Skip to main content

Radiobiological Principles Underlying Stereotactic Radiation Therapy

  • Chapter
Book cover Principles and Practice of Stereotactic Radiosurgery
  • 1673 Accesses

Abstract

Since the Gamma Knife was first conceived in 1968, primarily for arterial and functional lesions [1], single-fractioned stereotactic radiation therapy* has been increasingly used to treat a variety of cerebral lesions. By 1985, an alternative modality was available for stereotactic radiation therapy, using a linear accelerator (linac) and a stereotactic head frame [4], [5]. Recently, the CyberKnife, a frameless robotic system, has been developed for stereotactic radiation therapy [6], and intensity-modulated stereotactic radiation therapy [7], [8] is now entering clinical practice.

Note the term stereotactic radiation therapy will be used here to apply both to single-fraction treatment (often called radiosurgery) and to multiple-fractioned stereotactic radiotherapy. There is still debate about the most appropriate terminology [2], [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand 1968; 134:585–595.

    CAS  PubMed  Google Scholar 

  2. Lunsford LD, Flickinger JC, Larson D. Regarding: Rosenthal DI, Glatstein E. “We’ve Got a Treatment, but What’s the Disease?” Oncologist 1996; 1. Oncologist 1997; 2:59–61.

    PubMed  Google Scholar 

  3. Adler JR Jr, Colombo F, Heilbrun MB, et al. Toward an expanded view of radiosurgery. Neurosurgery 2004; 55:1374–1376.

    Article  PubMed  Google Scholar 

  4. Colombo F, Benedetti A, Pozza F, et al. External stereotactic irradiation by linear accelerator. Neurosurgery 1985; 16:154–160.

    Article  CAS  PubMed  Google Scholar 

  5. Houdek PV, Fayos JV, Van Buren JM, et al. Stereotaxic radiotherapy technique for small intracranial lesions. Med Phys 1985; 12:469–472.

    Article  CAS  PubMed  Google Scholar 

  6. Adler JR Jr, Chang SD, Murphy MJ, et al. The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 1997; 69:124–128.

    Article  PubMed  Google Scholar 

  7. Benedict SH, Cardinale RM, Wu Q, et al. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys 2001; 50:751–758.

    CAS  PubMed  Google Scholar 

  8. Leavitt DD, Watson G, Tobler M, et al. Intensity-modulated radiosurgery/radiotherapy using a micromultileaf collimator. Med Dosim 2001; 26:143–150.

    Article  CAS  PubMed  Google Scholar 

  9. Pozza F, Colombo F, Chierego G, et al. Low-grade astrocytomas: treatment with unconventionally fractionated external beam stereotactic radiation therapy. Radiology 1989; 171:565–569.

    CAS  PubMed  Google Scholar 

  10. Heifetz MD, Whiting J, Bernstein H, et al. Stereotactic radiosurgery for fractionated radiation: a proposal applicable to linear accelerator and proton beam programs. Stereotact Funct Neurosurg 1989; 53:167–177.

    Article  CAS  PubMed  Google Scholar 

  11. Hariz MI, Henriksson R, Lofroth PO, et al. A non-invasive method for fractionated stereotactic irradiation of brain tumors with linear accelerator. Radiother Oncol 1990; 17:57–72.

    Article  CAS  PubMed  Google Scholar 

  12. Delannes M, Daly NJ, Bonnet J, et al. Fractionated radiotherapy of small inoperable lesions of the brain using a non-invasive stereotactic frame. Int J Radiat Oncol Biol Phys 1991; 21:749–755.

    CAS  PubMed  Google Scholar 

  13. Brenner DJ, Martel MK, Hall EJ. Fractionated regimens for stereotactic radiotherapy of recurrent tumors in the brain. Int J Radiat Oncol Biol Phys 1991; 21:819–824.

    CAS  PubMed  Google Scholar 

  14. Souhami L, Olivier A, Podgorsak EB, et al. Fractionated stereotactic radiation therapy for intracranial tumors. Cancer 1991; 68:2101–2108.

    Article  CAS  PubMed  Google Scholar 

  15. Schwade JG, Houdek PV, Landy HJ, et al. Small-field stereotactic external-beam radiation therapy of intracranial lesions: fractionated treatment with a fixed-halo immobilization device. Radiology 1990; 176:563–565.

    CAS  PubMed  Google Scholar 

  16. Gill SS, Thomas DG, Warrington AP, et al. Relocatable frame for stereotactic external beam radiotherapy. Int J Radiat Oncol Biol Phys 1991; 20:599–603.

    CAS  PubMed  Google Scholar 

  17. Tomé WA, Mehta MP, Meeks SL, et al. Fractionated stereotactic radiotherapy: a short review. Technol Cancer Res Treat 2002; 1:153–172.

