Pituitary Tumors

  • Kintomo Takakura
  • Motohiro Hayashi
  • Masahiro Izawa


Pituitary adenomas are tumors that make up a significant portion of neurosurgical practice. According to the Japanese Brain Tumor Registry [1], pituitary adenomas (n = 6653) comprise 17.4% of all primary brain tumors (N = 38,273). Their clinical presentation can be divided into two groups: functioning adenomas that secrete excess pituitary hormones resulting in endocrinologic symptoms and signs, and nonfunctioning adenomas that do not secrete biologically active hormones. All adenomas, particularly when they grow and extend outside the sella turcica, will cause neurologic deficit due to compression of surrounding tissues (e.g., bitemporal hemianopsia and hypopituitarism).


Optic Nerve Pituitary Adenoma Pituitary Gland Pituitary Tumor Radiat Oncol Biol Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Committee of Brain Tumor Registry of Japan. Report of Brain Tumor Registry of Japan. 10th edition. Neurol Med Chir 2000; 40(Suppl):5–11.Google Scholar
  2. 2.
    Aldred C, Sandison AT. The Pharaoh Akhenaten; a problem in Egyptology and Pathology. Bull Hist Med 1963; 36:293.Google Scholar
  3. 3.
    Horsley V. On the technique of operations on the central nervous system. Br Med J 1906; 2:411–423.CrossRefGoogle Scholar
  4. 4.
    Caton R, Paul FI. Notes of a case of acromegaly treated by operation. Br Med J 1893; 2:1421–1423.CrossRefPubMedGoogle Scholar
  5. 5.
    Schloffer H. Erfolgreiche Operation eines Hypophysentumors auf Nasalem Wege. Wien Klin Wochenschr 1907; 20:621–624.Google Scholar
  6. 6.
    von Eiselsberg F. Operations upon the hypophysis. Trans Am Surg Assoc 1910; 28:55–72.Google Scholar
  7. 7.
    Halstead AE. Remarks on the operative treatment of tumors of the hypophysis; with the report of two cases operated on by an oronasal method. Trans Am Surg Assoc 1910; 28:73–93.Google Scholar
  8. 8.
    Cushing HW. Partial hypophysectomy for acromegaly; With remarks on the function of the hypophysis. Ann Surg 1909; 1:1002–1017.CrossRefGoogle Scholar
  9. 9.
    Hirsch O. Symptoms and treatment of pituitary tumors. Arch Otolaryngol 1952; 55:268.Google Scholar
  10. 10.
    Cushing HW. The hypophysis cerebri; clinical aspects of hyperpituitarism and hypopituitarism. JAMA 1909; 53:249–255.Google Scholar
  11. 11.
    Cushing HW. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp 1932; 50:137–195.Google Scholar
  12. 12.
    Bishop PMF, Close HG. A case of basophil adenoma of the anterior lobe of the pituitary “Cushing’s Syndrome.” Guy’s Hosp Rep 1932; 82:143–153.Google Scholar
  13. 13.
    Guiot G. Transsphenoidal approach in surgical treatment of pituitary adenomas, general principles, and indications in nonfunctioning adenomas. Excerpta Medica Int Congr Ser 1973; 303:159.Google Scholar
  14. 14.
    Hardy J. Transsphenoidal surgery of hypersecreting pituitary tumors. Excepta Medica Int Congr Ser 1973; 303:179.Google Scholar
  15. 15.
    Cushing H. The Pituitary Body and Its Disorders. Philadelphia: Lippincott, 1910:321–322.Google Scholar
  16. 16.
    Gramegna A. Un cas d’acromégalie traité par la radiothérapie. Rev Neurol 1909; 17:15–17.Google Scholar
  17. 17.
    Béclère A. The radio-therapeutic treatment of tumors of the hypophysis, gigantism and acromegaly. Arch Roentg Ray 1909–1910; 14:142–150.Google Scholar
  18. 18.
    Jaugeas F. The X-ray diagnosis of tumors of the hypophysis, Arch Roentg Ray 1910; 15:87–89.Google Scholar
  19. 19.
    Sheline GE, Tyrell JB. Pituitary adenomas. In: Phillips TL, Pisterno PA, eds. Radiation Oncology Annual. New York: Raven Press, 1983:1–35.Google Scholar
  20. 20.
    Grigsby PW, Simpson JR, Enami BN, et al. Prognostic factors and results of surgery and postoperative irradiation in the management of pituitary adenomas. Int J Radiat Oncol Biol Phys 1989; 16:1411–1417.PubMedGoogle Scholar
  21. 21.
    Eastman RC, Gorden P, Roth J. Conventional super voltage irradiation is an effective treatment for acromegaly. J Clin Endocrinol Metab 1979; 48:931–940.CrossRefPubMedGoogle Scholar
  22. 22.
    Tsang RW, Brierley JD, Panzarella T et al. Role of radiation therapy in clinical hormonally-active pituitary adenomas. Radiother Oncol 1996; 41:45–53.CrossRefPubMedGoogle Scholar
  23. 23.
    Aristizabal S, Caldwell WL, Avila J. The relationship of time-dose fractionation factors to complications in the treatment of pituitary tumors by irradiation. Int J Radiat Oncol Biol Phys 1977; 2:667–673.PubMedGoogle Scholar
  24. 24.
    Kjellberg RN, Masamutsu A. Stereotactic Bragg peak photon beam therapy. In: Lunsford LD, ed. Modern Stereotactic Neurosurgery. Boston: Nijhoff, 1988:463–470.Google Scholar
  25. 25.
    Fabrikant JI, Levy RP, Steinberg GK, et al. Stereotactic chargedparticle radiosurgery: clinical results of treatment of 1200 patients with intracranial arteriovenous malfomations and pituitary disorders. Clin Neurosurg 1992; 38:472–492.PubMedGoogle Scholar
  26. 26.
    Leksell L. The stereotactic method and radiosurgery of the brain. Acta Chir Scand 1951; 102:316–319.PubMedGoogle Scholar
  27. 27.
    Corenblum B, Sirek AMT, Horvath E, et al. Human mixed somatotrophic and lactotrophic pituitary adenomas. J Clin Endocrinol 1976; 42:857–863.CrossRefGoogle Scholar
  28. 28.
    Horvath, Kovacs K. Ultrastructual diagnosis of pituitary adenomas and hyperplasias. In Loyd RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia: WB Saunders, 1993:52–84.Google Scholar
  29. 29.
    Horn K, Erhardt F, Fahlbusch R, et al. Recurrent goiter, hyperthyroidism, galactorrhea and amenorrhea due to a thyrotropin and prolactin-producing pituitary tumor. J Clin Endocrinol 1976; 43:137–143.CrossRefGoogle Scholar
  30. 30.
    Thapar K, Laws ER Jr. Pituitary tumors. In Kaye AH, Laws ER Jr, eds. Brain Tumors, 2nd ed. London: Churchill Livingstone, 2001:803–854.Google Scholar
  31. 31.
    Friedman RB, Oldfield EH, Nieman LK, et al. Repeat transsphenoidal surgery for Cushing’s disease. J Neurosurg 1989; 71:520–527.CrossRefPubMedGoogle Scholar
  32. 32.
    Laws ER Jr, Ebersold MJ, Piepgras DG. The results of transsphenoidal surgery in specific clinical entities. In: Laws ER, Randall RV, Kern EB, Abboud CF, eds. Management of Pituitary Adenomas and Related Lesions with Emphasis on Transsphenoidal Microsurgery. New York: Appleton-Century-Crofts, 1982:277–305.Google Scholar
  33. 33.
    Laws ER Jr, Vance ML. Radiosurgery for pituitary tumors and craniopharyngiomas. Neurosurg Clin N Am 1999; 10:327–336.PubMedGoogle Scholar
  34. 34.
    Halberg FE, Sheline GE. Radiotherapy of pituitary tumors. Endocrinol Metab Clin North Am 1987; 16:667–684.PubMedGoogle Scholar
  35. 35.
    Grigsby PW. Pituitary adenomas: evolving diagnosis and management. Int J Radiat Oncol Biol Phys 1993; 27:1253–1254.PubMedGoogle Scholar
  36. 36.
    Brada M, Rajan B, Traish P, et al. The longterm efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf) 1993; 38:571–578.CrossRefGoogle Scholar
  37. 37.
    McCollough WM, Marcus RB Jr, Rhoton AL Jr, et al. Long-term follow-up of radiotherapy for pituitary adenoma: the absence of late recurrence after greater than or equal to 4500 cGy. Int J Radiat Oncol Biol Phys 1991; 21:607–614.PubMedGoogle Scholar
  38. 38.
    Flickinger JC, Nelson PB, Martinez AS, et al. Radiotherapy of nonfunctional adenomas of the pituitary gland. Results with long-term follow up. Cancer 1989; 63:2409–2414.CrossRefPubMedGoogle Scholar
  39. 39.
    Hayashi M, Taira T, Chernov M, et al. Pituitary gland and Gamma Knife. Endocrinol Diabetol (Jpn) 2002; 15:296–306.Google Scholar
  40. 40.
    Régis J, Hayashi M, Porcheron D, et al. Impact of the model C and automatic positioning system on gamma knife radiosurgery: an evaluation in vestibular schwannomas. J Neurosurg 2002; 97(Suppl 5):588–591.PubMedGoogle Scholar
  41. 41.
    Rush S, Cooper PR. Symptom resolution, tumor control, and side effects following postoperative radiotherapy for pituitary macroadenomas. Int J Radiat Oncol Biol Phys 1997; 37:1031–1034.PubMedGoogle Scholar
  42. 42.
    Tsang RW, Brierley JD, Panzarella T, et al. Radiation therapy for pituitary adenoma: treatment outcome and prognostic factors. Int Radiat Oncol Biol Phys 1994; 30:557–565.Google Scholar
  43. 43.
    Zierhut D, Flentje M, Adolph J, et al. External radiotherapy of pituitary adenomas. Int Radiol Oncol Biol Phys 1995; 33:307–314.CrossRefGoogle Scholar
  44. 44.
    Littley MD, Shalet SM, Beardwell CG, et al. Hypopituitarism following external radiotherapy for pituitary tumors in adults. Am J Med 1989; 79:145–160.Google Scholar
  45. 45.
    Ganz JC, Backlund EO, Thorsen FA. The effects of Gamma Knife surgery of pituitary adenomas on tumor growth and endocrinopathies. Stereotact Funct Neurosurg 1993; 61(Suppl 1):30–37.PubMedGoogle Scholar
  46. 46.
    Witt TC, Kondziolka D, Flickinger JC, Lunsford LD. Gamma Knife radiosurgery for pituitary tumors. In: Lunsford LD, Kondziolka D, Flickinger JC, eds. Progress in Neurosurgery; Gamma Knife Brain Surgery. Basel: Karger, 1998:114–127.CrossRefGoogle Scholar
  47. 47.
    Park YG, Chang JW, Kim EY, Chung SS. Gamma Knife surgery in pituitary microadenomas. Yonsei Med 1996; 37:165–173.Google Scholar
  48. 48.
    Sheehan JP, Niranjan A, Sheehan JM, et al. Stereotactic radiosurgery for pituitary adenomas: an intermediate review of its safety, efficacy, and role in the neurosurgical treatment armamentarium. J Neurosurg 2005; 102:678–691.CrossRefPubMedGoogle Scholar
  49. 49.
    Hayashi M, Izawa M, Hiyama S, et al. Gamma Knife radiosurgery for pituitary adenomas. Stereotact Funct Neurosurg 1999; 72(Suppl 1):111–118.CrossRefPubMedGoogle Scholar
  50. 50.
    Izawa M, Hayashi M, Nakaya K, et al. Gamma Knife radiosurgery for pituitary adenomas. J Neurosurg 2000; 93(Suppl 3):19–22.PubMedGoogle Scholar
  51. 51.
    Chen JC, Giannotta ST, Yu C, et al. Radiosurgical management of benign cavernous sinus tumors: dose profiles and acute complications. Neurosurgery 2001; 48:1022–1032.CrossRefPubMedGoogle Scholar
  52. 52.
    Kondziolka D, Levy EL, Niranjan A, et al. Long-term outcomes after meningioma radiosurgery: physician and patients perspectives. J Neurosurg 1999; 91:44–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Iwai Y, Yamanaka K, Nakajima H, et al. Gamma Knife radiosurgery for skull base meningiomas: the treatment results and patient satisfaction expressed in answers to a questionnaire. No-Shinkei Geka 2000; 28:411–415 [Japanese with English summary].PubMedGoogle Scholar
  54. 54.
    Pendl G, Schrottner O, Eustacchio S, et al. Stereotactic radiosurgery of skull base meningiomas. Minim Invasive Neurosurg 1997; 40:87–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Pan DH, Guo WY, Chang YC, et al. The effectiveness and factors related to treatment results of Gamma Knife radiosurgery for men ingiomas. Stereotact Funct Neurosurg 1998; 70(Suppl 1):19–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Liscak R, Simonova G, Vymazal J, et al. Gamma Knife radiosurgery of meningiomas in the cavernous sinus region. Acta Neurochir (Wien) 1999; 141:473–480.CrossRefGoogle Scholar
  57. 57.
    Morita A, Coffey RJ, Foote RL, et al. Risk of injury to cranial nerves after Gamma Knife radiosurgery for skull base meningiomas: experience in 88 patients. J Neurosurg 1999; 90:42–49.CrossRefPubMedGoogle Scholar
  58. 58.
    Takakura K, Sano K, Hojo S, Hirano A. Pituitary gland. In: Takakura K, Sano K, Hojo S, Hirano A, eds. Metastatic Tumors of the Central Nervous System. Igaku Shoin: Tokyo, 1982:101–104.Google Scholar
  59. 59.
    Abramo HL, Spiro R, Goldstein V. Metastasis in carcinoma: analysis of 1,000 autopsied cases. Cancer 1950; 3:74–85.CrossRefGoogle Scholar
  60. 60.
    Hagerstrand I, Schonebeck J. Metastasis to pituitary gland. Acta Pathol Microl Scand 1969; 75:14–70.CrossRefGoogle Scholar
  61. 61.
    Kovacs A. Metastatic cancer of the pituitary gland. Oncology 1973; 27:533–542.CrossRefPubMedGoogle Scholar
  62. 62.
    Gurling KJ, Scott GBD, Baron DN. Metastases in pituitary tissue removed at hypophysectomy in women with mammary carcinoma. Br J Cancer 1957; 11:519–523.PubMedGoogle Scholar
  63. 63.
    Duchen LW. Metastatic carcinoma in the pituitary gland and hypothalamus. J Pathol Bacteriol 1966; 91:347–355.CrossRefPubMedGoogle Scholar
  64. 64.
    Kistler M, Pribram HW. Metastatic disease of the sella tur cica. Am J Roentgenol Radium Ther Nucl Med 1975; 123:13–21.PubMedGoogle Scholar
  65. 65.
    Oi S, Ciric I, Mayers TK. Metastatic breast carcinoma in the pituitary gland. Brain Nerve (Tokyo) 1978; 30:69–73 [Japanese with English abstract].Google Scholar
  66. 66.
    Tecars RJ, Silverman EM. Clinicopathologic review of 88 cases of carcinoma metastatic to the pituitary gland. Cancer 1975; 36:216–220.CrossRefGoogle Scholar
  67. 67.
    Jones GM. Diabetes insipidus. Arch Intern Med 1944; 74:81–93.Google Scholar
  68. 68.
    Plotner H. Primary or idiopathic diabetes insipidus: a system disease. Metabolism 1958; 7:191–200.Google Scholar
  69. 69.
    Houck WA, Olson KB, Horton J. Clinical features of tumor metastasis to the pituitary. Cancer 1970; 26:656–659.CrossRefPubMedGoogle Scholar
  70. 70.
    Green JD. The comparative anatomy of the hypophysis, with special reference to its blood supply and innervation. Am J Anat 1951; 88:225–311.CrossRefPubMedGoogle Scholar
  71. 71.
    Page RB, Bergland RM. Pituitary vasculature. In Allen MB Jr, Mahesh VB, eds. The Pituitary. A Current Review. New York: Academic Press, 1977:9–17.Google Scholar
  72. 72.
    Willis RA. The spread of tumors in the human body, 3rd ed. London: Butterworth, 1973.Google Scholar
  73. 73.
    Koyama Y, Takakura K. Intracranial invasion of malignant neoplasms—studies on autopsy cases. Adv Neurol Sci (Tokyo) 1969; 13:188–197 [Japanese with English abstract].Google Scholar
  74. 74.
    Epstein S, Ranchod M, Goldswain PRT. Pituitary insufficiency, inappropriate anti-diuretic hormone (ADH) secretion, and carcinoma of the bronchus. Cancer 1973; 32:476–481.CrossRefPubMedGoogle Scholar
  75. 75.
    Teoh TB. Epidermoid carcinoma of the nasopharynx among Chinese: a study of 31 necropsies. J Pathol Bacteriol 1957; 72:451–465.CrossRefGoogle Scholar
  76. 76.
    Masse SR, Wolk RW, Conklin RH. Peripituitary gland involvement in acute leukemia in adults. Arch Pathol 1973; 96:141–142.PubMedGoogle Scholar
  77. 77.
    Girkin CA, Comey CH, Lunsford LD, Goodman ML, Kline LB. Radiation optic neuropathy after stereotactic radiosurgery. Ophthalmology 1997; 104:1634–1643.PubMedGoogle Scholar
  78. 78.
    Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 1993; 27:215–221.PubMedGoogle Scholar
  79. 79.
    Lundstrom M, Frisen L. Atrophy of optic nerve fibres in compression of the chiasm. Degree and distribution of ophthalmoscopic changes. Acta Ophthalmol 1976; 54:623–640.CrossRefGoogle Scholar
  80. 80.
    Jane JA Jr, Vance ML, Woodburn LJ, Laws ER Jr. Stereotactic radiosurgery for hypersecreting pituitary tumors: part of a multimodality approach. Neurosurg Focus 2003; 14:E12.CrossRefPubMedGoogle Scholar
  81. 81.
    Pollock BE, Carpenter PC. Stereotactic radiosurgery as an alternative to fractionated radiotherapy for patients with recurrent or residual nonfunctioning pituitary adenomas. Neurosurgery 2003; 53:1086–1094.CrossRefPubMedGoogle Scholar
  82. 82.
    Fiegl GC, Bonelli CM, Berghold A, Mokry M. Effects of gamma Knife radiosurgery of pituitary adenomas in pituitary function. J Neurosurg 2002; 97(Suppl 5):415–421.Google Scholar
  83. 83.
    Hanabusa K, Morikawa A, Murata T, Taki W. Acoustic neuroma with malignant transformation. Case report. J Neurosurg 2001; 95:519–521.Google Scholar
  84. 84.
    Kaido T, Hoshida T, Uranishi R, et al. Radiosurgery-induced brain tumor. Case report. J Neurosurg 2001; 95:710–713.CrossRefPubMedGoogle Scholar
  85. 85.
    Shamisa A, Bance M, Nag S, et al. Glioblastoma multiforme occurring in a patient treated with gamma knife surgery. Case report and review of the literature. J Neurosurg 2001; 94:816–821.CrossRefPubMedGoogle Scholar
  86. 86.
    Comey CH, Mc Laughlin MR, Jho HD, et al. Death from a malignant cerebellopontine angle triton tumor despite stereotactic neurosurgery. Case report. J Neurosurg 1998; 89:653–658.CrossRefPubMedGoogle Scholar
  87. 87.
    Yu JS, Yong WH, Wilson D, Black KL. Glioblastoma induction after radiosurgery for meningioma. Lancet 2000; 356:1576–1577.CrossRefPubMedGoogle Scholar
  88. 88.
    Shin M, Ueki K, Kurita H, Kirino T. Malignant transformation of a vestibular schwannoma after Gamma Knife radiosurgery. Lancet 2002; 360:309–310.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kintomo Takakura
    • 1
  • Motohiro Hayashi
    • 1
  • Masahiro Izawa
    • 2
  1. 1.Tokyo Women’s Medical UniversityShinjuku, TokyoJapan
  2. 2.Department of NeurosurgeryTokyo Women’s Medical UniversityShinjuku, TokyoJapan

Personalised recommendations