Skip to main content

Role of Rheological Behavior in Sensory Assessment of Foods and Swallowing

  • Chapter
Book cover Rheology of Fluid and Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

Sensory perception of foods is based on the integration of information about numerous aspects of a food, through a number of senses that reach the brain. Among these, the structural information plays an important role. The surface structure of a food product is first perceived by vision, and then the bulk structure is assessed by tactile and kinaesthetic senses combined with hearing while the food is chewed. In spite of the fact that texture is a perceived attribute, which is dynamically evaluated during consumption, many attempts have been done to gain insights into the texture of foods through rheological and structural studies. Several reviews have been published, by (1978), (1982), (1987), and (1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baines, Z. V. and Morris, E. R. 1987. Flavour/taste perception in thickened systems: the effect of guar gum above and below c*. Food Hydrocolloids 1: 197–205.

    Article  CAS  Google Scholar 

  • Barry, B. W. and Grace, A. J. 1972. Sensory testing of spreadability: investigation of rheological conditions operative during application of topical preparations. J. Pharm. Sci. 61: 335–341.

    Article  CAS  Google Scholar 

  • Bourne, M. C. 1982. Food Texture and Viscosity, Academic Press, New York.

    Google Scholar 

  • Chang, M. W., Rosendall, B., and Finlayson, B. A. 1998. Mathematical modeling of normal pharyngeal bolus transport: a preliminary study. J. Rehabil. Res. Dev. 35(3): 327–334.

    CAS  Google Scholar 

  • Cook, I. J., Dodds, W. J., Dantas, R. O., Massey, B., Kern, M. K., Lang, I. M., Brasseur, J. G., and Hogan, W. J. 1989. Opening mechanisms of the human upper esophageal sphincter. Am. J. Physiol, 257(5): G748–G789.

    CAS  Google Scholar 

  • Cussler, E. L., Kokini, J. L., Weinheimer, R. L., and Moskowitz, H. R. 1979. Food texture in the mouth. Food Technol. 33(10): 89–92.

    Google Scholar 

  • Cutler, A. N., Morris, E. R., and Taylor, L. J. 1983. Oral perception of viscosity in fluid foods and model systems. J. Texture Stud. 14: 377–395.

    Article  Google Scholar 

  • Dantas, R. O. and Dodds, W. J., 1990. Effect of bolus volume and consistency on swallowinduced submental and infrahyoid electromyographic activity. Braz. J. Med. Biol. Res. 23: 37–44.

    CAS  Google Scholar 

  • Dantas, R. O., Kern, M. K., Massey, B., Dodds, W. J., Kahrilas, P. J., Brasseur, J. G., Cook, I. J., and Lang, I. M. 1990. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am. Physiol. Soc. 258: G675–G681.

    CAS  Google Scholar 

  • Houska, M., Valentova, H., Novotna, P., Strohalm, J., Sestak, J., and Pokorny, J. 1998. Shear rates during oral and nonoral perception of viscosity of fluid foods. J. Texture Stud. 29(6): 603–615.

    Article  Google Scholar 

  • Jowitt, R. 1974. The terminology of food texture. J. Texture Stud. 5: 351–358.

    Article  Google Scholar 

  • Kahrilas, P. J., Dodds, W. J., and Hogan, W. J. 1988. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterol. 94(1): 73–80.

    CAS  Google Scholar 

  • Kahrilas, P. J., Lin, S., Logemann, J. A., Ergun, G. A., and Facchini, F. 1993, Deglutitive tongue action: volume accommodation and bolus propulsion. Gastroenterol. 104: 152–162.

    CAS  Google Scholar 

  • Kapsalis, J. G. and Moskowitz, H. R. 1978. Views on relating instrumental tests to sensory assessment of food texture. Application to product development and improvement. J. Texture Stud. 9(4): 371–393.

    Article  Google Scholar 

  • Kendall, K.A., Leonard, R.J., and McKenzie, S.W. 2001. Accommodation to changes in bolus viscosity in normal deglutition: a videofluoroscopic study. Annals of Otology, Rhinology & Laryngology (Ann Oto Rhinol Laryn), 110: 1059–1065.

    CAS  Google Scholar 

  • Kiosseoglou, V. D. and Sherman, P. 1983. The rheological conditions associated with judgement of pourability and spreadability of salad dressings. J. Texture Stud. 14: 277–282.

    Article  Google Scholar 

  • Kokini, J. L. 1987. The physical basis of liquid food texture and texture-taste interactions. J. Food Eng. 6:51–81.

    Article  Google Scholar 

  • Kokini, J. L., Kadane, J., and Cussler, E. L. 1977. Liquid texture perceived in the mouth. J. Texture Stud. 8:195–218.

    Article  Google Scholar 

  • Kokini, J. L., Bistany, K., Poole, M., and Stier, E.1982. Use of mass transfer theory to predict viscositysweetness interactions of fructose and sucrose solutions containing tomato solids. J. Texture Stud. 13: 187–200.

    Article  CAS  Google Scholar 

  • Kokini, J. L. and Cussler, E. L. 1984. Predicting liquid food texture of liquid and melting semi-solid foods. J. Food Sci. 48: 1221–1225.

    Article  Google Scholar 

  • Langmore, S. E. 2001. Endoscopic Evaluation and Treatment of Swallowing Disorders, Thieme Medical Publishers, Inc., New York, USA.

    Google Scholar 

  • Launay, B. and Pasquet, E. 1982. Sucrose solutions with and without guar gum: rheological properties and relative sweetness intensity. Prog. Food Nutri. Sci. 6: 247–258.

    CAS  Google Scholar 

  • Lee, S., Heuberger, M., Rousset, P., and Spencer, N. D. 2002. Chocolate at a sliding interface. J. Food Sci. 67(7): 2712–2717.

    Article  CAS  Google Scholar 

  • Li, M., Brasseur, J. G., and Dodds, W. J. 1994. Analyses of normal and abnormal esophageal transport using computer simulations. Am. J. Physiol. 266: G525–G543.

    CAS  Google Scholar 

  • Mahmood, A., Murray, B. S., and Dickinson, E. 2006. Perception of creaminess of model oil-in-water dairy emulsions: influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food-Hydrocolloids 20(6): 839–847.

    Article  Google Scholar 

  • Meng, Y. and Rao, M. A. 2005. Rheological and structural properties of cold-water-swelling and heated cross-linked waxy maize starch dispersions prepared in apple juice and water. Carbohydrate Polymers 60:291–300.

    Article  CAS  Google Scholar 

  • Meng, Y., Rao, M. A., and Datta, A. K. 2005. Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. IChemE Trans. Part C—Food and Bioproducts Processing 83: 297–305.

    Google Scholar 

  • Morris, E. R., Richardson, R. K., and Taylor, L. J. 1984. Correlation of the perceived texture of random coil polysaccharide solutions with objective parameters. Carbohydr. polym. 4: 175–191.

    Article  CAS  Google Scholar 

  • Moskowitz, H. R. and Arabie, P. 1970. Taste intensity as a function of stimulus concentration and solvent viscosity. J. Texture Stud. 1: 502–510.

    Article  CAS  Google Scholar 

  • Pangborn, R. M. and Szczesniak, A. 1974. Effect of hydrocolloids and viscosity on flavor and odor intensities of aromatic flavor compounds. J. Texture Stud. 4: 467–482.

    Article  CAS  Google Scholar 

  • Pangborn, R. M., Tabue, I. M., and Szczesniak, A. 1973. Effect of hydrocolloids on oral viscosity and basic taste intensities. J. Texture Stud. 4: 224–241.

    Article  CAS  Google Scholar 

  • Pangborn, R. M., Gibbs, Z. M. and Tassan, C. 1978. Effect of hydrocolloids on apparent viscosity and sensory properties of selected beverages. J. Texture Stud. 9: 415–436.

    Article  CAS  Google Scholar 

  • Perlman, A. L. 1999. Dysphagia: populations at risk and methods of diagnosis. Nutri. Clinical Practice 14(5): S2–S9.

    Google Scholar 

  • Pouderoux, P. and Kahrilas, P. J. 1995. Deglutitive tongue force modulation by volition, volume, and viscosity in humans. Gastroenterol, 108: 1418–1426.

    Article  CAS  Google Scholar 

  • Reimers-Neils, L., Logemann, J. A., and Larson, C. 1994. Viscosity effects on EMG activity in normal swallow. Dysphagia 9: 101–106.

    Article  CAS  Google Scholar 

  • Shama, F. and Sherman, P. 1973. Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral methods. J. Texture Stud. 4: 111–118.

    Article  Google Scholar 

  • Shama, F., Parkinson, C., and Sherman, P. 1973. Identification of stimuli controlling the sensory evaluation of viscosity. I. Non-oral methods. J. Texture Stud. 4: 102–110.

    Article  Google Scholar 

  • Sherman, P. 1970. Industrial Rheology, Academic Press, New York.

    Google Scholar 

  • Sherman, P. 1988. The sensory-rheological interface, in Food Texture—Its Creation and Evaluation, eds. J. M. V. Blanshard and J. R. Mitchell, Butterworths, London.

    Google Scholar 

  • Stevens, S. S. 1975. Psychophysics—Introduction to Its Perceptual Neural and Social Prospects, John Wiley, New York.

    Google Scholar 

  • Stone, H. and Oliver, S. 1966. Effect of viscosity on the detection of relative sweetness intensity of sucrose solutions. J. Food Sci. 31: 129–134.

    Article  CAS  Google Scholar 

  • Szczesniak, A.S. and Farkas, E. 1962. Objective characterization of the mouthfeel of gum solutions. J. Food Sci. 27:381–385.

    Article  Google Scholar 

  • Szczesniak, A. S. 1963. Classification of textural characteristics. J. Food Sci. 28: 385–389.

    Article  Google Scholar 

  • Szczesniak, A. S. 1979. Classification of mouthfeel characteristics of beverages, in Food Texture and Rheology, ed. P. Sherman, Academic Press, New York.

    Google Scholar 

  • Szczesniak, A. S. 1987. Correlating sensory with instrumental texture measurements—an overview of recent developments. J. Texture Stud. 18(1): 1–15.

    Article  Google Scholar 

  • Terpstra, M. E. J., Janssen, A. M., Prinz, J. F., de Wijk, R. A., Weenen, H., and van der Linden, E. 2005. Modeling of thickness for semisolid foods. J. Texture Stud. 36(2): 213–233.

    Article  Google Scholar 

  • Tyle, P. 1993. Effect of size, shape and hardness of particles in oral texture and palatability. Acta Psychologica 84: 111–118.

    Article  CAS  Google Scholar 

  • Vaisey, M., Brunon, R. and Cooper, J. 1969. Some sensory effects of hydrocolloid sols on swetness. J. Food Sci. 34:397–400.

    Article  CAS  Google Scholar 

  • de Wijk, R. A., Terpstra, M. E. J., Janssen, A. M., and Prinz, J. F. 2006. Perceived creaminess of semi-solid foods. Trends Food Sci. Technol. 17: 412–422

    Article  Google Scholar 

  • Wood, F. W. 1968. Psychophysical studies on the consistency of liquid foods, S.C.I. Monograph: Rheology and Texture of Foodstuffss, pp. 40–49, Society of Chemical Industry, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, M.A., Lopes da Silva, J.A. (2007). Role of Rheological Behavior in Sensory Assessment of Foods and Swallowing. In: Rheology of Fluid and Semisolid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70930-7_7

Download citation

Publish with us

Policies and ethics