    PubMed  Google Scholar 

  18. Thames HD, Hendry JH. Fractionation in Radiotherapy. London: Taylor & Francis, 1987.

    Google Scholar 

  19. Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 1996; 6:10–21.

    Article  PubMed  Google Scholar 

  20. Powers WE, Tolmach LJ. A multicomponent x-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature 1963; 197:710–711.

    Article  CAS  PubMed  Google Scholar 

  21. Leith JT, Cook S, Chougule P, et al. Intrinsic and extrinsic characteristics of human tumors relevant to radiosurgery: comparative cellular radiosensitivity and hypoxic percentages. Acta Neurochir Suppl 1994; 62:18–27.

    CAS  PubMed  Google Scholar 

  22. Hall EJ. Radiobiology for the Radiologist. Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  23. Bedford JS, Mitchell JB. Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 1973; 54:316–327.

    Article  CAS  PubMed  Google Scholar 

  24. Brenner DJ, Hall EJ. Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 1991; 20:181–190.

    CAS  PubMed  Google Scholar 

  25. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62:679–694.

    Article  CAS  PubMed  Google Scholar 

  26. Thames HD, Bentzen SM, Turesson I, et al. Fractionation parameters for human tissues and tumors. Int J Radiat Biol 1989; 56:701–710.

    Article  CAS  PubMed  Google Scholar 

  27. Withers HR, Thames HD Jr, Flow BL, et al. The relationship of acute to late skin injury in 2 and 5 fraction/week gamma-ray therapy. Int J Radiat Oncol Biol Phys 1978; 4:595–601.

    CAS  PubMed  Google Scholar 

  28. Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 1988; 27:131–146.

    Article  CAS  PubMed  Google Scholar 

  29. Brenner DJ. Accelerated repopulation during radiotherapy—evidence for delayed onset. Radiat Oncol Invest 1993; 1:167–172.

    Article  Google Scholar 

  30. Slevin NJ, Hendry JH, Roberts SA, et al. The effect of increasing the treatment time beyond three weeks on the control of T2 and T3 laryngeal cancer using radiotherapy. Radiother Oncol 1992; 24:215–220.

    Article  CAS  PubMed  Google Scholar 

  31. Saunders MI, Dische S, Grosch EJ, et al. Experience with CHART. Int J Radiat Oncol Biol Phys 1991; 21:871–878.

    CAS  PubMed  Google Scholar 

  32. Hall EJ, Brenner DJ. The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys 1993; 25:381–385.

    CAS  PubMed  Google Scholar 

  33. Loeffler JS, Kooy HM, Wen PY, et al. The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clin Oncol 1990; 8:576–582.

    CAS  PubMed  Google Scholar 

  34. Ogilvy CS. Radiation therapy for arteriovenous malformations: a review. Neurosurgery 1990; 26:725–735.

    Article  CAS  PubMed  Google Scholar 

  35. Kjellberg RN, Hanamura T, Davis KR, et al. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 1983; 309:269–274.

    Article  CAS  PubMed  Google Scholar 

  36. Marks LB, Spencer DP. The influence of volume on the tolerance of the brain to radiosurgery. J Neurosurg 1991; 75:177–180.

    Article  CAS  PubMed  Google Scholar 

  37. Nedzi LA, Kooy H, Alexander III E, et al. Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys 1991; 21:591–599.

    CAS  PubMed  Google Scholar 

  38. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 1980; 6:1215–1228.

    CAS  PubMed  Google Scholar 

  39. Wowra B, Schmitt HP, Sturm V. Incidence of late radiation necrosis with transient mass effect after interstitial low dose rate radiotherapy for cerebral gliomas. Acta Neurochir (Wien) 1989; 99:104–108.

    Article  CAS  Google Scholar 

  40. Touboul E, Al Halabi A, Buffat L, et al. Single-fraction stereotactic radiotherapy: a dose-response analysis of arteriovenous malformation obliteration. Int J Radiat Oncol Biol Phys 1998; 41:855–861.

    CAS  PubMed  Google Scholar 

  41. Flickinger JC, Kondziolka D, Maitz AH, et al. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 2002; 63:347–354.

    Article  PubMed  Google Scholar 

  42. Kocher M, Wilms M, Makoski HB, et al. Alpha/beta ratio for arteriovenous malformations estimated from obliteration rates after fractionated and single-dose irradiation. Radiother Oncol 2004; 71:109–114.

    Article  PubMed  Google Scholar 

  43. Shrieve DC, Hazard L, Boucher L, et al. Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg 2004; 101(Suppl 3):390–395.

    PubMed  Google Scholar 

  44. Goldsmith BJ, Rosenthal SA, Wara WM, et al. Optic neuropathy after irradiation of meningioma. Radiology 1992; 185:71–76.

