Advertisement

Face Recognition

  • Marios Savvides
  • Jingu Heo
  • Sung Won Park

Keywords

Face Recognition Linear Discriminant Analysis Independent Component Analysis Face Image Training Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.frvt.org/FRVT2006/default.aspx.Google Scholar
  2. http://www.itl.nist.gov/iad/humanid/colorferet/home.html.Google Scholar
  3. http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.Google Scholar
  4. http://cobweb.ecn.purdue.edu/∼ aleix/aleix_face_DB.html.Google Scholar
  5. R. Abiantun, M. Savvides, and B. V. K Vijayakumar. How Low Can You GofiLow Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on FRGC dataset. In Proceedings of the IEEE Biometrics Symposium, September 2006.Google Scholar
  6. F. R. Bach and M. I. Jordan. Kernel Independent Component Analysis. Journal of Machine Learning Research, 3:1–48, 2002.CrossRefMathSciNetGoogle Scholar
  7. S. Baker and T. Kanade. Hallucinating Faces. In Proceedings of the International Conference on Automatic Face and Gesture Recognition, pages 83–88, 2000.Google Scholar
  8. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski. Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 13(6):1450–1464, 2002.CrossRefGoogle Scholar
  9. G. Baudat and F. Anouar. Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation, 12(10):2385–2404, 2000.CrossRefGoogle Scholar
  10. P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.CrossRefGoogle Scholar
  11. M. Belkin and P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Advances in Neural Information Precessing Systems 14, MIT Press, Cambridge, pages 585–591, 2002.Google Scholar
  12. V. Blanz, S. Romdhani, and T. Vetter. Face Identification across Difierent Poses and Illuminations with a 3D Morphable Model. In Proceedings of Fifth Int’l Conference Automatic Face and Gesture Recognition, pages 202–207, 2002.Google Scholar
  13. V. Blanz and T. Vetter. A Morphable Model for the Synthesis of 3D Faces. In Computer Graphics Proceedings of SIGGRAPH, pages 187–194, 1999.Google Scholar
  14. V. Blanz and T. Vetter. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9):1063–1074, 2003.CrossRefGoogle Scholar
  15. M. Bone and D. Blackburn. Face Recognition at a Chokepoint: Scenario Evaluation Results. Evaluation report, Department of Defense, 2002.Google Scholar
  16. K. W. Bowyer, K. Chang, and P. Flynn. An Evaluation of Multimodal 2D+3D Face Biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4):619–624, April 2005.CrossRefGoogle Scholar
  17. D. Capel and A. Zisserman. Super-resolution from multiple views using learnt image models. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 627–634, 2001.Google Scholar
  18. H. Chang, D. Y. Yeung, and Y. Xiong. Super-resolution through Neighbor Embedding. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 275–282, 2004.Google Scholar
  19. K. Chang, K. Bowyer, and P. Flynn. A Survey of Approaches and Challenges in 3D and Multi-Modal 2D+3D Face Recognition. Computer Vision and Image Understanding, 101(1):1–15, 2006.CrossRefGoogle Scholar
  20. X. Chen, P. Flynn, and K. Bowyer. IR and Visible Light Face Recognition. Computer Vision and Image Understanding, 99(3):332–358, September 2005.CrossRefGoogle Scholar
  21. T. Cootes, G. Edwards, and C. Taylor. Active appearance models. In Proceedings of the European Conference on Computer Vision, volume 2, pages 484–498, 1998.Google Scholar
  22. T. F. Cootes, K. Walker, and C. J. Taylor. View-Based Active Appearance Models. In Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition, pages 227–232, March 2000.Google Scholar
  23. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience Publication, 2000.Google Scholar
  24. P. Flynn and A. Jain. BONSAI: 3D Object Recognition Using Constrained Search. Computer Vision and Image Understanding, 13(10):1066–1075, October 1991.Google Scholar
  25. W. T. Freeman and E. C. Pasztor. Learning low-level vision. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 1182–1189, 1999.Google Scholar
  26. R. Gross, S. Baker, I. Matthews, and T. Kanade. Face Recognition Across Pose and Illumination. In Stan Z. Li and Anil K. Jain, editors, Handbook of Face Recognition. Springer, New York, 2004.Google Scholar
  27. S. Gutta, J. R. J. Huang, P. Jonathon, and H. Wechsler. Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Transactions on Neural Networks, 11(4):948–960, 2000.CrossRefGoogle Scholar
  28. X. He and O. Niyogi. Locality preserving projections. Advances in Neural Information Processing Systems, 16, 2003.Google Scholar
  29. X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face Recognition Using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), March 2005.Google Scholar
  30. B. Heisele, P. Ho, and T. Poggio. Face Recognition with Support Vector Machines: Global versus Component-based Approach. In Proceedings of the IEEE International Conference on Computer Vision, volume 2, pages 688–694, 2001.Google Scholar
  31. J. Heo and M. Savvides. Real-time Face Tracking and Pose Correction for Face Recognition using Active Appearance Models. The International Society of Optical Engineering(SPIE (to appear)), 2007.Google Scholar
  32. J. Heo, M. Savvides, R. Abiantun, C. Xie, and B. V. K. Vijaya Kumar. Face Recognition with Kernel Correlation Filters on a Large Scale Database. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2006.Google Scholar
  33. J. Heo, M. Savvides, and B. V. K. Vijaya Kumar. Large scale face recognition with distance measure in support vector machine spaces. In Proceedings of the International conference on Enterprise Information systems, 2006.Google Scholar
  34. J. Heo, M. Savvides, C. Xie, and B. V. K. Vijaya Kumar. Which Facial Regions are Discriminativefi Partial Face Recognition of FRGC data using Support Vector Machine Kernel Correlation Feature Analysis. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006.Google Scholar
  35. C. Hu, J. Xiao, I. Matthews, S. Baker, J. Cohn, and T. Kanade. Fitting a Single Active Appearance Model Simultaneously to Multiple Images. In Proceedings of the British Machine Vision Conference, September 2004.Google Scholar
  36. T. Kanade and D. D. Morris. Factorization Methods for Structure From Motion. Philosophical Transactions of the Royal Society of London, Series A, 356(1740):1153–1173, 1998.MATHCrossRefMathSciNetGoogle Scholar
  37. K. I. Kim, K. Jung, and H. J. Kim. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 9(2):40–42, 2002.CrossRefGoogle Scholar
  38. S. G. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. R. Abidi, A. Koschan, M. Yi, and M. A. Abidi. Adaptive Fusion of Visual and Thermal IR Images for Illumination-Invariant Face Recognition. International Journal of Computer Vision, Special Issue on Object Tracking and Classification Beyond the Visible Spectrum, 71(2):215–233, February 2007.Google Scholar
  39. B. V. K. Vijaya Kumar. Tutorial survey of composite filter designs for optical correlators. Applied Optics, 31(2):4773–4801, 1992.CrossRefGoogle Scholar
  40. B. V. K. Vijaya Kumar, Abhijit Mahalanobis, and Richard D. Juday. Correlation Pattern Recognition. Cambridge University Press, UK, November 2005.MATHGoogle Scholar
  41. L. D. Lathauwer, P. Common, B. D. Moor, and J. Vandewalle. Higher-order power method-application in independent component analysis. In Proceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA’95), pages 91–96, 1995.Google Scholar
  42. L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM Journal of Matrix Analysis and Applications, 21(4):1253–1278, 2000.MATHCrossRefGoogle Scholar
  43. S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face Recognition: A Convolutional Neural-Network Approach. IEEE Transactions on Neural Networks, 8(1):98–113, 1997.CrossRefGoogle Scholar
  44. C. Liu, H. Shum, and C. Zhang. A Two-Step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 192–198, 2001.Google Scholar
  45. X. Liu and T. Chen. Pose Robust Face Recognition Based on Mosaicing –An Example Usage of Face In Action (FIA) Database. In Demo session of the IEEE International Conference on Computer Vision and Pattern Recognition, 2004.Google Scholar
  46. J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 14(1):117–126, 2003.CrossRefGoogle Scholar
  47. J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Face recognition using LDA-based algorithms. IEEE Transactions on Neural Networks, 14(1):195–200, 2003.CrossRefGoogle Scholar
  48. A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent. Minimum average correlation energy filters. Applied Optics, 26:3633–3630, 1987.Google Scholar
  49. I. Matthews and S. Baker. Active Appearance Models Revisited. International Journal of Computer Vision, 60(2):135–164, 2004.CrossRefGoogle Scholar
  50. S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muller. Fisher Discriminant Analysis with Kernels. In Proceedings of IEEE Neural Networks for Signal Processing Workshop, 1999.Google Scholar
  51. K. R. Muller, K. Tsuda S. Mika, G. Ratsch, and B. Scholkopf. Introduction to Kernel-Based Learning Algorithms. IEEE Transactions on Neural Network, 12(2):181–202, 2001.CrossRefGoogle Scholar
  52. S. W. Park and M. Savvides. Estimating mixing factors simultaneously in multilinear tensor decomposition for robust face recognition and synthesis. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, 2006.Google Scholar
  53. S. W. Park and M. Savvides. Individual TensorFace Subspaces For Eficient and Robust Face Recognition That Do Not Require Factorization. In Proceedings of the Biometrics Symposium 2006, September 2006.Google Scholar
  54. P. S. Penev and J. J. Atick. Local Feature Analysis: A General Statistical Theory for Object Representation. Network: Computation in Neural Systems, 7(3):477–500, 1996.MATHCrossRefGoogle Scholar
  55. P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hofiman, J. Marques, J. Min, and W. Worek. Fisher Discriminant Analysis with Kernels. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 947–954, 2005.Google Scholar
  56. P. J. Phillips, P. Grother, R. J. Micheals, D. M. Blackburn, E. Tabassi, and M. Bone. Face Recognition Vendor Test 2002. Evaluation report, National Institute of Standards and Technology, 2003.Google Scholar
  57. P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1090–1104, 2000.CrossRefGoogle Scholar
  58. S. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500):2323–2326, 2000.CrossRefGoogle Scholar
  59. M. Savvides, J. Heo, R. Abiantun, C. Xie, and B. V. K. Vijaya Kumar. Class Dependent Kernel Discrete Cosine Transform Features for Enhanced Holistic Face Recognition in FRGC-II. In IEEE Conference on Acoustic, Speech, and Signal Processing, 2006.Google Scholar
  60. M. Savvides, B. V. K. Vijaya Kumar, and P. Khosla. Face verification using correlation filters. In Proceedings of Third IEEE Automatic Identification Advanced Technologies, pages 56–61, Tarrytown, NY, 2002.Google Scholar
  61. M. Savvides, B. V. K. Vijaya Kumar, and P. Khosla. Robust, Shift-Invariant Biometric Identification from Partial Face Images. In Biometric Technologies for Human Identification, SPIE Defense and Security Symposium, volume 5404, pages 124–135, 2004.Google Scholar
  62. M. Savvides, B. V. K. Vijaya Kumar, and P. Khosla. Corefaces: A Shift-Invariant Principal Component Analysis (PCA) Correlation Filter bank for Illumination-Tolerant Face Recognition. Face Biometrics for Personal Identification Multi-Sensory Multi-Modal Systems, 2007.Google Scholar
  63. A. Scheenstra, A. Ruifrok, and R. C. Veltkamp. A Survey of 3D Face Recognition Methods. Lecture Notes in Computer Science, Springer, 3546:891–899, 2005.CrossRefGoogle Scholar
  64. T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination, and Expression (PIE) Database. In Proceedings Fifth Intl Conference Automatic Face and Gesture Recognition, 2002.Google Scholar
  65. R. Singh, M. Vatsa, A. Ross, and A. Noore. PerformanceEnhancement of 2D Face Recognition via Mosaicing. In Proceedings of 4th IEEE Workshop on Automatic Identification Advanced Technologies (AutoID), pages 63–68, 2005.Google Scholar
  66. J. S. Taylor and N. Cristianni. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.Google Scholar
  67. J. B. Tenenbaum and W. T. Freeman. Separatingstyle and content with bilinear models. Neural Computation, 12:1246–1283, 2000.CrossRefGoogle Scholar
  68. J. B. Tenenbaum, V. Silva, and J. C. Langford. Aglobal geometric framework for nonlinear dimensionality reduction. Science, 290(12):2319–2323, 2003.Google Scholar
  69. M. Turk and A. Pentland. Eigenfacesfor Recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.CrossRefGoogle Scholar
  70. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.MATHGoogle Scholar
  71. M. A. O. Vasilescu and D. Terzopoulos. Multilinearanalysis of image ensembles: TensorFaces. In Proceedings European Conference on Computer Vision, pages 447–460, 2002.Google Scholar
  72. M. A. O. Vasilescu and D. Terzopoulos. Multilinearsubspace analysis of image ensembles. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 93–99, June 2002.Google Scholar
  73. M. A. O. Vasilescu and D. Terzopoulos. Multilinearindependent components analysis. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 547–553, June 2005.Google Scholar
  74. H. Wang and N. Ahuja. Facialexpression decomposition. In Proceedings of the IEEE International Conference on Computer Vision, volume 2, pages 958–965, 2003.Google Scholar
  75. L. Wiskott, J. M. Fellous, N. Krüger, and C. von der Malsburg. Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, 1997.CrossRefGoogle Scholar
  76. C. Xie, M. Savvides, and B. V. K. Vijaya Kumar. Kernel Correlation Filter Based Redundant Class-Dependence Feature Analysis (KCFA) on FRGC2.0 Data. In IEEE Workshop on Analysis and Modeling of Faces and Gestures (AMFG), pages 32–43, 2005.Google Scholar
  77. M. H. Yang. KernelEigenfaces vs. Kernel Fisherfaces: Face Recognition using Kernel Methods. In IEEE Conference on Automatic Face and Gesture Recognition, pages 215–220, 2002.Google Scholar
  78. H. Yu and J. Yang. Adirect LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 34(10):2067–2070, 2001.MATHCrossRefGoogle Scholar
  79. D. Zhang, H. Peng, J. Zhou, and S. K. Pal. Anovel face recognition system using hybrid neural and dual eigenspaces methods. IEEE Transactions on Systems, Man and Cybernetics-Part A, 32(6):787–793, 2002.CrossRefGoogle Scholar
  80. Z. Zhang and Y. Huang. AProjection Method for Least Squares Problems with a Quadratic Equality Constraint. Journal of Matrix Analysis and Applications, 25(1):188–212, 2003.MATHCrossRefMathSciNetGoogle Scholar
  81. W. Zhao, R. Chellappa, A. Rosenfeld, and P. J. Phillips. FaceRecognition: A Literature Survey. ACM Computing Surveys, pages 399–458, 2003.Google Scholar
  82. W. Zheng, C. Zou, and L. Zhao. Real-Time Face Recognition Using Gram-Schmidt Orthgonalization for LDA. In IEEE Conference of Pattern Recognition, pages 403–406, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marios Savvides
    • 1
  • Jingu Heo
    • 1
  • Sung Won Park
    • 1
  1. 1.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations