Advertisement

Fingerprint Recognition

  • Davide Maltoni
  • Rafiaele Cappelli

Keywords

IEEE Transaction Biometric System Fingerprint Image Ridge Line Minutia Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FVC2006 web site. http://bias.csr.unibo.it/fvc2006.Google Scholar
  2. A. Antonelli, R. Cappelli, D. Maio, and D. Maltoni. Fake Finger Detection by Skin Distortion Analysis. IEEE Transactions on Information Forensics and Security, 1(3):360–373, September 2006.CrossRefGoogle Scholar
  3. W. J. Babler. Embryologic development of epidermal ridges and their configuration. Birth Defects Original Article Series, 27(2), 1991.Google Scholar
  4. A. M. Bazen and S. H. Gerez. Segmentation of Fingerprint Images. In Proceedings Workshop on Circuits Systems and Signal Processing (ProRISC 2001), pages 276–280, 2001.Google Scholar
  5. A. M. Bazen and S. H. Gerez. Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):905–919, 2002.CrossRefGoogle Scholar
  6. A. M. Bazen, G. T. B. Verwaaijen, S. H. Gerez, L. P. J. Veelenturf, and B. J. van der Zwaag. A Correlation-Based Fingerprint Verification System. In Proceedings of Workshop on Circuits Systems and Signal Processing (ProRISC 2000), pages 205–213, 2000.Google Scholar
  7. R. Cappelli. Handbook of Fingerprint Recognition, chapter Synthetic fingerprint generation. Springer, New York, 2003.Google Scholar
  8. R. Cappelli, M. Ferrara, and D. Maltoni. The Quality of Fingerprint Scanners and Its Impact on the Accuracy of Fingerprint Recognition Algorithms. In Proceedings of Multimedia Content Representation, Classification and Security (MRCS2006), pages 10–16, 2006.Google Scholar
  9. R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Can Fingerprints be Reconstructed from ISO Templatesfi In Proceedings of the International Conference on Control, Automation, Robotics and Vision (ICARCV2006), Singapore, December 2006.Google Scholar
  10. R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain. Performance Evaluation of Fingerprint Verification Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):3–18, January 2006.CrossRefGoogle Scholar
  11. S. H. Chang, F. H. Cheng, W. H. Hsu, and G. Z. Wu. Fast Algorithm for Point Pattern-Matching: Invariant to Translations, Rotations and Scale Changes. Pattern Recognition, 30(2):311–320, 1997.CrossRefGoogle Scholar
  12. X. Chen, J. Tian, X. Yang, and Y. Zhang. An algorithm for distorted fingerprint matching based on local triangle feature set. IEEE Transactions on Information Forensics and Security, 1(2):169–177, 2006.CrossRefGoogle Scholar
  13. Y. Chen, G. Parziale, E. Diaz-Santana, and A. K. Jain. 3D Touchless Fingerprints: Compatibility with Legacy Rolled Images. In Proceedings of the Biometric Symposium, Biometric Consortium Conference, Baltimore, 2006.Google Scholar
  14. Criminal Justice Information Services. Electronic Fingerprint Transmission Specification. Int. Report. CJIS-RS-0010 (V7), 1999. http://www.fbi.gov/hq/cjisd/iafis/efts70/cover.htm.Google Scholar
  15. H. Cummins and C. Midlo. Palms and Soles: An Introduction to Dermatoglyphics. Dover Publications, New York, 1961.Google Scholar
  16. A. K. Jain D. Maltoni, D. Maio and S. Prabhakar. Handbook of Fingerprint Recognition. Springer, New York, 2003.MATHGoogle Scholar
  17. M. L. Donahue and S. I. Rokhlin. On the use of Level Curves in Image Analysis. CVGIP: Image Understanding, 57(2):185–203, 1993.CrossRefGoogle Scholar
  18. Federal Bureau of Investigation. The Science of Fingerprints: Classification and Uses. Technical Report U.S. Government Publication, Washington, DC, 1984.Google Scholar
  19. Federal Bureau of Investigation. The FBI fingerprint identification automation program: issues and options. Technical Report U.S. Government Publication, Washington, DC, Congress of the U.S., Ofice of Technology Assessment, 1991.Google Scholar
  20. F. Galton. Finger Prints. Mcmillan, London, 1892.Google Scholar
  21. P. Grother, M. McCabe, C. Watson, M. Indovina, W. Salamon, P. Flanagan, E. Tabassi, E. Newton, and C. Wilson. MINEX: Performance and Interoperability of the INCITS 378 Fingerprint Template. Technical Report NISTIR 7296, march 2006.Google Scholar
  22. J. Gu, J. Zhou, and C. Yang. Fingerprint recognition by combining global structure and local cues. IEEE Transactions on Image Processing, 15(7):1942–1964, 2006.CrossRefGoogle Scholar
  23. Y. He, J. Tian, L. Li, H. Chen, and X. Yang. Fingerprint matching based on global comprehensive similarity. IEEE Transactions on Pattern Analysis Machine Intelligence, 28(6):850–862, 2006.CrossRefGoogle Scholar
  24. L. Hong, Y. Wan, and A. K. Jain. Fingerprint Image Enhancement: Algorithms and Performance Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):777–789, 1998.CrossRefGoogle Scholar
  25. A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Filterbank-Based Fingerprint Matching. IEEE Transactions on Image Processing, 9:846–859, 2000.CrossRefGoogle Scholar
  26. A. K. Jain, S. Prabhakar, and S. Pankanti. On The Similarity of Identical Twin Fingerprints. Pattern Recognition, 35(11):2653–2663, 2002.MATHCrossRefGoogle Scholar
  27. X. Jiang and W. Y. Yau. Fingerprint Minutiae Matching Based on the Local and Global Structures. In Proceedings of the International Conference on Pattern Recognition (15th), volume 2, pages 1042–1045, 2000.Google Scholar
  28. M. Kawagoe and A. Tojo. Fingerprint Pattern Classification. Pattern Recognition, 17:295–303, 1984.CrossRefGoogle Scholar
  29. H. C. Lee and R. E. Gaensslen. Advances in Fingerprint Technology. Elsevier Publishing, New York, 2nd ed. edition, 2001.Google Scholar
  30. D. Maio and D. Maltoni. Direct Gray-Scale Minutiae Detection in Fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1), 1997.Google Scholar
  31. D. Maio and D. Maltoni. Ridge-Line Density Estimation in Digital Images. In Proceedings of the International Conference on Pattern Recognition (14th), pages 534–538, 1998.Google Scholar
  32. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain. FVC2000: Fingerprint Verification Competition. IEEE Transactions on Pattern Analysis Machine Intelligence, 24(3):402–412, 2002.CrossRefGoogle Scholar
  33. T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino. Impact of Artificial “Gummy” Fingers on Fingerprint Systems. In Proceedings of SPIE, volume 4677, pages 275–289, February 2002.CrossRefGoogle Scholar
  34. A. Moenssens. Fingerprint Techniques. Chilton Book Company, London, 1971.Google Scholar
  35. K. A. Nixon and R. K. Rowe. Multispectral Fingerprint Imaging for Spoof Detection. In Proceedings of the SPIE Conference on Biometric Technology for Human Identification, volume 5779, pages 214–225, Orlando, 2005.Google Scholar
  36. N. K. Ratha, S. Y. Chen, and A. K. Jain. Adaptive Flow Orientation-Based Feature Extraction in Fingerprint Images. Pattern Recognition, 28(11):1657–1672, 1995.CrossRefGoogle Scholar
  37. N. K. Ratha, K. Karu, S. Chen, and A. K. Jain. A Real-Time Matching System for Large Fingerprint Databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):799–813, 1996.CrossRefGoogle Scholar
  38. N. K. Ratha, V. D. Pandit, R. M. Bolle, and V. Vaish. Robust Fingerprint Authentication Using Local Structural Similarity. In Proceedings of Workshop on Applications of Computer Vision, pages 29–34, 2000.Google Scholar
  39. M. Tico and P. Kuosmanen. Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis Machine Intelligence, 25(8):1009–1014, 2003.CrossRefGoogle Scholar
  40. P. Tuyls and J. Goseling. Capacity and Examples of Template Protecting Biometric Authentication Systems. In Proceedings of Biometric Authentication Workshop, pages 158–170, 2004.Google Scholar
  41. D. Wan and J. Zhou. Fingerprint recognition using model-based density map. IEEE Transactions on Image Processing, 15(6):1690–1696, 2006.CrossRefGoogle Scholar
  42. C. Watson, C. Wilson, K. Marshall, M. Indovina, and R. Snelick. Studies of One-to-One Fingerprint Matching with Vendor SDK Matchers. Technical Report NISTIR 7221, April 2005.Google Scholar
  43. C. Wilson, R. Hicklin, M. Bone, H. Korves, P. Grother, B. Ulery, R. Micheals, M. Zoepfi, S. Otto, and C. Watson. Fingerprint Vendor Technology Evaluation 2003: Summary of Results and Analysis Report. Technical Report NISTIR 7123, june 2004. http://fpvte.nist.gov.Google Scholar
  44. X. Xia and L. O’Gorman. Innovations in fingerprint capture devices. Pattern Recognition, 36(2):361–369, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Davide Maltoni
    • 1
  • Rafiaele Cappelli
    • 1
  1. 1.Department of Electronics, Informatics and SystemsUniversity of BolognaItaly

Personalised recommendations