    CAS  PubMed  Google Scholar 

  45. Bhandare N, Monroe AT, Morris CG, et al. Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys 2005; 62:1070–1077.

    PubMed  Google Scholar 

  46. Brenner DJ, Hall EJ. Stereotactic radiotherapy of intracranial tumors—an ideal candidate for accelerated treatment. Int J Radiat Oncol Biol Phys 1994; 28:1039–1041; discussion 1047.

    CAS  PubMed  Google Scholar 

  47. Kooy HM, Dunbar SF, Tarbell NJ, et al. Adaptation and verification of the relocatable Gill-Thomas-Cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1994; 30:685–691.

    CAS  PubMed  Google Scholar 

  48. Kitchen ND, Thomas DG. Minimally invasive stereotaxy: clinical use of the Gill-Thomas-Cosman (GTC) repeat stereotactic localiser. Minim Invasive Neurosurg 1994; 37:61–63.

    Article  CAS  PubMed  Google Scholar 

  49. Fairclough-Tompa L, Larsen T, Jaywant SM. Immobilization in stereotactic radiotherapy: the head and neck localizer frame. Med Dosim 2001; 26:267–273.

    Article  CAS  PubMed  Google Scholar 

  50. Burton KE, Thomas SJ, Whitney D, et al. Accuracy of a relocatable stereotactic radiotherapy head frame evaluated by use of a depth helmet. Clin Oncol (R Coll Radiol) 2002; 14:31–39.

    CAS  Google Scholar 

  51. Kumar S, Burke K, Nalder C, et al. Treatment accuracy of fractionated stereotactic radiotherapy. Radiother Oncol 2005; 74:53–59.

    Article  PubMed  Google Scholar 

  52. Miranpuri AS, Tome WA, Paliwal BR, et al. Assessment of patient-independent intrinsic error for a noninvasive frame for fractionated stereotactic radiotherapy. Int J Cancer 2001; 96:320–325.

    Article  CAS  PubMed  Google Scholar 

  53. Kalapurakal JA, Ilahi Z, Kepka AG, et al. Repositioning accuracy with the Laitinen frame for fractionated stereotactic radiation therapy in adult and pediatric brain tumors: preliminary report. Radiology 2001; 218:157–161.

    CAS  PubMed  Google Scholar 

  54. Ashamalla H, Addeo D, Ikoro NC, et al. Commissioning and clinical results utilizing the Gildenberg-Laitinen adapter device for X-ray in fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56:592–598.

    Article  CAS  PubMed  Google Scholar 

  55. Alheit H, Dornfeld S, Dawel M, et al. Patient position reproducibility in fractionated stereotactically guided conformal radiotherapy using the BrainLab mask system. Strahlenther Onkol 2001; 177:264–268.

    Article  CAS  PubMed  Google Scholar 

  56. Lopatta E, Liesenfeld SM, Bank P, et al. Improved patient repositioning accuracy by integrating an additional jaw fixation into a high precision face mask system in stereotactic radiotherapy of the head. Strahlenther Onkol 2003; 179:571–575.

    Article  PubMed  Google Scholar 

  57. Salter BJ, Fuss F, Vollmer DG, et al. The TALON removable head frame system for stereotactic radiosurgery/radiotherapy: measurement of the repositioning accuracy. Int J Radiat Oncol Biol Phys 2001; 51:555–562.

    CAS  PubMed  Google Scholar 

  58. Walton L, Hampshire A, Roper A, et al. Development of a relocatable frame technique for gamma knife radiosurgery. Technical note. J Neurosurg 2000; 93(Suppl 3):198–202.

    PubMed  Google Scholar 

  59. Kai J, Shiomi H, Sasama T, et al. Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. Comput Aided Surg 1998; 3:257–263.

    Article  CAS  PubMed  Google Scholar 

  60. Kamath R, Ryken TC, Meeks SL, et al. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys 2005; 61:1467–1472.

    PubMed  Google Scholar 

  61. Meeks SL, Bova FJ, Wagner TH, et al. Image localization for frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2000; 46:1291–1299.

    CAS  PubMed  Google Scholar 

  62. Mehta VK, Lee QT, Chang SD, et al. Image guided stereotactic radiosurgery for lesions in proximity to the anterior visual pathways: a preliminary report. Technol Cancer Res Treat 2002; 1:173–180.

    PubMed  Google Scholar 

  63. Ishihara H, Saito K, Nishizaki T, et al. CyberKnife radiosurgery for vestibular schwannoma. Minim Invasive Neurosurg 2004; 47:290–293.

    Article  CAS  PubMed  Google Scholar 

  64. Pham CJ, Chang SD, Gibbs IC, et al. Preliminary visual field preservation after staged CyberKnife radiosurgery for perioptic lesions. Neurosurgery 2004; 54:799–810; discussion 810—792.

    Article  PubMed  Google Scholar 

  65. Kajiwara K, Saito K, Yoshikawa K, et al. Image-guided stereotactic radiosurgery with the CyberKnife for pituitary adenomas. Minim Invasive Neurosurg 2005; 48:91–96.

    Article  CAS  PubMed  Google Scholar 

  66. Chang SD, Gibbs IC, Sakamoto GT, et al. Staged stereotactic irradiation for acoustic neuroma. Neurosurgery 2005; 56:1254–1261.

    Article  PubMed  Google Scholar 

  67. Xia P, Geis P, Xing L, et al. Physical characteristics of a miniature multileaf collimator. Med Phys 1999; 26:65–70.

    Article  CAS  PubMed  Google Scholar 

  68. Cosgrove VP, Jahn U, Pfaender M, et al. Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 1999; 50:325–336.

    Article  CAS  PubMed  Google Scholar 

  69. Georg D, Dieckmann K, Bogner J, et al. Impact of a micromultileaf collimator on stereotactic radiotherapy of uveal melanoma. Int J Radiat Oncol Biol Phys 2003; 55:881–891.

    PubMed  Google Scholar 

  70. Baumert BG, Norton IA, Davis JB. Intensity-modulated stereotactic radiotherapy vs. stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int J Radiat Oncol Biol Phys 2003; 57:580–592.

    Article  PubMed  Google Scholar 

  71. Tobler M, Leavitt DD, Watson G. Optimization of the primary collimator settings for fractionated IMRT stereotactic radiotherapy. Med Dosim 2004; 29:72–79.

    Article  PubMed  Google Scholar 

  72. Jin JY, Yin FF, Ryu S, et al. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys 2005; 32:405–411.

    Article  PubMed  Google Scholar 

  73. Fuss M, Salter BJ, Sadeghi A, et al. Fractionated stereotactic intensity-modulated radiotherapy (FS-IMRT) for small acoustic neuromas. Med Dosim 2002; 27:147–154.

    Article  PubMed  Google Scholar 

  74. Lea DE. Actions of Radiation on Living Cells. Cambridge: Cambridge University Press, 1946.

    Google Scholar 

  75. Lea DE, Catcheside DG. The mechanism of the induction by radiation of chromosome aberrations in tradescantia. J Genet 1942; 44:216–245.

    Article  Google Scholar 

  76. Brenner DJ, Herbert DE. The use of the linear-quadratic model in clinical radiation oncology can be defended on the basis of empirical evidence and theoretical argument. Med Phys 1997; 24:1245–1248.

    Article  CAS  PubMed  Google Scholar 

  77. Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985; 58:515–528.

    Article  CAS  PubMed  Google Scholar 

  78. Brenner BJ, Huang Y, Hall EJ. Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix: equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys 1991; 21:1415–1423.

    CAS  PubMed  Google Scholar 

  79. Yaes RJ, Patel P, Maruyama Y. On using the linear-quadratic model in daily clinical practice. Int J Radiat Oncol Biol Phys 1991; 20:1353–1362.

    CAS  PubMed  Google Scholar 

  80. Liu L, Bassano DA, Prasad SC, et al. The linear-quadratic model and fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57:827–832.

    Article  PubMed  Google Scholar 

  81. van der Kogel AJ. Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum. Radiat Res Suppl 1985; 8:S208–216.

    Article  PubMed  Google Scholar 

  82. Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res 1976; 66:401–426.

    Article  CAS  PubMed  Google Scholar 

  83. Tucker SL. Tests for the fit of the linear-quadratic model to radiation isoeffect data. Int J Radiat Oncol Biol Phys 1984; 10:1933–1939.

    CAS  PubMed  Google Scholar 

  84. Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol 1997; 72:351–374.

    Article  CAS  PubMed  Google Scholar 

  85. Travis EL, Tucker SL. Isoeffect models and fractionated radiation therapy. Int J Radiat Oncol Biol Phys 1987; 13:283–287.

    CAS  PubMed  Google Scholar 

  86. Brenner DJ, Hlatky LR, Hahnfeldt PJ, et al. A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 1995; 32:379–390.

    Article  CAS  PubMed  Google Scholar 

  87. Zaider M, Rossi HH. Saturation effects for sparsely ionizing particles. New York: Columbia University, Radiological Research Laboratory Annual Report (COO-4733-3:126–134), 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brenner, D.J. (2008). Radiobiological Principles Underlying Stereotactic Radiation Therapy. In: Chin, L.S., Regine, W.F. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71070-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71070-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-71069-3

  • Online ISBN: 978-0-387-71070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics