Arteriovenous Malformation

  • Bruce E. Pollock


Intracranial arteriovenous malformations (AVMs) are congenital lesions arising from abnormal blood vessel formation [1]–[3]. Whereas normal embryogenesis results in the differentiation of primordial vascular channels into mature arteries, veins, and capillaries, patients with AVMs develop direct arteriovenous shunts without the appropriate intervening vascular beds. Recent large, prospective, population-based studies have determined the incidence of newly diagnosed AVM patients to range from 1.12 to 1.34 per 100,000 person-years [4], [5]. The majority of patients become symptomatic in the second through fourth decades of life with the most common presentation being intracranial hemorrhage (ICH). Patients may also have seizures or headaches, and the number of incidentally discovered intracranial AVMs continues to rise as more patients undergo magnetic resonance imaging (MRI) of the head. The estimated annual risk of ICH from AVMs has ranged from 2% to 4% [5]–[12]; the combined annual morbidity and mortality from intracranial AVMs is approximately 1% [11]. Because most AVM patients are diagnosed at a point when their life expectancy is long, the cumulative hemorrhage risk is substantial. For example, a 30-year-old person carries approximately a 75% lifetime chance of ICH.


Radiat Oncol Biol Phys Arteriovenous Malformation Gamma Knife Stereotactic Radiosurgery Gamma Knife Radiosurgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCormick WE. Pathology of vascular malformations of the brain. In: Wilson CB, Stein B, eds. Intracranial Arteriovenous Malformations. Baltimore: Williams and Wilkins, 1984:44–63.Google Scholar
  2. 2.
    Padget DH. The cranial venous system in man in reference to development, adult configuration, and relation to arteries. Am J Anat 1956; 98:307–355.PubMedCrossRefGoogle Scholar
  3. 3.
    Takashima S, Becker LE. Neuropathology of cerebral arteriovenous malformations in children. J Neurol Neurosurg Psychiatry 1980; 43:380–385.PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Shahi R, Bhattacharya JJ, Currie DG, et al. Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke 2003; 34:1163–1169.PubMedCrossRefGoogle Scholar
  5. 5.
    Stapf C, Mast H, Sciacca RR, et al. The New York Islands AVM Study: design, study progress, and initial results. Stroke 2003; 34:29–33.CrossRefGoogle Scholar
  6. 6.
    Brown RD Jr, Wiebers DO, Forbes G, et al. The natural history of unruptured intracranial arteriovenous malformations. J Neurosurg 1988; 68:352–357.PubMedCrossRefGoogle Scholar
  7. 7.
    Crawford PM, West CR, Park YG, et al. Arteriovenous malformations of the brain: natural history in unoperated patients. J Neurol Neurosurg Psychiatry 1986; 49:1–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Fults D, Kelly DL Jr. Natural history of arteriovenous of the brain: a clinical study. Neurosurgery 1984; 15:658–662.PubMedCrossRefGoogle Scholar
  9. 9.
    Graf CJ, Perret GB, Torner JC. Bleeding from cerebral arteriovenous malformations as part of their natural history. J Neurosurg 1983; 58:331–337.PubMedCrossRefGoogle Scholar
  10. 10.
    Itoyama Y, Uemura S, Ushio Y, et al. Natural course of unoperated intracranial arteriovenous malformations: study of 50 cases. J Neurosurg 1989; 71:805–809.PubMedCrossRefGoogle Scholar
  11. 11.
    Ondra SK, Troupp H, George ED, et al. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 1990; 73:387–391.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollock BE, Flickinger JC, Lunsford LD, et al. Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke 1996; 27:1–6.PubMedGoogle Scholar
  13. 13.
    Mast H, Young WL, Koennecke HC, et al. Risk of spontaneous hemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet 1997; 350:1065–1068.PubMedCrossRefGoogle Scholar
  14. 14.
    Karlsson B, Lindquist C, Steiner L. The effect of gamma knife surgery on the risk of rupture prior to AVM obliteration. Minim Invas Neurosurg 1996; 39:21–27.CrossRefGoogle Scholar
  15. 15.
    Stapf C, Khaw AV, Sciacca RR, et al. Effect of age on clinical and morphological characteristics in patients with brain arteriovenous malformations. Stroke 2003; 34:2664–2669.PubMedCrossRefGoogle Scholar
  16. 16.
    Stapf C, Mohr JP, Pile-Spellman J, et al. Concurrent arterial aneurysms in brain arteriovenous malformations with haemorrhagic presentation. J Neurol Neurosurg Psychiatry 2002; 73:294–298.PubMedCrossRefGoogle Scholar
  17. 17.
    Kondziolka D, Humphreys RP, Hoffman HJ, et al. Arteriovenous malformations of the brain in children: a forty year experience. Can J Neurol Sci 1992; 19:40–45.PubMedGoogle Scholar
  18. 18.
    Khaw AV, Mohr JP, Sciacca RR, et al. Association of infratentorial brain arteriovenous malformations with hemorrhage at initial presentation. Stroke 2004; 35:660–663.PubMedCrossRefGoogle Scholar
  19. 19.
    Spetzler RF, Hargraves RW, McCormick PW, et al. Relationship of perfusion pressure and size to risk of hemorrhage from arteriovenous malformations. J Neurosurg 1992; 76:918–923.PubMedCrossRefGoogle Scholar
  20. 20.
    Karlsson B, Lindqvist M, Blomgren H, et al. Long-term results after fractionated radiation therapy for large brain arteriovenous malformations. Neurosurgery 2005; 57:42–49.PubMedCrossRefGoogle Scholar
  21. 21.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986; 65:476–483.PubMedCrossRefGoogle Scholar
  22. 22.
    de Oliveria E, Tedeschi, H, Raso J. Comprehensive management of arteriovenous malformations. Neurol Res 1998; 20:673–683.Google Scholar
  23. 23.
    Hamilton MG, Spetzler RF. The prospective application of a grading system for arteriovenous malformations. Neurosurgery 1994; 34:2–7.PubMedGoogle Scholar
  24. 24.
    Heros RC, Korosue K, Diebold PM. Surgical excision of cerebral arteriovenous malformations. Neurosurgery 1990; 26:570–578.PubMedCrossRefGoogle Scholar
  25. 25.
    Pik JHT, Morgan MK. Microsurgery for small arteriovenous malformations of the brain: results in 110 consecutive patients. Neurosurgery 2000; 47:571–577.PubMedCrossRefGoogle Scholar
  26. 26.
    Pikus HJ, Beach ML, Harbaugh RE. Microsurgical treatment of arteriovenous malformations: analysis and comparison with stereotactic radiosurgery. J Neurosurg 1998; 88:641–646.PubMedCrossRefGoogle Scholar
  27. 27.
    Schaller C, Schramm J. Microsurgical results for small arteriovenous malformations accessible for radiosurgical or embolization treatment. Neurosurgery 1997; 40:664–674.PubMedCrossRefGoogle Scholar
  28. 28.
    Steiner L, Leksell L, Grietz T, et al. Stereotaxic radiosurgery for cerebral arteriovenous malformations: report of a case. Acta Chir Scand 1972; 138:459–464.PubMedGoogle Scholar
  29. 29.
    Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 1983; 46:797–803.PubMedCrossRefGoogle Scholar
  30. 30.
    Kjellberg RN, Hanamura T, Davis KR, et al. Bragg-peak protonbeam therapy for arteriovenous malformations. N Engl J Med 1983; 309:269–274.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinberg GK, Fabrikant JI, Marks MP, et al. Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations. N Engl J Med 1990; 323:96–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Betti OO, Munari C, Rosler R. Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery 1989; 24:311–321.PubMedCrossRefGoogle Scholar
  33. 33.
    Columbo F, Pozza F, Chierego G, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 1994; 34:14–21.CrossRefGoogle Scholar
  34. 34.
    Friedman WA, Bova FJ, Mendenhall WM. Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg 1995; 82:180–189.PubMedCrossRefGoogle Scholar
  35. 35.
    Pollock BE, Meyer FB. Evaluating arteriovenous malformation radiosurgery. J Neurosurg 2004; 101:390–392.PubMedCrossRefGoogle Scholar
  36. 36.
    Heros RC, Yu YK. Is surgical therapy needed for unruptured arteriovenous malformations? Neurology 1987; 37:279–286.PubMedGoogle Scholar
  37. 37.
    Han PP, Ponce FA, Spetzler RF. Intention-to-treat analysis of Spetzler-Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J Neurosurg 2003; 98:3–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Choi JH, Mohr JP. Brain arteriovenous malformations in adults. Lancet Neurol 2005; 4:299–308.PubMedCrossRefGoogle Scholar
  39. 39.
    Hartmann A, Mast H, Mohr JP, et al. Morbidity of intracranial hemorrhage in patients with cerebral arteriovenous malformation. Stroke 1998; 29:931–934.PubMedGoogle Scholar
  40. 40.
    Hartmann A, Stapf C, Hofmeister C, et al. Determinants of neurological outcome after surgery for brain arteriovenous malformations. Stroke 2000; 31:2361–2364.PubMedGoogle Scholar
  41. 41.
    Lawton MT, Du R, Tran MN, et al. Effect of presenting hemorrhage on outcome after microsurgical resection of brain arteriovenous malformations. Neurosurgery 2005; 56:485–493.PubMedCrossRefGoogle Scholar
  42. 42.
    Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg 2002; 96:79–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao J, Wang S, Li J, et al. Clinical characteristics and surgical results of patients with cerebral arteriovenous malformations. Surg Neurol 2005; 63:156–161.PubMedCrossRefGoogle Scholar
  44. 44.
    Piepgras DG, Sundt TM Jr, Ragoowansi AT, et al. Seizure outcome in patients with surgically treated cerebral arteriovenous malformations. J Neurosurg 1993; 78:5–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Schäuble B, Cascino GD, Pollock BE, et al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology 2004; 63:683–687.PubMedGoogle Scholar
  46. 46.
    Hoh BL, Chapman PH, Loeffler JS, et al. Results of multimodality treatment for 141 patients with brain arteriovenous malformations and seizures: factors associated with seizure incidence and seizure outcome. Neurosurgery 2002; 51:303–309.PubMedCrossRefGoogle Scholar
  47. 47.
    Pollock BE, Lunsford LD. A call to define stereotactic radiosurgery. Neurosurgery 2004; 55:1371–1373.PubMedCrossRefGoogle Scholar
  48. 48.
    Blatt DR, Friedman WA, Bova FJ. Modifications based on computed tomographic imaging in planning the radiosurgical treatment of arteriovenous malformations. Neurosurgery 1993; 33:588–595.PubMedCrossRefGoogle Scholar
  49. 49.
    Kondziolka D, Lunsford LD, Kanal E, et al. Stereotactic magnetic resonance angiography for targeting in arteriovenous malformation radiosurgery. Neurosurgery 1994; 35:585–591.PubMedCrossRefGoogle Scholar
  50. 50.
    Flickinger JC, Pollock BE, Kondziolka D, et al. A dose-response analysis of arteriovenous malformation obliteration by radiosurgery. Int J Radiat Onc Biol Phys 1996; 36:873–879.CrossRefGoogle Scholar
  51. 51.
    Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery 1997; 40:425–431.PubMedCrossRefGoogle Scholar
  52. 52.
    Flickinger JC. An intregrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys 1989; 17:879–885.PubMedGoogle Scholar
  53. 53.
    Flickinger JC, Kondziolka D, Lunsford LD, et al. Development of a model to predict permanent symptomatic post-radiosurgery injury for arteriovenous malformation patients. Int J Radiat Onc Biol Phys 2000; 46:1143–1148.CrossRefGoogle Scholar
  54. 54.
    Lax I, Karlsson B. Prediction of complications in gamma knife radiosurgery of arteriovenous malformations. Acta Oncol 1996; 35:49–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Voges J, Treuer H, Lehrke R, et al. Risk analysis of linac radiosurgery in patients with arterio-venous malformations (AVM). Acta Neurochir 1997; 68:118–123.Google Scholar
  56. 56.
    Pollock BE, Kondziolka D, Lunsford LD, et al. Magnetic resonance imaging: an accurate method to evaluate arteriovenous malformations after stereotactic radiosurgery. J Neurosurg 1996; 85:1044–1049.PubMedCrossRefGoogle Scholar
  57. 57.
    Lindquist C, Steiner L. Stereotactic radiosurgical treatment of arteriovenous malformations. In: Lunsford LD, ed. Modern Stereotactic Neurosurgery. Boston: Martinus Nijhoff Publishing, 1988:491–505.Google Scholar
  58. 58.
    Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 1997; 87:352–357.PubMedCrossRefGoogle Scholar
  59. 59.
    Major O, Szeifert GT, Fazekas I, et al. Effects of single high-dose gamma irradiation on cultured cells in human cerebral arteriovenous malformation. J Neurosurg 2002; 97(5 Suppl):459–463.PubMedGoogle Scholar
  60. 60.
    Szeifert GT, Major O, Kemeny AA. Ultrastructural changes in arteriovenous malformations after gamma knife surgery: an electron microscopic study. J Neurosurg 2005; 102(Suppl):289–292.PubMedCrossRefGoogle Scholar
  61. 61.
    Shin M, Maruyama K, Kurita H, et al. Analysis of nidus obliteration rates after gamma knife surgery for arteriovenous malformations based on long-term follow-up data: the University of Tokyo experience. J Neurosurg 2004; 101:18–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Smyth MD, Sneed PK, Ciricillo SF, et al. Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco experience. J Neurosurg 2002; 97:48–55.PubMedCrossRefGoogle Scholar
  63. 63.
    Touboul E, Al Halabi A, Buffat L, et al. Single-fraction stereotactic radiotherapy: a dose-response analysis of arteriovenous malformation obliteration. Int J Radiat Oncol Biol Phys 1998; 41:855–861.PubMedGoogle Scholar
  64. 64.
    Zipfel GJ, Bradshaw P, Bova FJ, et al. Do the morphological characteristics of arteriovenous malformations affect the results of radiosurgery? J Neurosurg 2004; 101:393–401.PubMedCrossRefGoogle Scholar
  65. 65.
    Schwartz M, Sixel K, Young C, et al. Prediction of obliteration of arteriovenous malformations: the obliteration prediction index. Can J Neurol Sci 1997; 24:106–109.PubMedGoogle Scholar
  66. 66.
    Ellis TL, Friedman WA, Bova FJ, et al. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg 1998; 89:104–110.PubMedCrossRefGoogle Scholar
  67. 67.
    Gallina P, Merienne L, Meder JF, et al. Failure in radiosurgery treatment of cerebral arteriovenous malformations. Neurosurgery 1998; 42:996–1004.PubMedCrossRefGoogle Scholar
  68. 68.
    Kwon Y, Jeon SR, Kim JH, et al. Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations. J Neurosurg 2000; 93(Suppl 3):104–106.PubMedGoogle Scholar
  69. 69.
    Pollock BE, Kondziolka D, Lunsford LD, et al. Repeat stereo tactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery 1996; 38:318–324.PubMedCrossRefGoogle Scholar
  70. 70.
    Buis DR, Lagerwaard FJ, Barkhof F, et al. Stereotactic radiosurgery for brain AVMs: role of interobserver variation in target definition on digital subtraction angiography. Int J Radiat Oncol Biol Phys 2005; 62:246–252.PubMedCrossRefGoogle Scholar
  71. 71.
    Yu C, Petrovich Z, Apuzzo ML, et al. Study of magnetic resonance imaging-based arteriovenous malformation delineation without conventional angiography. Neurosurgery 2004; 54:1104–1107.PubMedCrossRefGoogle Scholar
  72. 72.
    Pollock BE, Lunsford LD, Kondziolka D, et al. Patient outcomes after stereotactic radiosurgery for “operable” arteriovenous malformations. Neurosurgery 1994; 35:1–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Friedman WA, Blatt DL, Bova FJ, et al. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg 1996; 84:912–919.PubMedCrossRefGoogle Scholar
  74. 74.
    Nataf F, Ghossoub M, Schlienger M, et al. Bleeding after radiosurgery for cerebral arteriovenous malformations. Neurosurgery 2004; 55:298–305.PubMedCrossRefGoogle Scholar
  75. 75.
    Pollock BE, Flickinger JC, Lunsford LD, et al. Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery 1996; 38:652–661.PubMedCrossRefGoogle Scholar
  76. 76.
    Karlsson B, Lax I, Söderman M. Risk of hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 2001; 49:1045–1051.PubMedCrossRefGoogle Scholar
  77. 77.
    Maruyama K, Kawahara N, Shin M, et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med 2005; 352:146–153.PubMedCrossRefGoogle Scholar
  78. 78.
    Lindqvist M, Karlsson B, Guo W, et al. Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery 2000; 46:803–810.PubMedCrossRefGoogle Scholar
  79. 79.
    Shin M, Kawahara N, Maruyama K, et al. Risk of hemorrhage from an arteriovenous malformation confirmed to have been obliterated on angiography after stereotactic radiosurgery. J Neurosurg 2005; 102:842–846.PubMedCrossRefGoogle Scholar
  80. 80.
    Yamamoto M, Jimbo M, Hara M, et al. Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery 1996; 38:906–914.PubMedCrossRefGoogle Scholar
  81. 81.
    Pollock BE, Brown RD Jr. Management of cysts arising after radiosurgery of intracranial arteriovenous malformations. Neurosurgery 2001; 49:259–265.PubMedCrossRefGoogle Scholar
  82. 82.
    Levegrun S, Hof H, Essig M, et al. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys 2004; 59:796–808.PubMedGoogle Scholar
  83. 83.
    Pollock BE. Occlusive hyperemia. A radiosurgical phenomenon? Neurosurgery 2000; 47:1178–1184.PubMedCrossRefGoogle Scholar
  84. 84.
    Chapman PH, Ogilvy CS, Loeffler JS. The relationship between occlusive hyperemia and complications associated with the radiosurgical treatment of arteriovenous malformations: report of two cases. Neurosurgery 2004; 55:228–234.PubMedCrossRefGoogle Scholar
  85. 85.
    Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg 2004; 100:210–214.PubMedCrossRefGoogle Scholar
  86. 86.
    Yamamoto M, Ban S, Ide M, Jimbo M. A diffuse white matter ischemic lesion appearing 7 years after stereotactic radiosurgery for cerebral arteriovenous malformations: case report. Neurosurgery 1997; 41:1405–1409.PubMedCrossRefGoogle Scholar
  87. 87.
    Kihlström L, Guo W, Karlsson B, et al. Magnetic resonance imaging of obliterated arteriovenous malformations up to 23 years after radiosurgery. J Neurosurg 1997; 86:589–593.PubMedCrossRefGoogle Scholar
  88. 88.
    Yamamoto M, Ide M, Jimbo M, et al. Middle cerebral artery stenosis caused by relatively low-dose irradiation with stereotactic radiosurgery for cerebral arteriovenous malformations: case report. Neurosurgery 1997; 41:474–477.PubMedCrossRefGoogle Scholar
  89. 89.
    Kaido T, Hoshida T, Uranishi R, et al. Radiosurgery-induced brain tumor: case report. J Neurosurg 2001; 95:710–713.PubMedCrossRefGoogle Scholar
  90. 90.
    Loeffler JS, Niemierko A, Chapman PH. Second tumors after radiosurgery: tip of the iceberg or a bump in the road? Neurosurgery 2003; 52:1436–1442.PubMedCrossRefGoogle Scholar
  91. 91.
    Foote KD, Friedman WA, Ellis TL, et al. Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. J Neurosurg 2003; 98:337–341.PubMedCrossRefGoogle Scholar
  92. 92.
    Karlsson B, Kihlstrom L, Lindquist C, et al. Gamma knife surgery for previously irradiated arteriovenous malformations. Neurosurgery 1998; 42:1–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Maesawa S, Flickinger JC, Kondziolka D, et al. Repeated radiosurgery for incompletely obliterated arteriovenous malformations. J Neurosurg 2000; 92:961–970.PubMedCrossRefGoogle Scholar
  94. 94.
    Schlienger M, Nataf F, Lefkopoulos D, et al. Repeat linear accelerator radiosurgery for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys 2003; 56:529–536.PubMedCrossRefGoogle Scholar
  95. 95.
    Miyawaki L, Dowd C, Wara W, et al. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMs. Int J Radiat Oncol Biol Phys 1999; 44:1089–1096.PubMedGoogle Scholar
  96. 96.
    Gobin YP, Laurent A, Merienne L, et al. Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg 1996; 85:19–28.PubMedCrossRefGoogle Scholar
  97. 97.
    Lawton MT, Hamilton MG, Spetzler RF. Multimodality treatment of deep arteriovenous malformations: thalamus, basal ganglia, and brain stem. Neurosurgery 1995; 37:29–36.PubMedCrossRefGoogle Scholar
  98. 98.
    Mathis JA, Barr JD, Horton JA, et al. The efficacy of particulate embolization combined with stereotactic radiosurgery for treatment of large arteriovenous malformations of the brain. AJNR 1995; 16:299–306.PubMedGoogle Scholar
  99. 99.
    Paulsen RD, Steinberg GK, Norbash AM, et al. Embolization of basal ganglia and thalamic arteriovenous malformations. Neurosurgery 1999; 44:991–997.PubMedCrossRefGoogle Scholar
  100. 100.
    Wikholm G, Lundqvist C, Svendsen P. Embolization of cerebral arteriovenous malformations: part I—technique, morphology, and complications. Neurosurgery 1996; 39:448–459.PubMedCrossRefGoogle Scholar
  101. 101.
    Wikholm G, Lundqvist C, Svendsen P. Embolization of cerebral arteriovenous malformations: part II—aspects of complications and late outcome. Neurosurgery 1996; 39:460–469.PubMedCrossRefGoogle Scholar
  102. 102.
    Chang T, Shirato H, Aoyama H, et al. Stereotactic irradiation for intracranial arteriovenous malformations using stereotactic radiosurgery or hypofractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2004; 60:861–870.PubMedGoogle Scholar
  103. 103.
    Lindvall P, Bergström P, Löfroth P, et al. Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery 2003; 53:1036–1042.PubMedCrossRefGoogle Scholar
  104. 104.
    Redekop GJ, Elisevich KV, Gaspar LE, et al. Conventional radiation therapy of intracranial arteriovenous malformations: longterm results. J Neurosurg 1993; 78:413–422.PubMedCrossRefGoogle Scholar
  105. 105.
    Veznedaroglu E, Andrews D, Benitez R, et al. Fractionated stereotactic radiotherapy for the treatment of large arteriovenous malformations with or without previous partial embolization. Neurosurgery 2004; 55:519–530.PubMedCrossRefGoogle Scholar
  106. 106.
    Firlik AD, Levy EI, Kondziolka D, et al. Staged volume radiosurgery followed by microsurgical resection: a novel treatment for giant cerebral arteriovenous malformations: technical case report. J Neurosurg 1998; 43:1223–1228.CrossRefGoogle Scholar
  107. 107.
    Pendl G, Unger F, Papaefthymiou G, et al. Staged radiosurgical treatment for large benign cerebral lesions. J Neurosurg 2000; 93(Suppl3):107–112.PubMedGoogle Scholar
  108. 108.
    Pollock BE, Kline RW, Stafford SL, et al. The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 2000; 48:817–824.PubMedGoogle Scholar
  109. 109.
    Cernica G, de Boer SF, Diaz A, et al. Dosimetric accuracy of a staged radiosurgery treatment. Phys Med Biol 2005; 50:1991–2002.PubMedCrossRefGoogle Scholar
  110. 110.
    Bond JE, Smith V, Yue NJ, et al. Comparison of an image registration technique based on normalized mutual information with a standard method utilizing implanted markers in the staged radiosurgical treatment of large arteriovenous malformations. Int J Radiat Oncol Biol Phys 2003; 57:1150–1158.PubMedGoogle Scholar
  111. 111.
    Lo EH. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery. Int J Radiat Oncol Biol Phys 1993; 27:353–361.PubMedGoogle Scholar
  112. 112.
    Lo EH, Fabrikant JI, Levy RP, et al. An experimental compartmental flow model for assessing the hemodynamic response of intracranial arteriovenous malformations to stereotactic radiosurgery. Neurosurgery 1991; 2:251–259.CrossRefGoogle Scholar
  113. 113.
    Lawton MT. Spetzler-Martin grade III arteriovenous malformations: surgical results and modification of the grading scale. Neurosurgery 2003; 52:740–748.PubMedCrossRefGoogle Scholar
  114. 114.
    Morgan MK, Drummond KJ, Grinnell V, et al. Surgery for cerebral arteriovenous malformations: risks related to lenticulostriate arterial supply. J Neurosurg 1997; 86:801–805.PubMedCrossRefGoogle Scholar
  115. 115.
    Meder JF, Oppenhiem C, Blustajn J, et al. Cerebral arteriovenous malformations: the value of radiologic parameters in predicting response to radiosurgery. AJNR Am J Neuroradiol 1997; 18:1473–1483.PubMedGoogle Scholar
  116. 116.
    Pollock BE, Flickinger JC, Lunsford LD, et al. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 1998; 42:1239–1247.PubMedCrossRefGoogle Scholar
  117. 117.
    Pollock BE, Gorman DA, Coffey RJ. Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5-to 14-year follow-up study. Neurosurgery 2003; 52:1291–1297.PubMedCrossRefGoogle Scholar
  118. 118.
    Maruyama K, Shin M, Tago M, et al. Gamma Knife surgery for arteriovenous malformations involving the corpus callosum. J Neurosurg 2005; 102(Suppl):49–52.PubMedCrossRefGoogle Scholar
  119. 119.
    Andrade-Souza Y, Zadeh G, Scora D, et al. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformations: clinical outcomes. Neurosurgery 2005; 56:56–64.PubMedCrossRefGoogle Scholar
  120. 120.
    Maruyama K, Kondziolka D, Niranjan A, et al. Stereotactic radiosurgery for brainstem arteriovenous malformations: factors affecting outcome. J Neurosurg 2004; 100:407–413.PubMedCrossRefGoogle Scholar
  121. 121.
    Vates GE, Lawton MT, Wilson CB, et al. Magnetic source imaging demonstrates altered cortical distribution of function in patients with arteriovenous malformations. Neurosurgery 2002; 51:614–627.PubMedCrossRefGoogle Scholar
  122. 122.
    Yamamoto Y, Coffey RJ, Nichols DA, et al. Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 1995; 83:832–837.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bruce E. Pollock
    • 1
  1. 1.Department of Neurological Surgery and Radiation OncologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations