Skip to main content

Abstract

There are convincing arguments for investigating the potential role of radiosurgery in epilepsy surgery. We know that:

  • Radiosurgery (since its introduction in the 1950s) has been demonstrated to have advantages in terms of safety and efficacy, for the treatment of numerous small, deeply seated intracerebral lesions.

  • Radiosurgical treatment of small cortico-subcortical lesions associated with epilepsy has been demonstrated to lead to seizure cessation in a high percentage (58% to 80% in arteriovenous malformation) of cases, long before the expected treatment of the lesion and sometimes even in spite of failing to cure the lesion itself.

  • Radiotherapeutic treatment of intractable epilepsies with or without space-occupying lesions can lead to a reduction in seizure frequency and/or severity.

  • Experimental models of epilepsies treated with radiation therapy have demonstrated a dose-dependent positive effect of radiation on the frequency and severity of the seizures and on the extent of discharge propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chirurg Scand 1951; 102:316–319.

    CAS  Google Scholar 

  2. Leksell L. Sterotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand 1971; 137:311–314.

    CAS  PubMed  Google Scholar 

  3. Lindquist C, Kihlstrom L, Hellstrand E. Functional neurosurgery & 3—a future for the gamma knife? Stereotact Funct Neurosurg 1991; 57:72–81.

    Article  CAS  PubMed  Google Scholar 

  4. Talairach J, Bancaud J, Szikla G, et al. Approche nouvelle de la neurochirurgie de l’epilepsie. Méthodologie stéréotaxique et résultats thérapeutiques. Neurochirurgie 1974; 20:92–98.

    Google Scholar 

  5. Talairach J, Bancaud J, Szikla G, et al. Approche nouvelle de la neurochirurgie de l’epilepsie. Méthodologie stéréotaxique et résultats thérapeutiques. In: Congrés Annuel de la Société de Langue Française, eds. Neurochirurgie. Marseille: Masson, 1974:205–213.

    Google Scholar 

  6. Elomaa E. Focal irradiation of the brain: an alternative to temporal lobe resection in intractable focal epilepsy? Med Hypotheses 1980; 6:501–503.

    Article  CAS  PubMed  Google Scholar 

  7. Baudouin M, Stuhl L, Perrard A. Un cas d’épilepsie focale traité par la radiothérapie. Rev Neurol 1951; 84:60–63.

    CAS  PubMed  Google Scholar 

  8. Von Wieser W. Die Roentgentherapie der traumatischen Epilepsie. Mschr Psychiat Neurol 1939; 101:422–424.

    Google Scholar 

  9. Heikkinen ER, Konnov B, Melnikow L. Relief of epilepsy by radiosurgery of cerebral arteriovenous malformations. Stereotact Funct Neurosurg 1989; 53:157–166.

    Article  CAS  PubMed  Google Scholar 

  10. Rogers L, Morris H, Lupica K. Effect of cranial irradiation on seizure frequency in adults with low-grade astrocytoma and medically intractable epilepsy. Neurology 1993; 43:1599–1601.

    CAS  PubMed  Google Scholar 

  11. Rossi G, Scerrati M, Roselli R. Epileptogenic cerebral low grade tumors: effect of interstital stereotactic irradiation on seizures. Appl Neurophysiol 1985; 48:127–132.

    CAS  PubMed  Google Scholar 

  12. Barcia-Salorio JL, Vanaclocha V, Cerda M, Roldan P. Focus irradiation in epilepsy. Experimental study in the cat. Appl Neurophysiol 1985; 48:152.

    Google Scholar 

  13. Gaffey C, Monotoya V, Lyman J, Howard J. Restriction of the spread of epileptic discharges in cats by mean of Bragg Peak intracranial irradiation. Int J Appl Radiat Isotope 1981; 32:779–787.

    Article  CAS  Google Scholar 

  14. Chen ZF, Kamiryo T, Henson SL, et al. Anticonvulsant effects of gamma surgery in a model of chronic spontaneous limbic epilepsy in rats. J Neurosurg 2001; 94:270–280.

    Article  CAS  PubMed  Google Scholar 

  15. Maesawa S, Kondziolka D, Dixon C, et al. Subnecrotic stereotactic radiosurgery controlling epilepsy produced by kainic acid injection in rats. J Neurosurg 2000; 93:1033–1040.

    Article  CAS  PubMed  Google Scholar 

  16. Mori Y, Kondziolka D, Balzer J, et al. Effects of stereotactic radiosurgery on an animal model of hippocampal epilepsy. Neurosurgery 2000; 46:157–165; discussion 165–158.

    Article  CAS  PubMed  Google Scholar 

  17. Ronne-Engström E, Kihlström L, Flink R, et al. Gamma Knife surgery in epilepsy: an experimental model in the rat. Presented at European Society for Stereotactic and Functional Neurosurgery, 1993.

    Google Scholar 

  18. Barcia-Salorio JL, Garcia JA, Hernandez G, Lopez-Gomez L. Radiosurgery of epilepsy: long-term results. Presented at European Society for Stereotactic and Functional Neurosurgery, 1993.

    Google Scholar 

  19. Lindquist C. Gamma knife surgery in focal epilepsy. 1 year followup in 4 cases. 1992.

    Google Scholar 

  20. Lindquist C, Hellstrand E, Kilström L, et al. Stereotactic localisation of epileptic foci by magnetoencephalography and MRI followed by gamma surgery. Presented at International Stereotactic Radiosurgery Symposium, 1991.

    Google Scholar 

  21. Lindquist C, Kihlström L, Hellstrand E, Knutsson E. Stereotactic radiosurgery instead of conventional epilepsy surgery. Presented at European Society for Stereotactic and Functional Neurosurgery, 1993.

    Google Scholar 

  22. Regis J, Bartolomei F, Hayashi M, et al. The role of gamma knife surgery in the treatment of severe epilepsies. Epileptic Disord 2000; 2:113–122.

    CAS  PubMed  Google Scholar 

  23. Regis J, Bartolomei F, de Toffol B, et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Neurosurgery 2000; 47:1343–1351; discussion 1351–1342.

    Article  CAS  PubMed  Google Scholar 

  24. Régis J, Hayashi M, Perez Eupierre L, et al. Gamma Knife surgery for epilepsy related to hypothalamic hamartomas. Acta Neurochir 2004; 91:33–50.

    Google Scholar 

  25. Régis J, Bartolomei F, Rey M, et al. Gamma knife surgery for mesial temporal lobe epilepsy. Epilepsia 1999; 40:1551–1556.

    Article  PubMed  Google Scholar 

  26. Regis J, Bartolomei F, Rey M, et al. Gamma knife surgery for mesial temporal lobe epilepsy. J Neurosurg 2000; 93(Suppl 3):141–146.

    PubMed  Google Scholar 

  27. Regis J, Bartolomei F, Hayashi M, Chauvel P. Gamma Knife surgery, a neuromodulation therapy in epilepsy surgery! Acta Neurochir Suppl 2002; 84:37–47.

    CAS  PubMed  Google Scholar 

  28. Régis J, Kerkerian-Legoff L, Rey M, et al. First biochemical evidence of differential functional effects following gamma knife surgery. Stereotact Funct Neurosurg 1996; 66:29–38.

    Article  PubMed  Google Scholar 

  29. Regis J, Levivier M. Radiosurgery for intractable epilepsy. Tech Neurosurg 2003; 9:191–203.

    Article  Google Scholar 

  30. Régis J, Peragut JC, Rey M, et al. First selective amygdalohippocampic radiosurgery for mesial temporal lobe epilepsy. Stereotact Funct Neurosurg 1994; 64:191–201.

    Google Scholar 

  31. Regis J, Roberts D. Gamma Knife radiosurgery relative to microsurgery: epilepsy. Stereotact Funct Neurosurg 1999; 72(Suppl 1):11–21.

    PubMed  Google Scholar 

  32. Regis J, Semah F, Bryan R, et al. Early and delayed MR and PET changes after selective temporomesial radiosurgery in mesial temporal lobe epilepsy. AJNR Am J Neuroradiol 1999; 20:213–216.

    CAS  PubMed  Google Scholar 

  33. Deonna T, Ziegler AL. Hypothalamic hamartoma, precocious puberty and gelastic seizures: a special model of “epileptic” developmental disorder. Epileptic Disord 2000; 2:33–37.

    CAS  PubMed  Google Scholar 

  34. Kuzniecky R, Guthrie B, Mountz J, et al. Intrinsic epileptogenesis of hypothalamic hamartomas in gelastic epilepsy. Ann Neurol 1997; 42:60–67.

    Article  CAS  PubMed  Google Scholar 

  35. Munari C, Kahane P, Francione S, et al. Role of the hypothalamic hamartoma in the genesis of gelastic fits (a video-stereo-EEG study). Electroencephalogr Clin Neurophysiol 1995; 95:154–160.

    Article  CAS  PubMed  Google Scholar 

  36. Arita K, Ikawa F, Kurisu K, et al. The relationship between magnetic resonance imaging findings and clinical manifestations of hypothalamic hamartoma. J Neurosurg 1999; 91:212–220.

    Article  CAS  PubMed  Google Scholar 

  37. Valdueza JM, Cristante L, Dammann O, et al. Hypothalamic hamartomas: with special reference to gelastic epilepsy and surgery. Neurosurgery 1994; 34:949–958; discussion 958.

    Article  CAS  PubMed  Google Scholar 

  38. Palmini et al.

    Google Scholar 

  39. Rosenfeld JV, Harvey AS, Wrennall J, et al. Transcallosal resection of hypothalamic hamartomas, with control of seizures, in children with gelastic epilepsy. Neurosurgery 2001; 48:108–118.

    Article  CAS  PubMed  Google Scholar 

  40. Pascual-Castroviejo I, Moneo JH, Viano J, et al. [Hypothalamic hamartomas: control of seizures after partial removal in one case]. Rev Neurol 2000; 31:119–122.

    CAS  PubMed  Google Scholar 

  41. Watanabe T, Enomoto T, Uemura K, et al. [Gelastic seizures treated by partial resection of a hypothalamic hamartoma]. No Shinkei Geka 21998; 6:923–928.

    Google Scholar 

  42. Cascino GD, Andermann F, Berkovic SF, et al. Gelastic seizures and hypothalamic hamartomas: evaluation of patients undergoing chronic intracranial EEG monitoring and outcome of surgical treatment. Neurology 1993; 43:747–750.

    CAS  PubMed  Google Scholar 

  43. Regis J, Bartolomei F, Hayashi M, Chauvel P. What role for radiosurgery in mesial temporal lobe epilepsy. Zentralbl Neurochir 2002; 63:101–105.

    Article  CAS  PubMed  Google Scholar 

  44. Regis J, Rey M, Bartolomei F, et al. Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia 2004; 45:504–515.

    Article  PubMed  Google Scholar 

  45. Regis Y, Roberts DW. Gamma Knife radiosurgery relative to microsurgery: epilepsy. Stereotact Funct Neurosurg 1999; 72:11–21.

    Article  PubMed  Google Scholar 

  46. Hayashi M, Bartolomei F, Rey M, et al. MR changes after Gamma knife radiosurgery for mesial temporal lobe epilepsy: an evidence for the efficacy of subnecrotic doses. In: Kondziolka D, ed. Radiosurgery. Basel: Karger, 2002:192–202.

    Chapter  Google Scholar 

  47. Hayashi M, Regis J, Hori T. [Current treatment strategy with gamma knife surgery for mesial temporal lobe epilepsy]. No Shinkei Geka 2003; 31:141–155.

    PubMed  Google Scholar 

  48. Bartolomei et al.

    Google Scholar 

  49. Srikijvilaikul T, Najm I, Foldvary-Schaefer N, et al. Failure of gamma knife radiosurgery for mesial temporal lobe epilepsy: report of five cases. Neurosurgery 2004; 54:1395–1402; discussion 1402–1394.

    Article  PubMed  Google Scholar 

  50. Barbaro N, Larson D, Laxer K, McDermott M. Radiosurgical treatment of temporal lobe epilepsy. In: Society AE, ed. 2004.

    Google Scholar 

  51. Martinez R, Gil-Nagel A. Epilepsy surgery with Gamma Knife in MTLE. Presented at International Stereotactic Radiosurgery Symposium, Bruxelles, 2005.

    Google Scholar 

  52. Cmelak AJ, Abou-Khalil B, Konrad PE, et al. Low-dose stereotactic radiosurgery is inadequate for medically intractable mesial temporal lobe epilepsy: a case report. Seizure 2001; 10:442–446.

    CAS  PubMed  Google Scholar 

  53. Kawai K, Suzuki I, Kurita H, et al. Failure of low-dose radiosurgery to control temporal lobe epilepsy. J Neurosurg 2001; 95:883–887.

    Article  CAS  PubMed  Google Scholar 

  54. Yang KJ, Wang KW, Wu HP, Qi ST. Radiosurgical treatment of intractable epilepsy with low radiation dose. Di Yi Jun Yi Da Xue Xue Bao 2002; 22:645–647.

    PubMed  Google Scholar 

  55. Kihlström L, Guo WY, Lindquist C, Mindus P. Radiobiology of radiosurgey for refractory anxiety disorders. Neurosurgery 1995; 36:294–302.

    Article  PubMed  Google Scholar 

  56. Kihlstrom L, Hindmarsh T, Lax I, et al. Radiosurgical lesions in the normal human brain 17 years after gamma knife capsulotomy. Neurosurgery 1997; 41:396–401; discussion 401–392.

    Article  CAS  PubMed  Google Scholar 

  57. Barcia-Salorio JL, Barcia JA, Hernandez G, Lopez-Gomez L. Radiosurgery of epilepsy. Long-term results. Acta Neurochir Suppl (Wien) 1994; 62:111–113.

    CAS  Google Scholar 

  58. Grabenbauer GG, Reinhold C, Kerling F, et al. Frationated stereotactically guided radiotherapy of pharmacoresistant temporal lobe epilepsy. Acta Neurochirurg 2002; 84:65–70.

    CAS  Google Scholar 

  59. Stefan H, Hummel C, Grabenbauer GG, et al. Successful treatment of focal epilepsy by fractionated stereotactic radiotherapy. Eur Neurol 1998; 39:248–250.

    CAS  PubMed  Google Scholar 

  60. Sun B, deSalles AA, Medin PM, et al. Reduction of hippocampalkindled seizure activity in rats by stereotactic radiosurgery. Exp Neurol 1998; 154:691–695.

    Article  CAS  PubMed  Google Scholar 

  61. Jenrow KA, Ratkewicz AE, Lemke NW, et al. Effects of kindling and irradiation on neuronal density in the rat dentate gyrus. Neurosci Lett 2004; 371:45–50.

    Article  CAS  PubMed  Google Scholar 

  62. Bartolomei F, Wendling F, Bellanger J, et al. Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin Neurophysiol 2001; 112:1746–1760.

    Article  CAS  PubMed  Google Scholar 

  63. Spencer S, Spencer D. Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 1994; 35:721–727.

    Article  CAS  PubMed  Google Scholar 

  64. Flickinger JC. An integrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys 1989; 17:879–885.

    CAS  PubMed  Google Scholar 

  65. Régis J, Bartolomei F, Kida Y, et al. Radiosurgery of epilepsy associated with Cavernous malformation: retrospective study in 49 patients. Neurosurgery 2000; 47:1091–1097.

    Article  PubMed  Google Scholar 

  66. Jones R, Heinemann U, Lambert J. The entorhinal cortex and generation of seizure activity: studies of normal synaptic transmission and epileptogenesis in vitro. In: Avanzini G, Engel J, Fariello R, Heinemann U, eds. Neurotransmitters in Epilepsy. Baltimore: Elsevier, 1992:173–180.

    Google Scholar 

  67. Wilson W, Swartzwelder H, Anderson W, Lewis D. Seizure activity in vitro: a dual focus model. Epilepsy Res 1988; 2:289–293.

    Article  CAS  PubMed  Google Scholar 

  68. Wieser HG, Siegel AM, Yasargil GM. The Zurich amygdalohippocampectomy series: a short up-date. Acta Neurochir Suppl (Wien) 1990; 50:122–127.

    CAS  Google Scholar 

  69. Whang CJ, Kwon Y. Long-term follow-up of stereotactic Gamma Knife radiosurgery in epilepsy. Stereotact Funct Neurosurg 1996; 66(Suppl 1):349–356.

    Article  PubMed  Google Scholar 

  70. Kitchen N. Experimental and clinical studies on the putative therapeutic efficacy of cerebral irradiation (radiotherapy) in epilepsy. Epilepsy Res 1995; 20:1–10.

    Article  CAS  PubMed  Google Scholar 

  71. Glosser G, McManus P, Munzenrider J, et al. Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors. Int J Radiat Oncol Biol Phys 1997; 38:231–239.

    CAS  PubMed  Google Scholar 

  72. McCord MW, Buatti JM, Fennell EM, et al. Radiotherapy for pituitary adenoma: long-term outcome and sequelae. Int J Radiat Oncol Biology Phys 1997; 39:437–444.

    Article  CAS  Google Scholar 

  73. Strojan P, Popovic M, Jereb B. Secondary intracranial meningiomas after high-dose cranial irradiation: report of five cases and review of the literature. Int J Radiat Oncol Biol Phys 2000; 48:65–73.

    Article  CAS  PubMed  Google Scholar 

  74. Simmons NE, Laws E. Gliomas occurence after sellar irradiation: case report and review. Neurosurgery 1998; 42:172–178.

    Article  CAS  PubMed  Google Scholar 

  75. Kaido T, Hoshida T, Uranishi R, et al. Radiosurgery-induced brain tumor. Case report. J Neurosurg 2001; 95:710–713.

    Article  CAS  PubMed  Google Scholar 

  76. Shamisa A, Bance M, Nag S, et al. Glioblastoma multiforme occurring in a patient treated with gamma knife surgery. Case report and review of the literature. J Neurosurg 2001; 94:816–821.

    Article  CAS  PubMed  Google Scholar 

  77. Yu JS, Yong WH, Wilson D, Black KL. Glioblastoma induction after radiosurgery for meningioma. Lancet 2000; 356:1576–1577.

    Article  CAS  PubMed  Google Scholar 

  78. Cahan W, Woodard H, Higginbotham N, et al. Sarcoma arising in irradiated bone: report of eleven cases. Cancer 1948; 1:3–29.

    Article  CAS  PubMed  Google Scholar 

  79. Ganz JC. Gamma knife radiosurgery and its possible relationship to malignancy: a review. J Neurosurg 2002; 97:644–652.

    PubMed  Google Scholar 

  80. Ficker D, So E, Shen W. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology 1998; 51:1270–1274.

    CAS  PubMed  Google Scholar 

  81. Sperling M, Feldman H, Kinman J, et al. Seizure control and mortality in epilepsy. Ann Neurol 1999; 46:45–50.

    Article  CAS  PubMed  Google Scholar 

  82. Shrottner et al.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Régis, J., Bartolomei, F., Chauvel, P. (2008). Intractable Epilepsies. In: Chin, L.S., Regine, W.F. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71070-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71070-9_59

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-71069-3

  • Online ISBN: 978-0-387-71070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics