Advertisement

Radiobiological Principles Underlying Stereotactic Radiation Therapy

  • David J. Brenner

Abstract

Since the Gamma Knife was first conceived in 1968, primarily for arterial and functional lesions [1], single-fractioned stereotactic radiation therapy* has been increasingly used to treat a variety of cerebral lesions. By 1985, an alternative modality was available for stereotactic radiation therapy, using a linear accelerator (linac) and a stereotactic head frame [4], [5]. Recently, the CyberKnife, a frameless robotic system, has been developed for stereotactic radiation therapy [6], and intensity-modulated stereotactic radiation therapy [7], [8] is now entering clinical practice.

Keywords

Radiat Oncol Biol Phys Arteriovenous Malformation Gamma Knife Stereotactic Radiosurgery Hypoxic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand 1968; 134:585–595.PubMedGoogle Scholar
  2. 2.
    Lunsford LD, Flickinger JC, Larson D. Regarding: Rosenthal DI, Glatstein E. “We’ve Got a Treatment, but What’s the Disease?” Oncologist 1996; 1. Oncologist 1997; 2:59–61.PubMedGoogle Scholar
  3. 3.
    Adler JR Jr, Colombo F, Heilbrun MB, et al. Toward an expanded view of radiosurgery. Neurosurgery 2004; 55:1374–1376.CrossRefPubMedGoogle Scholar
  4. 4.
    Colombo F, Benedetti A, Pozza F, et al. External stereotactic irradiation by linear accelerator. Neurosurgery 1985; 16:154–160.CrossRefPubMedGoogle Scholar
  5. 5.
    Houdek PV, Fayos JV, Van Buren JM, et al. Stereotaxic radiotherapy technique for small intracranial lesions. Med Phys 1985; 12:469–472.CrossRefPubMedGoogle Scholar
  6. 6.
    Adler JR Jr, Chang SD, Murphy MJ, et al. The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 1997; 69:124–128.CrossRefPubMedGoogle Scholar
  7. 7.
    Benedict SH, Cardinale RM, Wu Q, et al. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys 2001; 50:751–758.PubMedGoogle Scholar
  8. 8.
    Leavitt DD, Watson G, Tobler M, et al. Intensity-modulated radiosurgery/radiotherapy using a micromultileaf collimator. Med Dosim 2001; 26:143–150.CrossRefPubMedGoogle Scholar
  9. 9.
    Pozza F, Colombo F, Chierego G, et al. Low-grade astrocytomas: treatment with unconventionally fractionated external beam stereotactic radiation therapy. Radiology 1989; 171:565–569.PubMedGoogle Scholar
  10. 10.
    Heifetz MD, Whiting J, Bernstein H, et al. Stereotactic radiosurgery for fractionated radiation: a proposal applicable to linear accelerator and proton beam programs. Stereotact Funct Neurosurg 1989; 53:167–177.CrossRefPubMedGoogle Scholar
  11. 11.
    Hariz MI, Henriksson R, Lofroth PO, et al. A non-invasive method for fractionated stereotactic irradiation of brain tumors with linear accelerator. Radiother Oncol 1990; 17:57–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Delannes M, Daly NJ, Bonnet J, et al. Fractionated radiotherapy of small inoperable lesions of the brain using a non-invasive stereotactic frame. Int J Radiat Oncol Biol Phys 1991; 21:749–755.PubMedGoogle Scholar
  13. 13.
    Brenner DJ, Martel MK, Hall EJ. Fractionated regimens for stereotactic radiotherapy of recurrent tumors in the brain. Int J Radiat Oncol Biol Phys 1991; 21:819–824.PubMedGoogle Scholar
  14. 14.
    Souhami L, Olivier A, Podgorsak EB, et al. Fractionated stereotactic radiation therapy for intracranial tumors. Cancer 1991; 68:2101–2108.CrossRefPubMedGoogle Scholar
  15. 15.
    Schwade JG, Houdek PV, Landy HJ, et al. Small-field stereotactic external-beam radiation therapy of intracranial lesions: fractionated treatment with a fixed-halo immobilization device. Radiology 1990; 176:563–565.PubMedGoogle Scholar
  16. 16.
    Gill SS, Thomas DG, Warrington AP, et al. Relocatable frame for stereotactic external beam radiotherapy. Int J Radiat Oncol Biol Phys 1991; 20:599–603.PubMedGoogle Scholar
  17. 17.
    Tomé WA, Mehta MP, Meeks SL, et al. Fractionated stereotactic radiotherapy: a short review. Technol Cancer Res Treat 2002; 1:153–172.PubMedGoogle Scholar
  18. 18.
    Thames HD, Hendry JH. Fractionation in Radiotherapy. London: Taylor & Francis, 1987.Google Scholar
  19. 19.
    Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 1996; 6:10–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Powers WE, Tolmach LJ. A multicomponent x-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature 1963; 197:710–711.CrossRefPubMedGoogle Scholar
  21. 21.
    Leith JT, Cook S, Chougule P, et al. Intrinsic and extrinsic characteristics of human tumors relevant to radiosurgery: comparative cellular radiosensitivity and hypoxic percentages. Acta Neurochir Suppl 1994; 62:18–27.PubMedGoogle Scholar
  22. 22.
    Hall EJ. Radiobiology for the Radiologist. Philadelphia: Lippincott Williams & Wilkins, 2000.Google Scholar
  23. 23.
    Bedford JS, Mitchell JB. Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 1973; 54:316–327.CrossRefPubMedGoogle Scholar
  24. 24.
    Brenner DJ, Hall EJ. Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 1991; 20:181–190.PubMedGoogle Scholar
  25. 25.
    Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62:679–694.CrossRefPubMedGoogle Scholar
  26. 26.
    Thames HD, Bentzen SM, Turesson I, et al. Fractionation parameters for human tissues and tumors. Int J Radiat Biol 1989; 56:701–710.CrossRefPubMedGoogle Scholar
  27. 27.
    Withers HR, Thames HD Jr, Flow BL, et al. The relationship of acute to late skin injury in 2 and 5 fraction/week gamma-ray therapy. Int J Radiat Oncol Biol Phys 1978; 4:595–601.PubMedGoogle Scholar
  28. 28.
    Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 1988; 27:131–146.CrossRefPubMedGoogle Scholar
  29. 29.
    Brenner DJ. Accelerated repopulation during radiotherapy—evidence for delayed onset. Radiat Oncol Invest 1993; 1:167–172.CrossRefGoogle Scholar
  30. 30.
    Slevin NJ, Hendry JH, Roberts SA, et al. The effect of increasing the treatment time beyond three weeks on the control of T2 and T3 laryngeal cancer using radiotherapy. Radiother Oncol 1992; 24:215–220.CrossRefPubMedGoogle Scholar
  31. 31.
    Saunders MI, Dische S, Grosch EJ, et al. Experience with CHART. Int J Radiat Oncol Biol Phys 1991; 21:871–878.PubMedGoogle Scholar
  32. 32.
    Hall EJ, Brenner DJ. The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys 1993; 25:381–385.PubMedGoogle Scholar
  33. 33.
    Loeffler JS, Kooy HM, Wen PY, et al. The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clin Oncol 1990; 8:576–582.PubMedGoogle Scholar
  34. 34.
    Ogilvy CS. Radiation therapy for arteriovenous malformations: a review. Neurosurgery 1990; 26:725–735.CrossRefPubMedGoogle Scholar
  35. 35.
    Kjellberg RN, Hanamura T, Davis KR, et al. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 1983; 309:269–274.PubMedCrossRefGoogle Scholar
  36. 36.
    Marks LB, Spencer DP. The influence of volume on the tolerance of the brain to radiosurgery. J Neurosurg 1991; 75:177–180.CrossRefPubMedGoogle Scholar
  37. 37.
    Nedzi LA, Kooy H, Alexander III E, et al. Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys 1991; 21:591–599.PubMedGoogle Scholar
  38. 38.
    Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 1980; 6:1215–1228.PubMedGoogle Scholar
  39. 39.
    Wowra B, Schmitt HP, Sturm V. Incidence of late radiation necrosis with transient mass effect after interstitial low dose rate radiotherapy for cerebral gliomas. Acta Neurochir (Wien) 1989; 99:104–108.CrossRefGoogle Scholar
  40. 40.
    Touboul E, Al Halabi A, Buffat L, et al. Single-fraction stereotactic radiotherapy: a dose-response analysis of arteriovenous malformation obliteration. Int J Radiat Oncol Biol Phys 1998; 41:855–861.PubMedGoogle Scholar
  41. 41.
    Flickinger JC, Kondziolka D, Maitz AH, et al. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 2002; 63:347–354.CrossRefPubMedGoogle Scholar
  42. 42.
    Kocher M, Wilms M, Makoski HB, et al. Alpha/beta ratio for arteriovenous malformations estimated from obliteration rates after fractionated and single-dose irradiation. Radiother Oncol 2004; 71:109–114.CrossRefPubMedGoogle Scholar
  43. 43.
    Shrieve DC, Hazard L, Boucher L, et al. Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg 2004; 101(Suppl 3):390–395.PubMedGoogle Scholar
  44. 44.
    Goldsmith BJ, Rosenthal SA, Wara WM, et al. Optic neuropathy after irradiation of meningioma. Radiology 1992; 185:71–76.PubMedGoogle Scholar
  45. 45.
