:358–365.

    Article  CAS  PubMed  Google Scholar 

  9. Debus J, Fuss M, Engenhart-Cabillic R. Stereotaktische Konformierende Bestrahlung von Aderhautmetastasen. Ophthalmologe 1998; 95:163–167.

    Article  CAS  PubMed  Google Scholar 

  10. Courdi A, Caujolle JP, Grange JD. Results of proton therapy of uveal melanomas treated in Nice. Int J Radiat Oncol Biol Phys 1999; 45:5–11.

    CAS  PubMed  Google Scholar 

  11. Petersch B, Bogner J, Dieckmann K, et al. Automatic real-time surveillance of eye position and gateing for stereotactic radiotherapy of uveal melanoma. Med Phys 2004; 31:3521–3527.

    Article  PubMed  Google Scholar 

  12. Novotny J Jr, Vymazal J, Novotny J, et al. Does new magnetic resonance imaging technology provide better geometrical accurac during stereotactic imaging? J Neurosurg 2005; 102(Suppl):8–13.

    Article  PubMed  Google Scholar 

  13. Fransson A, Andreo P, Pötter R. Aspects of MRI image distortions in radiotherapy treatment planning. Strahlenther Onkol 2001; 177:59–73.

    Article  CAS  PubMed  Google Scholar 

  14. Walton L, Hampshire A, Forster D. Accuracy of stereotactic localization using magnetic resonance imaging. A comparison between two-and three-dimensional studies. Stereotact Funct Neurosurg 1996; 66(Suppl):49–56.

    Article  PubMed  Google Scholar 

  15. Georg D, Dieckmann K, Bogner J, et al. Impact of micromultileaf collimator on stereotactic radiotherapy of uveal melanoma. Int J Radiat Oncol Biol Phys 2003; 55:881–891.

    PubMed  Google Scholar 

  16. Sing AD, Topham A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology 2003; 110(5):956–961.

    Article  Google Scholar 

  17. Egan KM, Seddon JM, Glynn RJ, et al. Epidemiologic aspects of uveal melanoma. Surv Ophthalmol 1998; 116:366–370.

    CAS  Google Scholar 

  18. Margo CE, Mc Lean IW. Malignant melanoma of the chorioid and ciliary body in black patients. Arch Ophthalmol 1984; 102:77–79.

    CAS  PubMed  Google Scholar 

  19. Fine SL, Straastma BR, Earle JD, et al. Failure of preenucleation radiation to decrease uveal melanoma mortality: the Collaborative Ocular Melanoma Study Steering Committee. Am J Opthalmol 1989; 107(4):440–442.

    CAS  Google Scholar 

  20. Collaborative Ocular Melanoma Study Group. Histopathologic characteristics of uveal melanomas in eyes enucleated from Collaborative Ocular Melanoma Study: COMS report No. 6. Am J Ophthalmol 1998; 125:745–766.

    Article  Google Scholar 

  21. Manschot WA, van Strik R. Uveal melanoma: therapeutic consequences of doubling times and irradiation results. Opthalmology 1992; 16:91–99.

    CAS  Google Scholar 

  22. Straasma BR, Fine SL, Early JD, et al. Enucleation versus plaque irradiation for chorioidal melanoma. Ophthalmology 1988; 95:1000–1004.

    Google Scholar 

  23. Damato BE, Paul J, Foulds WS. Risk factors for residual and recurrent uveal melanoma after trans-scleral local resection. Br J Ophthalmol 1996; 80:102–1088.

    Article  CAS  PubMed  Google Scholar 

  24. Finger PT. Radiation therapy for chorioidal melanoma (therapeutic review). Surv Ophthalmol 1997; 42:215–232.

    Article  CAS  PubMed  Google Scholar 

  25. Nag S, Quivey JM, Earle JD. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int J Radiat Oncol Biol Phys 2003; 56(2):544–555.

    Article  PubMed  Google Scholar 

  26. Karvat A, Duzenli C, Ma R, et al. The treatment of chorioidal melanoma with 198 Au plaque brachytherapy. Radiother Oncol 2001; 59:153–156.

    Article  CAS  PubMed  Google Scholar 

  27. The Collaborative Ocular Melanoma Study (COMS). Randomized trial of I-125 brachytherapy for medium chorioideal melanoma. III. Initial mortality findings. COMS report, 2001. Arch Ophthalmol 119:969–982.

    Google Scholar 

  28. Potter CL, Shields CL, Shields JA, et al. Plaque radiotherapy for juxtapapillary chorioidal melanoma. Arch Ophthalmol 1996; 114:1357–1365.

    PubMed  Google Scholar 

  29. Fontanesi J, Meyer D, Shizhao X, et al. Treatment of chorioidal melanoma with I-125 plaque. Int J Radiat Oncol Biol Phys 1993; 26:619–623.

    CAS  PubMed  Google Scholar 

  30. Packer S, Rotman M, Slaniotro P. Iodine-125 irradiation of chorioidal melanoma: clinical experience. Ophthalmology 1984; 91:1700–1708.

    CAS  PubMed  Google Scholar 

  31. Char DH, Quivey JM, Astro JR, et al. Helium ions versus iodine 125 brachytherapy in the management of uveal melanoma. A prospective, randomized, dynamically balanced trial. Ophthalmology 1993; 100:1547–1554.

    CAS  PubMed  Google Scholar 

  32. Lommatzch PK. Results after beta-irradiation (106 Ru/106 Rh) melanomas: 20 years’ experience. Br J Ophthalmol 1986; 70:844–885.

    Article  Google Scholar 

  33. Potter R, Jansen K, Prott FJ. Ruthenium-106 eye plaque brachytherapy in the conservative treatment of uveal melanoma: evaluation of 175 patients treated with 150 Gy from 1981 to 1989. Front Radiat Oncol 1997; 30:143–149.

    CAS  Google Scholar 

  34. Finger PT, Berson A, Syechter A. Palladium-103 plaque radiotherapy for chorioidal melanoma: an 11-year study. Int J Radiat Oncol Biol Phys 2002; 54(5):1438–1445.

    PubMed  Google Scholar 

  35. Egger E, Zografos L, Giotein G. Proton beam irradiation of chorioidal melanoma: techniques and results. In: Sagerman KH, Alberti WE, eds. Radiotherapy of Intraocular and Orbital Tumors, 2nd rev. ed. Berlin: Springer-Verlag, 2003:67–80.

    Google Scholar 

  36. Seddon JM, Gragoudas ES, Albert DM, et al. Comparison of survival for patients with uveal melanoma after treatment with proton beam irradiation. Am J Ophthalmol 1985; 99:282–290.

    CAS  PubMed  Google Scholar 

  37. Egan KM, Gragoudas ES, Seddon JM. The risk of enucleation after proton beam irradiation of uveal melanoma. Ophthalmology 1989; 96:1377–1382.

    CAS  PubMed  Google Scholar 

  38. Gragoudas ES, Egan KM, Seddon JM, et al. Intraocular recurrence of uveal melanoma after proton beam irradiation. Ophthalmology 1992; 99:760–766.

    CAS  PubMed  Google Scholar 

  39. Seddon JM, Gragoudas ES, Albert DM, et al. Visual outcome after proton beam irradiation of uveal melanoma. Ophthalmology 1986; 93:666–674.

    CAS  PubMed  Google Scholar 

  40. Seddon JM, Gragoudas ES, Albert DM. Comparison of survival rates for patients with uveal melanoma after treatment with proton beam irradiation or enucleation. Am J Ophthalmol 1985; 99:282–290.

    CAS  PubMed  Google Scholar 

  41. Gragoudas ES, Seddon JM, Egan K. A randomized controlled trial of varying radiation doses in the treatment of chorioidal melanoma. Arch Ophthalmol 2001; 18:773–778.

    Google Scholar 

  42. Castro JR, Char DH, Petti PL, et al. 15 years experience with helium ion therapy for uveal melanoma. Int J Radiat Oncol Biol Phys 1997; 39:989–996.

    CAS  PubMed  Google Scholar 

  43. Char DH, Castro JR, Quivey JM, et al. Helium charged particle therapy for chorioidal melanoma. Ophthalmology 1980; 87:565–570.

    CAS  PubMed  Google Scholar 

  44. Char DH, Saunders W, Castro JR. Helium ion therapy for chorioidal melanoma. Ophthalmology 1983; 90:1219–1225.

    CAS  PubMed  Google Scholar 

  45. Char DH, Kroll SM, Castro J. Ten-year follow up of helium ion therapy for uveal melanoma. Am J Ophthalmol 1998; 125:81–89.

    Article  CAS  PubMed  Google Scholar 

  46. Bogner J, Petersch B, Goerg D, et al. A noninvasive eye fixation and computer-aided eye minitoring system for linear acceleratorbased stereotactic radiotherapy of uveal melanoma. Int J Radiat Oncol Biol Phys 2003; 56(4):1128–1136.

    Article  PubMed  Google Scholar 

  47. Dieckmann K, Georg D, Zehetmayer M, et al. Linac based stereotactic radiotherapy of uveal melanoma: 4 years clinical experince. Radiother Oncol 2003; 67:199–206.

    Article  PubMed  Google Scholar 

  48. Zehetmayer M, Kitz K, Menapace R, et al. Local tumor control and morbidity after one to three fractions of stereotactic external beam irradiation for uveal melanoma. Radiother Oncol 2000; 55:135–144.

    Article  CAS  PubMed  Google Scholar 

  49. Zehetmayer M, Menapace R, Kitz K, et al. Stereotactic irrradiation of uveal melanoma with Leksell gamma unit. Front Radiat Ther Oncol 1997; 30:47–55.

    CAS  PubMed  Google Scholar 

  50. Zehetmayer M, Menapace R, Kitz K, et al. Stereotactic irradiation of uveal melanoma with Leksell gamma unit. In: Weigel T, Bornfeld N, Foester MH, Hinkelbein W, eds. Radiotherapy of Ocular Disease. Basel: Karger, 1997:165–177.

    Google Scholar 

  51. Marchini G, Gerosa M, Piovan E, et al. Gamma Knife stereotactic radiosurgery for uveal melanoma: clinical results after 2 years. Stereotact Funct Neurosurg 1996; 66(Suppl 1):208–213.

    Article  PubMed  Google Scholar 

  52. Rand RW, Khonsary A, Brown WJ, et al. Leksell stereotactic radiosurgery in the treatment of eye melanoma. Neurol Res 1987; 9:142–146.

    CAS  PubMed  Google Scholar 

  53. Rennie I, Forster D, Kemeny A, et al. The use of single fraction Leksell stereotactic radiosurgery in the treatment of uveal melanoma. Acta Ophthalmol Scand 1996; 74:558–562.

    Article  CAS  PubMed  Google Scholar 

  54. LENT SOMA tables. Radiother Oncol 1995; 35:17–60.

    Article  Google Scholar 

  55. Leer JWH, Van Houtte P, Davelaar J. Indications and treatment schedules for irradiation of benign diseases: a survey. Radiother Oncol 1998; 48(3):249–257.

    Article  CAS  PubMed  Google Scholar 

  56. Kim MK, Char DH, Castro JL, et al. Neovascular glaucoma after helium ion irradiation for uveal melanoma. Ophthalmology 1986; 93:189–193.

    CAS  PubMed  Google Scholar 

  57. Park SS, Walsh SM, Gragoudas ES. Visual field deficits associated with proton beam irradiation for parapapillary chorioidal melanoma. Ophthalmology 1996; 103:110–116.

    CAS  PubMed  Google Scholar 

  58. Saornil MA, Egan KM, Gragoudas ES, et al. Histopathology of proton beam-irradiated vs enucleated uveal melanomas. Arch Ophthalmol 1992; 110:1112–1118.

    CAS  PubMed  Google Scholar 

  59. Augsburger JJ, Gonder JR, Amsel J, et al. Growth rates and doubling times of posterior uveal melanomas. Arch Ophthalmol 1984; 91:1709–1715.

    CAS  Google Scholar 

  60. Sahel JA, Pesavento R, Frederick AR, et al. Melanoma arising de novo over a 16-months period. Arch Ophtalmol 1988; 106:381–385.

    Article  CAS  Google Scholar 

  61. Bloch RS, Gartner S. The incidence of ocular metastatic carcinoma. Arch Ophthalmol 1971; 85:673–675.

    CAS  PubMed  Google Scholar 

  62. Rudoler SB, Corn BW, Shileds C, et al. External beam irradiation for chorioid metastases: identification of factors predisposing to long-term sequelae. Int J Radiat Oncol Biol Phys 1997; 38(2):2551–256.

    Google Scholar 

  63. Bhatia S, Paulino A, Buatii JM. Curative radiotherapy for primary orbital lymphoma. Int J Radiat Oncol Biol Phys 2002; 54(3):818–823.

    PubMed  Google Scholar 

  64. Berson AM, Finger PT, Sherr DL. Radiotherapy for age-related macular degeneration: preliminary results of a potentially new treatment. Int J Radiat Oncol Biol Phys 1996; 36(4):861–865.

    CAS  PubMed  Google Scholar 

  65. Slater JM, Archambeau JO, Miller D, et al. The proton treatment center at Loma Linda University Medical Center: rationale for the description of its development. Int J Radiat Oncol Biol Phys 1991; 22:383–389.

    Google Scholar 

  66. Macular Ophthalmolocoagulation Study Group. Laser photocoagulation of subuveal neovascular lesions in age-related macular degeneration: results of a randomized clinical trial. Arch Ophthalmol 1991; 109:1220–1231.

    Google Scholar 

  67. Haas A, Papaefthymiou G, Langmann G. Gamma knife treatment of subfoveal, classic neovascularization in age-related macular degeneration: a pilot study. J Neurosurg 2000; 93(Suppl 3):172–176.

    PubMed  Google Scholar 

  68. Fuchs HJ, Nissen KR, Goldschmidt E. Glaucoma blindness in Denmark. Acta Ophtalmol 1992; 70:73–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Šimonová, G., Lisčák, R., Novotný, J. (2008). Ocular and Orbital Lesions. In: Chin, L.S., Regine, W.F. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71070-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71070-9_61

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-71069-3

  • Online ISBN: 978-0-387-71070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics