Advertisement

CyberKnife Radiosurgery

  • John R. AdlerJr.
  • Alexander Muacevic
  • Pantaleo Romanelli

Abstract

Conceptually, the lineage of CyberKnife (Accuray Inc., Sunnyvale, CA) technology derives from the clinical principles that underlie stereotactic radiosurgery. This minimally invasive procedure involves the precise delivery of large doses of ionizing radiation to destroy well-defined targets without injuring the surrounding and intervening healthy tissue. This objective is achieved using large numbers of narrow beams that emanate from a wide array of directions and intersect (and therefore accumulate) within the volume selected for ablation. The cumulative dose that can be administered this way overwhelms any capacity for cellular repair, thereby typically ensuring tissue destruction.

Keywords

Radiat Oncol Biol Phys Trigeminal Neuralgia Gamma Knife Stereotactic Radiosurgery Treatment Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 2003;52:140–146;discussion 146–147.CrossRefPubMedGoogle Scholar
  2. 2.
    Yu C, Main W, Taylor D, et al. An anthropomorphic phantom study of the accuracy of CyberKnife spinal radiosurgery. Neurosurgery 2004;55:1138–1149.CrossRefPubMedGoogle Scholar
  3. 3.
    Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of CyberKnife spinal radiosurgery using skeletal structure tracking. Neurosurgery 2007;60(2 Suppl 1):ONS147–156.PubMedGoogle Scholar
  4. 4.
    Gierga DP, Chen GT, Kung JH, et al. Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions. Int J Radiat Oncol Biol Phys 2004;58:1584–1595.CrossRefPubMedGoogle Scholar
  5. 5.
    Kaus MR, Netsch T, Kabus S, et al. Estimation of organ motion from 4D CT for 4D radiation therapy planning of lung cancer. Presented at Medical Image Computing and Computer-Assisted Intervention-MICCAI 2004, 7th International Conference, Saint-Malo, France, September 26–29, 2004.Google Scholar
  6. 6.
    Langen KM, Jones DT. Organ motion and its management. Int J Radiat Oncol Biol Phys 2001;50:265–278.PubMedGoogle Scholar
  7. 7.
    Mageras GS, Pevsner A, Yorke ED, et al. Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys 2004;60:933–941.CrossRefPubMedGoogle Scholar
  8. 8.
    Plathow C, Ley S, Fink C, et al. Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI. Int J Radiat Oncol Biol Phys 2004;59:952–959.CrossRefPubMedGoogle Scholar
  9. 9.
    Shirato H, Seppenwoolde Y, Kitamura K, et al. Intrafractional tumor motion: lung and liver. Semin Radiat Oncol 2004;14:10–18.CrossRefPubMedGoogle Scholar
  10. 10.
    Webb S. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-testing IMRT to the limit? Phys Med Biol 1999;44:1639–1654.CrossRefPubMedGoogle Scholar
  11. 11.
    Webb S. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-conformality versus efficiency of dose delivery. Phys Med Biol 2000;45:1715–1730.CrossRefPubMedGoogle Scholar
  12. 12.
    Li JG, Xing L. Inverse planning incorporating organ motion. Med Phys 2000;27:1573–1578.CrossRefPubMedGoogle Scholar
  13. 13.
    Unkelbach J, Oelfke U. Incorporating organ movements in inverse planning: assessing dose uncertainties by Bayesian inference. Phys Med Biol 2005;50:121–139.CrossRefPubMedGoogle Scholar
  14. 14.
    Schlaefer A, Fisseler J, Dieterich S, et al. Feasibility of fourdimensional conformal planning for robotic radiosurgery. Med Phys 2005;32:3786–3792.CrossRefPubMedGoogle Scholar
  15. 15.
    Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD. Visual field preservation after multisession CyberKnife radiosurgery for perioptic lesions. Neurosurgery 2006;59(2):244–254.CrossRefPubMedGoogle Scholar
  16. 16.
    Mehta VK, Lee QT, Chang SD, et al. Image guided stereotactic radiosurgery for lesions in proximity to the anterior visual pathways: a preliminary report. Technol Cancer Res Treat 2002;1:173–180.PubMedGoogle Scholar
  17. 17.
    Pham CJ, Chang SD, Gibbs IC, et al. Preliminary visual field preservation after staged CyberKnife radiosurgery for perioptic lesions. Neurosurgery 2004;54:799–810;discussion 810–812.CrossRefPubMedGoogle Scholar
  18. 18.
    Chang SD, Gibbs IC, Sakamoto GT, et al. Staged stereotactic irradiation for acoustic neuroma. Neurosurgery 2005;56:1254–1261;discussion 1261–1253.CrossRefPubMedGoogle Scholar
  19. 19.
    Romanelli P, Heit G, Chang SD, et al. CyberKnife radiosurgery for trigeminal neuralgia. Stereotact Funct Neurosurg 2003;81:105–109.CrossRefPubMedGoogle Scholar
  20. 20.
    Lim M, Villavicencio AT, Burneikiene S, et al. CyberKnife radiosurgery for idiopathic trigeminal neuralgia. Neurosurg Focus 2005;18:E9.CrossRefPubMedGoogle Scholar
  21. 21.
    Ryu S, Fang Yin F, Rock J, et al. Image-guided and intensitymodulated radiosurgery for patients with spinal metastasis. Cancer 2003;97:2013–2018.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerszten PC, Ozhasoglu C, Burton SA, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery 2004;55:89–98;discussion 98–99.PubMedGoogle Scholar
  23. 23.
    Degen JW, Gagnon GJ, Voyadzis JM, et al. CyberKnife stereotactic radiosurgical treatment of spinal tumors for pain control and quality of life. J Neurosurg Spine 2005;2:540–549.CrossRefPubMedGoogle Scholar
  24. 24.
    Gerszten PC, Germanwala A, Burton SA, et al. Combination kyphoplasty and spinal radiosurgery: a new treatment paradigm for pathological fractures. J Neurosurg Spine 2005;3:296–301.CrossRefPubMedGoogle Scholar
  25. 25.
    Sinclair J, Chang SD, Gibbs IC, Adler JR Jr. Multisession CyberKnife radiosurgery for intramedullary spinal cord arteriovenous malformations. Neurosurgery 2006;58:1081–1089;discussion 1081–1089.CrossRefPubMedGoogle Scholar
  26. 26.
    Bilsky MH, Yamada Y, Yenice KM, et al. Intensity-modulated stereotactic radiotherapy of paraspinal tumors: a preliminary report. Neurosurgery 2004;54:823–830;discussion 830–821.CrossRefPubMedGoogle Scholar
  27. 27.
    Herfarth KK, Debus J, Lohr F, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 2001;19:164–170.PubMedGoogle Scholar
  28. 28.
    Shiu AS, Chang EL, Ye JS, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys 2003;57:605–613.PubMedGoogle Scholar
  29. 29.
    Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 2003;124:1946–1955.CrossRefPubMedGoogle Scholar
  30. 30.
    Uematsu M, Shioda A, Suda A, et al. Computed tomographyguided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 2001;51:666–670.PubMedGoogle Scholar
  31. 31.
    Yenice KM, Lovelock DM, Hunt MA, et al. CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiat Oncol Biol Phys 2003;55:583–593.PubMedGoogle Scholar
  32. 32.
    Fuss M, Thomas CR Jr. Stereotactic body radiation therapy: an ablative treatment option for primary and secondary liver tumors. Ann Surg Oncol 2004;11:130–138.CrossRefPubMedGoogle Scholar
  33. 33.
    Schweikard A, Glosser G, Bodduluri M, et al. Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 2000;5:263–277.CrossRefPubMedGoogle Scholar
  34. 34.
    Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys 2004;31:2738–2741.CrossRefPubMedGoogle Scholar
  35. 35.
    Whyte RI, Crownover R, Murphy MJ, et al. Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg 2003;75:1097–1101.CrossRefPubMedGoogle Scholar
  36. 36.
    Le QT, Loo BW, Ho A, et al. Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol. 2006 Oct;1(8):802–809.CrossRefPubMedGoogle Scholar
  37. 37.
    Koong AC, Le QT, Ho A, et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2004;58:1017–1021.PubMedGoogle Scholar
  38. 38.
    Koong AC, Christofferson E, Le QT, et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2005;63:320–323.PubMedGoogle Scholar
  39. 39.
    Schweikard A, Shiomi H, Adler JR. Respiration tracking in radiosurgery without fiducials. Int J Med Robotics Comput Assist Surg 2005;1:19–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John R. AdlerJr.
    • 1
  • Alexander Muacevic
    • 2
  • Pantaleo Romanelli
    • 3
    • 4
    • 5
  1. 1.Stanford University Medical CenterStanfordUSA
  2. 2.CyberKnife Center MunichMunichGermany
  3. 3.Department of NeurologyState University of New YorkStony BrookUSA
  4. 4.Department of NeurosurgeryStanford UniversityStanfordUSA
  5. 5.Functional Neurosurgery, Department of NeurosurgeryIRCCS NeuromedPozzilliItaly

Personalised recommendations