    Bhandare N, Monroe AT, Morris CG, et al. Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys 2005; 62:1070–1077.PubMedGoogle Scholar
  46. 46.
    Brenner DJ, Hall EJ. Stereotactic radiotherapy of intracranial tumors—an ideal candidate for accelerated treatment. Int J Radiat Oncol Biol Phys 1994; 28:1039–1041; discussion 1047.PubMedGoogle Scholar
  47. 47.
    Kooy HM, Dunbar SF, Tarbell NJ, et al. Adaptation and verification of the relocatable Gill-Thomas-Cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1994; 30:685–691.PubMedGoogle Scholar
  48. 48.
    Kitchen ND, Thomas DG. Minimally invasive stereotaxy: clinical use of the Gill-Thomas-Cosman (GTC) repeat stereotactic localiser. Minim Invasive Neurosurg 1994; 37:61–63.CrossRefPubMedGoogle Scholar
  49. 49.
    Fairclough-Tompa L, Larsen T, Jaywant SM. Immobilization in stereotactic radiotherapy: the head and neck localizer frame. Med Dosim 2001; 26:267–273.CrossRefPubMedGoogle Scholar
  50. 50.
    Burton KE, Thomas SJ, Whitney D, et al. Accuracy of a relocatable stereotactic radiotherapy head frame evaluated by use of a depth helmet. Clin Oncol (R Coll Radiol) 2002; 14:31–39.Google Scholar
  51. 51.
    Kumar S, Burke K, Nalder C, et al. Treatment accuracy of fractionated stereotactic radiotherapy. Radiother Oncol 2005; 74:53–59.CrossRefPubMedGoogle Scholar
  52. 52.
    Miranpuri AS, Tome WA, Paliwal BR, et al. Assessment of patient-independent intrinsic error for a noninvasive frame for fractionated stereotactic radiotherapy. Int J Cancer 2001; 96:320–325.CrossRefPubMedGoogle Scholar
  53. 53.
    Kalapurakal JA, Ilahi Z, Kepka AG, et al. Repositioning accuracy with the Laitinen frame for fractionated stereotactic radiation therapy in adult and pediatric brain tumors: preliminary report. Radiology 2001; 218:157–161.PubMedGoogle Scholar
  54. 54.
    Ashamalla H, Addeo D, Ikoro NC, et al. Commissioning and clinical results utilizing the Gildenberg-Laitinen adapter device for X-ray in fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56:592–598.CrossRefPubMedGoogle Scholar
  55. 55.
    Alheit H, Dornfeld S, Dawel M, et al. Patient position reproducibility in fractionated stereotactically guided conformal radiotherapy using the BrainLab mask system. Strahlenther Onkol 2001; 177:264–268.CrossRefPubMedGoogle Scholar
  56. 56.
    Lopatta E, Liesenfeld SM, Bank P, et al. Improved patient repositioning accuracy by integrating an additional jaw fixation into a high precision face mask system in stereotactic radiotherapy of the head. Strahlenther Onkol 2003; 179:571–575.CrossRefPubMedGoogle Scholar
  57. 57.
    Salter BJ, Fuss F, Vollmer DG, et al. The TALON removable head frame system for stereotactic radiosurgery/radiotherapy: measurement of the repositioning accuracy. Int J Radiat Oncol Biol Phys 2001; 51:555–562.PubMedGoogle Scholar
  58. 58.
    Walton L, Hampshire A, Roper A, et al. Development of a relocatable frame technique for gamma knife radiosurgery. Technical note. J Neurosurg 2000; 93(Suppl 3):198–202.PubMedGoogle Scholar
  59. 59.
    Kai J, Shiomi H, Sasama T, et al. Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. Comput Aided Surg 1998; 3:257–263.CrossRefPubMedGoogle Scholar
  60. 60.
    Kamath R, Ryken TC, Meeks SL, et al. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys 2005; 61:1467–1472.PubMedGoogle Scholar
  61. 61.
    Meeks SL, Bova FJ, Wagner TH, et al. Image localization for frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2000; 46:1291–1299.PubMedGoogle Scholar
  62. 62.
    Mehta VK, Lee QT, Chang SD, et al. Image guided stereotactic radiosurgery for lesions in proximity to the anterior visual pathways: a preliminary report. Technol Cancer Res Treat 2002; 1:173–180.PubMedGoogle Scholar
  63. 63.
    Ishihara H, Saito K, Nishizaki T, et al. CyberKnife radiosurgery for vestibular schwannoma. Minim Invasive Neurosurg 2004; 47:290–293.CrossRefPubMedGoogle Scholar
  64. 64.
    Pham CJ, Chang SD, Gibbs IC, et al. Preliminary visual field preservation after staged CyberKnife radiosurgery for perioptic lesions. Neurosurgery 2004; 54:799–810; discussion 810—792.CrossRefPubMedGoogle Scholar
  65. 65.
    Kajiwara K, Saito K, Yoshikawa K, et al. Image-guided stereotactic radiosurgery with the CyberKnife for pituitary adenomas. Minim Invasive Neurosurg 2005; 48:91–96.CrossRefPubMedGoogle Scholar
  66. 66.
    Chang SD, Gibbs IC, Sakamoto GT, et al. Staged stereotactic irradiation for acoustic neuroma. Neurosurgery 2005; 56:1254–1261.CrossRefPubMedGoogle Scholar
  67. 67.
    Xia P, Geis P, Xing L, et al. Physical characteristics of a miniature multileaf collimator. Med Phys 1999; 26:65–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Cosgrove VP, Jahn U, Pfaender M, et al. Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 1999; 50:325–336.CrossRefPubMedGoogle Scholar
  69. 69.
    Georg D, Dieckmann K, Bogner J, et al. Impact of a micromultileaf collimator on stereotactic radiotherapy of uveal melanoma. Int J Radiat Oncol Biol Phys 2003; 55:881–891.PubMedGoogle Scholar
  70. 70.
    Baumert BG, Norton IA, Davis JB. Intensity-modulated stereotactic radiotherapy vs. stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int J Radiat Oncol Biol Phys 2003; 57:580–592.CrossRefPubMedGoogle Scholar
  71. 71.
    Tobler M, Leavitt DD, Watson G. Optimization of the primary collimator settings for fractionated IMRT stereotactic radiotherapy. Med Dosim 2004; 29:72–79.CrossRefPubMedGoogle Scholar
  72. 72.
    Jin JY, Yin FF, Ryu S, et al. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys 2005; 32:405–411.CrossRefPubMedGoogle Scholar
  73. 73.
    Fuss M, Salter BJ, Sadeghi A, et al. Fractionated stereotactic intensity-modulated radiotherapy (FS-IMRT) for small acoustic neuromas. Med Dosim 2002; 27:147–154.CrossRefPubMedGoogle Scholar
  74. 74.
    Lea DE. Actions of Radiation on Living Cells. Cambridge: Cambridge University Press, 1946.Google Scholar
  75. 75.
    Lea DE, Catcheside DG. The mechanism of the induction by radiation of chromosome aberrations in tradescantia. J Genet 1942; 44:216–245.CrossRefGoogle Scholar
  76. 76.
    Brenner DJ, Herbert DE. The use of the linear-quadratic model in clinical radiation oncology can be defended on the basis of empirical evidence and theoretical argument. Med Phys 1997; 24:1245–1248.CrossRefPubMedGoogle Scholar
  77. 77.
    Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985; 58:515–528.CrossRefPubMedGoogle Scholar
  78. 78.
    Brenner BJ, Huang Y, Hall EJ. Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix: equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys 1991; 21:1415–1423.PubMedGoogle Scholar
  79. 79.
    Yaes RJ, Patel P, Maruyama Y. On using the linear-quadratic model in daily clinical practice. Int J Radiat Oncol Biol Phys 1991; 20:1353–1362.PubMedGoogle Scholar
  80. 80.
    Liu L, Bassano DA, Prasad SC, et al. The linear-quadratic model and fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57:827–832.CrossRefPubMedGoogle Scholar
  81. 81.
    van der Kogel AJ. Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum. Radiat Res Suppl 1985; 8:S208–216.CrossRefPubMedGoogle Scholar
  82. 82.
    Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res 1976; 66:401–426.CrossRefPubMedGoogle Scholar
  83. 83.
    Tucker SL. Tests for the fit of the linear-quadratic model to radiation isoeffect data. Int J Radiat Oncol Biol Phys 1984; 10:1933–1939.PubMedGoogle Scholar
  84. 84.
    Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol 1997; 72:351–374.CrossRefPubMedGoogle Scholar
  85. 85.
    Travis EL, Tucker SL. Isoeffect models and fractionated radiation therapy. Int J Radiat Oncol Biol Phys 1987; 13:283–287.PubMedGoogle Scholar
  86. 86.
    Brenner DJ, Hlatky LR, Hahnfeldt PJ, et al. A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 1995; 32:379–390.CrossRefPubMedGoogle Scholar
  87. 87.
    Zaider M, Rossi HH. Saturation effects for sparsely ionizing particles. New York: Columbia University, Radiological Research Laboratory Annual Report (COO-4733-3:126–134), 1980.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David J. Brenner
    • 1
  1. 1.Center for Radiological Research, Department of Radiation OncologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations