Role of Rheological Behavior in Sensory Assessment of Foods and Swallowing

  • M. Anandha Rao
  • J. A. Lopes da Silva
Part of the Food Engineering Series book series (FSES)


Sensory perception of foods is based on the integration of information about numerous aspects of a food, through a number of senses that reach the brain. Among these, the structural information plays an important role. The surface structure of a food product is first perceived by vision, and then the bulk structure is assessed by tactile and kinaesthetic senses combined with hearing while the food is chewed. In spite of the fact that texture is a perceived attribute, which is dynamically evaluated during consumption, many attempts have been done to gain insights into the texture of foods through rheological and structural studies. Several reviews have been published, by (1978), (1982), (1987), and (1988).


Shear Rate Taste Intensity Texture Stud Apparent Shear Rate Sensory Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baines, Z. V. and Morris, E. R. 1987. Flavour/taste perception in thickened systems: the effect of guar gum above and below c*. Food Hydrocolloids 1: 197–205.CrossRefGoogle Scholar
  2. Barry, B. W. and Grace, A. J. 1972. Sensory testing of spreadability: investigation of rheological conditions operative during application of topical preparations. J. Pharm. Sci. 61: 335–341.CrossRefGoogle Scholar
  3. Bourne, M. C. 1982. Food Texture and Viscosity, Academic Press, New York.Google Scholar
  4. Chang, M. W., Rosendall, B., and Finlayson, B. A. 1998. Mathematical modeling of normal pharyngeal bolus transport: a preliminary study. J. Rehabil. Res. Dev. 35(3): 327–334.Google Scholar
  5. Cook, I. J., Dodds, W. J., Dantas, R. O., Massey, B., Kern, M. K., Lang, I. M., Brasseur, J. G., and Hogan, W. J. 1989. Opening mechanisms of the human upper esophageal sphincter. Am. J. Physiol, 257(5): G748–G789.Google Scholar
  6. Cussler, E. L., Kokini, J. L., Weinheimer, R. L., and Moskowitz, H. R. 1979. Food texture in the mouth. Food Technol. 33(10): 89–92.Google Scholar
  7. Cutler, A. N., Morris, E. R., and Taylor, L. J. 1983. Oral perception of viscosity in fluid foods and model systems. J. Texture Stud. 14: 377–395.CrossRefGoogle Scholar
  8. Dantas, R. O. and Dodds, W. J., 1990. Effect of bolus volume and consistency on swallowinduced submental and infrahyoid electromyographic activity. Braz. J. Med. Biol. Res. 23: 37–44.Google Scholar
  9. Dantas, R. O., Kern, M. K., Massey, B., Dodds, W. J., Kahrilas, P. J., Brasseur, J. G., Cook, I. J., and Lang, I. M. 1990. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am. Physiol. Soc. 258: G675–G681.Google Scholar
  10. Houska, M., Valentova, H., Novotna, P., Strohalm, J., Sestak, J., and Pokorny, J. 1998. Shear rates during oral and nonoral perception of viscosity of fluid foods. J. Texture Stud. 29(6): 603–615.CrossRefGoogle Scholar
  11. Jowitt, R. 1974. The terminology of food texture. J. Texture Stud. 5: 351–358.CrossRefGoogle Scholar
  12. Kahrilas, P. J., Dodds, W. J., and Hogan, W. J. 1988. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterol. 94(1): 73–80.Google Scholar
  13. Kahrilas, P. J., Lin, S., Logemann, J. A., Ergun, G. A., and Facchini, F. 1993, Deglutitive tongue action: volume accommodation and bolus propulsion. Gastroenterol. 104: 152–162.Google Scholar
  14. Kapsalis, J. G. and Moskowitz, H. R. 1978. Views on relating instrumental tests to sensory assessment of food texture. Application to product development and improvement. J. Texture Stud. 9(4): 371–393.CrossRefGoogle Scholar
  15. Kendall, K.A., Leonard, R.J., and McKenzie, S.W. 2001. Accommodation to changes in bolus viscosity in normal deglutition: a videofluoroscopic study. Annals of Otology, Rhinology & Laryngology (Ann Oto Rhinol Laryn), 110: 1059–1065.Google Scholar
  16. Kiosseoglou, V. D. and Sherman, P. 1983. The rheological conditions associated with judgement of pourability and spreadability of salad dressings. J. Texture Stud. 14: 277–282.CrossRefGoogle Scholar
  17. Kokini, J. L. 1987. The physical basis of liquid food texture and texture-taste interactions. J. Food Eng. 6:51–81.CrossRefGoogle Scholar
  18. Kokini, J. L., Kadane, J., and Cussler, E. L. 1977. Liquid texture perceived in the mouth. J. Texture Stud. 8:195–218.CrossRefGoogle Scholar
  19. Kokini, J. L., Bistany, K., Poole, M., and Stier, E.1982. Use of mass transfer theory to predict viscositysweetness interactions of fructose and sucrose solutions containing tomato solids. J. Texture Stud. 13: 187–200.CrossRefGoogle Scholar
  20. Kokini, J. L. and Cussler, E. L. 1984. Predicting liquid food texture of liquid and melting semi-solid foods. J. Food Sci. 48: 1221–1225.CrossRefGoogle Scholar
  21. Langmore, S. E. 2001. Endoscopic Evaluation and Treatment of Swallowing Disorders, Thieme Medical Publishers, Inc., New York, USA.Google Scholar
  22. Launay, B. and Pasquet, E. 1982. Sucrose solutions with and without guar gum: rheological properties and relative sweetness intensity. Prog. Food Nutri. Sci. 6: 247–258.Google Scholar
  23. Lee, S., Heuberger, M., Rousset, P., and Spencer, N. D. 2002. Chocolate at a sliding interface. J. Food Sci. 67(7): 2712–2717.CrossRefGoogle Scholar
  24. Li, M., Brasseur, J. G., and Dodds, W. J. 1994. Analyses of normal and abnormal esophageal transport using computer simulations. Am. J. Physiol. 266: G525–G543.Google Scholar
  25. Mahmood, A., Murray, B. S., and Dickinson, E. 2006. Perception of creaminess of model oil-in-water dairy emulsions: influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food-Hydrocolloids 20(6): 839–847.CrossRefGoogle Scholar
  26. Meng, Y. and Rao, M. A. 2005. Rheological and structural properties of cold-water-swelling and heated cross-linked waxy maize starch dispersions prepared in apple juice and water. Carbohydrate Polymers 60:291–300.CrossRefGoogle Scholar
  27. Meng, Y., Rao, M. A., and Datta, A. K. 2005. Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. IChemE Trans. Part C—Food and Bioproducts Processing 83: 297–305.Google Scholar
  28. Morris, E. R., Richardson, R. K., and Taylor, L. J. 1984. Correlation of the perceived texture of random coil polysaccharide solutions with objective parameters. Carbohydr. polym. 4: 175–191.CrossRefGoogle Scholar
  29. Moskowitz, H. R. and Arabie, P. 1970. Taste intensity as a function of stimulus concentration and solvent viscosity. J. Texture Stud. 1: 502–510.CrossRefGoogle Scholar
  30. Pangborn, R. M. and Szczesniak, A. 1974. Effect of hydrocolloids and viscosity on flavor and odor intensities of aromatic flavor compounds. J. Texture Stud. 4: 467–482.CrossRefGoogle Scholar
  31. Pangborn, R. M., Tabue, I. M., and Szczesniak, A. 1973. Effect of hydrocolloids on oral viscosity and basic taste intensities. J. Texture Stud. 4: 224–241.CrossRefGoogle Scholar
  32. Pangborn, R. M., Gibbs, Z. M. and Tassan, C. 1978. Effect of hydrocolloids on apparent viscosity and sensory properties of selected beverages. J. Texture Stud. 9: 415–436.CrossRefGoogle Scholar
  33. Perlman, A. L. 1999. Dysphagia: populations at risk and methods of diagnosis. Nutri. Clinical Practice 14(5): S2–S9.Google Scholar
  34. Pouderoux, P. and Kahrilas, P. J. 1995. Deglutitive tongue force modulation by volition, volume, and viscosity in humans. Gastroenterol, 108: 1418–1426.CrossRefGoogle Scholar
  35. Reimers-Neils, L., Logemann, J. A., and Larson, C. 1994. Viscosity effects on EMG activity in normal swallow. Dysphagia 9: 101–106.CrossRefGoogle Scholar
  36. Shama, F. and Sherman, P. 1973. Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral methods. J. Texture Stud. 4: 111–118.CrossRefGoogle Scholar
  37. Shama, F., Parkinson, C., and Sherman, P. 1973. Identification of stimuli controlling the sensory evaluation of viscosity. I. Non-oral methods. J. Texture Stud. 4: 102–110.CrossRefGoogle Scholar
  38. Sherman, P. 1970. Industrial Rheology, Academic Press, New York.Google Scholar
  39. Sherman, P. 1988. The sensory-rheological interface, in Food Texture—Its Creation and Evaluation, eds. J. M. V. Blanshard and J. R. Mitchell, Butterworths, London.Google Scholar
  40. Stevens, S. S. 1975. Psychophysics—Introduction to Its Perceptual Neural and Social Prospects, John Wiley, New York.Google Scholar
  41. Stone, H. and Oliver, S. 1966. Effect of viscosity on the detection of relative sweetness intensity of sucrose solutions. J. Food Sci. 31: 129–134.CrossRefGoogle Scholar
  42. Szczesniak, A.S. and Farkas, E. 1962. Objective characterization of the mouthfeel of gum solutions. J. Food Sci. 27:381–385.CrossRefGoogle Scholar
  43. Szczesniak, A. S. 1963. Classification of textural characteristics. J. Food Sci. 28: 385–389.CrossRefGoogle Scholar
  44. Szczesniak, A. S. 1979. Classification of mouthfeel characteristics of beverages, in Food Texture and Rheology, ed. P. Sherman, Academic Press, New York.Google Scholar
  45. Szczesniak, A. S. 1987. Correlating sensory with instrumental texture measurements—an overview of recent developments. J. Texture Stud. 18(1): 1–15.CrossRefGoogle Scholar
  46. Terpstra, M. E. J., Janssen, A. M., Prinz, J. F., de Wijk, R. A., Weenen, H., and van der Linden, E. 2005. Modeling of thickness for semisolid foods. J. Texture Stud. 36(2): 213–233.CrossRefGoogle Scholar
  47. Tyle, P. 1993. Effect of size, shape and hardness of particles in oral texture and palatability. Acta Psychologica 84: 111–118.CrossRefGoogle Scholar
  48. Vaisey, M., Brunon, R. and Cooper, J. 1969. Some sensory effects of hydrocolloid sols on swetness. J. Food Sci. 34:397–400.CrossRefGoogle Scholar
  49. de Wijk, R. A., Terpstra, M. E. J., Janssen, A. M., and Prinz, J. F. 2006. Perceived creaminess of semi-solid foods. Trends Food Sci. Technol. 17: 412–422CrossRefGoogle Scholar
  50. Wood, F. W. 1968. Psychophysical studies on the consistency of liquid foods, S.C.I. Monograph: Rheology and Texture of Foodstuffss, pp. 40–49, Society of Chemical Industry, London.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Anandha Rao
    • 1
  • J. A. Lopes da Silva
    • 2
  1. 1.Department of Food Science and Technology CornellUniversity GenevaNew York
  2. 2.Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations