Advertisement

Rheological Behavior of Food Gels

  • J. A. Lopes da Silva
  • M. Anandha Rao
Part of the Food Engineering Series book series (FSES)

Abstract

Rheological studies can provide much useful information on sol-gel and gel-sol transition, as well as on the characteristics of a gel. There are several definitions of what a gel is that are based on either phenomenological and/or molecular criteria. (1953) defined a gel to consist of polymeric molecules cross-linked to form a tangled interconnected network immersed in a liquid medium. (1949) defined it as a two-component system (e.g., gelling polymer and the solvent, water or aqueous solution in foods) formed by a solid finely dispersed or dissolved in a liquid phase, exhibiting solid-like behavior under deformation; in addition, both components extend continuously throughout the entire system, each phase being interconnected. At the molecular level, gelation is the formation of a continuous network of polymer molecules, in which the stress-resisting bulk properties (solid-like behavior) are imparted by a framework of polymer chains that extends throughout the gel phase. Further, gel setting involves formation of cross-links, while softening or liquefaction (often called melting) involves their destruction.

Keywords

Storage Modulus Whey Protein Junction Zone Food Hydrocolloid Pectin Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, M. 1991. Growth process of polymers near the gelation threshold. Die Makromolekulare Chemie, Macromol. Symp. 45: 1–9.Google Scholar
  2. Ahmad, M. U., Tashiro, Y., Matsukawa, S., and Ogawa, H. 2004. Comparison of gelation mechanism of surimi between heat and pressure treatment by using rheological and NMR relaxation measurements. J. Food Sci. 69(9): E497–E501.Google Scholar
  3. Alevisopoulos, S., Kasapis, S., and Abeysekera, R. 1996. Formation of kinetically trapped gels in the maltodextrin-gelatin system. Carbohydr. Res. 293: 79–99.Google Scholar
  4. Annable, P., Williams, P. A., and Nishinari, K. 1994. Interaction in xanthan-glucomannan mixtures and the influence of electrolyte. Macromolecules 27: 4204–4211.Google Scholar
  5. Andresen, I. L. and Smidsrød, O. 1977. Temperature dependence of the elastic properties of alginate gels. Carbohydr. Res. 58: 271–279.Google Scholar
  6. Antonov, Y. A., Van Puyvelde, P., Moldenaers, P., and Leuven, K. U. 2004. Effect of shear flow on the phase behavior of an aqueous gelatin-dextran emulsion. Biomacromolecules 5: 276–283.Google Scholar
  7. Audebrand, M., Kolb, M., and Axelos, M. A. V. 2006. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition. Biomacromolecules 7(10): 2811–2817.Google Scholar
  8. Axelos, M. A. V. and Kolb, M. 1990. Crosslinked biopolymers: experimental evidence for scalar percolation theory. Phys. Rev. Lett. 64: 1457–1460.Google Scholar
  9. Beaulieu, M., Turgeon, S. L., and Doublier, J. L. 2001. Rheology, texture and microstructure of whey proteins/low methoxyl pectins mixed gels with added calcium. Int. Dairy J. 11: 961–967.Google Scholar
  10. Bisschops, J. 1955. Gelation of concentrated polyacrylonitrile. J. Poly. Sci. 17: 89–98.Google Scholar
  11. Bloksma, A. H. and Nieman, W. 1975. The effect of temperature on some rheological properties of wheat flour doughs. J. Texture Stud. 6: 343–361.Google Scholar
  12. Borchard, W. and Burg, B. 1989. Investigations of the complex shear modulus and the optical rotation in the system gelatin-water during the thermoreversible gelation process, in Molecular Basis of Polymer Networks, eds. A. Baumgärtner and C. E. Picot, pp. 162–168, Springer-Verlag, Berlin.Google Scholar
  13. Bourriot, S., Garnier, C., and Doublier, J. L. 1999a. Phase separation, rheology and microstructure of micellar casein-guar gum mixtures. Food Hydrocolloids 13: 43–49.Google Scholar
  14. Bourriot, S., Garnier, C., and Doublier, J. L. 1999b. Micellar casein/kappa-carrageenan mixtures. 1. Phase separation and ultrastructure. Carbohydr. Polym. 40: 145–157.Google Scholar
  15. Braudo, E. E., Muratalieva, I. R., Plashchina, I. G., and Tolstoguzov, V. B. 1991. Correlation between the temperatures of formation/breakdown of the gel network and conformational transitions of agarose macromolecules. Carbohydr. Polym. 15: 317–321.Google Scholar
  16. Braudo, E. E., Plashchina, I. G., and Tolstoguzov, V. B. 1984. Structural characterisation of thermoreversible anionic polysaccharide gels by their elastoviscous properties. Carbohydr. Polym. 4: 23–48.Google Scholar
  17. Brownsey, G. J., Ellis, H. S., Ridout, M. J., and Ring, S. G. 1987. Elasticity and failure in composite gels. J. Rheol. 31:635–649.Google Scholar
  18. Bryant, C. M. and McClements, D. J. 2000. Influence of xanthan gum on physical characteristics of heat-denaturated whey protein solutions and gels. Food Hydrocolloids 14: 383–390.Google Scholar
  19. Capron, I., Nicolai, T., and Smit, C. 1999. Effect of addition of κ-carrageenan on the mechanical and structural properties of β-lactoglobulin gels. Carbohydr. Poly. 40: 233–238.Google Scholar
  20. Carnali, J. O. and Zhou, Y. 1996. An examination of the composite model for starch gels. J. Rheol. 40(2): 221–234.Google Scholar
  21. Chambon, F. and Winter, H. H. 1987. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 31: 683–697.Google Scholar
  22. Chronakis, I. S. and Kasapis, S. 1995. A rheological study on the application of carbohydrateprotein incompatibility of the development of low fat commercial spreads. Carbohydr. Polym. 28: 367–373.Google Scholar
  23. Christ, D., Takeuchi, K. P., and Cunha, R. L. 2005. Effect of sucrose addition and heat treatment on egg albumen protein gelation. J. Food Sci. 70(3): E230–E238.Google Scholar
  24. Chronakis, I. S., Kasapis, S., and Richardson, R. K. 1996a. Small deformation rheological properties of maltodextrin-milk protein systems. Carbohydr. Polym. 29: 137–148.Google Scholar
  25. Chronakis, I. S., Kasapis, S., Richardon, R. K., and Doxastakis, G. 1996b. Characterisation of a commercial soy isolate by physical techniques. J. Texture Stud. 26: 371–389.Google Scholar
  26. Clark, A. H. 1991. Structural and mechanical properties of biopolymer gels, in Food Polymers, Gels and Colloids, Dickinson, E. ed., pp. 322–338, The Royal Society of Chemistry, Cambridge, UK.Google Scholar
  27. Clark, A. H. 1994. Rationalisation of the elastic modulus-molecular weight relationship for κ-carrageenan gels using cascade theory. Carbohydr. Polym. 23: 247–251.Google Scholar
  28. Clark, A. H. and Ross-Murphy, S. B. 1987. Structural and mechanical properties of biopolymer gels. Adv. in Polym. Sci. 83:57–192.Google Scholar
  29. Clark, A. H., Evans, K. T., and Farrer, D. B. 1994. Shear modulus-temperature meltdown profiles of gelatin and pectin gels. Int. J. Bio. Macromol. 16: 125–130.Google Scholar
  30. Cuvelier, G., Peigney-Noury, C., and Launay, B. 1990. Viscoelastic properties of physical gels: critical behaviour at the gel point, in Gums and Stabilisers for the Food Industry 5, eds. G. O. Phillips, D. J. Wedlock and P. A. Williams, pp. 549–552, IRL Press, Oxford, UK.Google Scholar
  31. da Silva, J. A. L. and Gonçalves, M. P. 1994. Rheological study into the ageing process of high methoxyl pectin/sucrose aqueous gels. Carbohydr. Polym. 24: 235–245.Google Scholar
  32. da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1995. Kinetics and thermal behaviour of the structure formation process in HMP/sucrose gelation. Int. J. Biol. Macromol. 17: 25–32.Google Scholar
  33. da Silva, J. A. L., Gonçalves, M. P., Doublier, J. L., and Axelos, M. A. V. 1996. Effect of galactomannans on the viscoelastic behaviour of pectin/calcium networks. Carbohydr. Polym. 24: 235–245.Google Scholar
  34. Dickinson, E. 1998. Stability and rheological implications of electrostatic milk protein/polysaccharide interactions. Trends Food Sci. Technol. 9: 347–354.Google Scholar
  35. de Gennes, P. G. 1979. Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York.Google Scholar
  36. Djabourov, M., Leblond, J., and Papon, P. 1988a. Gelation of aqueous gelatin solutions. I. Structural investigation. J. de Physique 49: 319–332.Google Scholar
  37. Djabourov, M., Leblond, J., and Papon, P. 1988b. Gelation of aqueous gelatin solutions. II. Rheology of the sol-gel transition. J. de Physique 49: 333–343.Google Scholar
  38. Dobson, C. M. 2003. Protein folding and misfolding. Nature 426: 884–890.Google Scholar
  39. Donato, L., Garnier, C., Novales, B., Durand, S., and Doublier, J. L. 2005. Heat-induced gelation of bovine serum albumin/low-methoxyl pectin systems and the effect of calcium ions. Biomacromolecules 6: 374–385.Google Scholar
  40. Doublier, J. L. and Choplin, L. 1989. A rheological description of amylose gelation. Carbohydr. Res. 193: 215–226.Google Scholar
  41. Doublier, J. L., Garnier, C., Renard, D., and Sanchez, C. 2000. Protein-polysaccharide interactions. Curr. Opin. Colloid and Interface Sci. 5: 202–214.Google Scholar
  42. Doublier, J. L., Launay, B., and Cuvelier, G. 1992. Viscoelastic properties of food gels, in Viscoelastic Properties of Foods, eds. M. A. Rao and J. F. Steffe, Chapter 14, Elsevier Science Publishers, Barking, England.Google Scholar
  43. Dumas, J. and Bacri, J. C. 1980. New method of viscosity measurement near the gelatin sol-gel transition. Le Journal de Physique—Letters 41: 279–282.Google Scholar
  44. Durand, D., Naveau, F., Busnel, J. P., Delsanti, M., and Adam, M. 1989. Evolution of polyurethane gel fraction near the gelation threshold. Macromolecules 22: 2011–2012.Google Scholar
  45. Eiselt, P., Lee, K. Y., and Mooney, D. J. 1999. Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32(17): 5561–5566.Google Scholar
  46. Eldridge, J. E. and Ferry, J. D. 1954. Studies of the cross-linking process in gelatin gels. III. Dependence of melting point on concentration and molecular weight. J. Phys. Chem. 58: 992–995.Google Scholar
  47. Eleya, M. M. O. and Turgeon, S. L. 2000. Rheology of κ-carrageenan and β-lactoglobulin mixed gels. Food Hydrocolloids 14: 29–40.Google Scholar
  48. Evageliou, V., Alevisopolous, S., and Kasapis, S. 1997. Application of stress-controlled analysis to the development of low-fat spreads. J. Texture Stud. 28: 319–335.Google Scholar
  49. Ferry, J. D. 1980. Viscoelastic Properties of Polymers, 3rd ed., John Wiley and Sons Inc., New York, USA.Google Scholar
  50. Flory, P. J. 1953. Principles of Polymer Chemistry, Cornell University, Ithaca, NY, USA.Google Scholar
  51. Flory, P. J. 1974. Introductory lecture. Faraday Discuss. Chem. Soc. 57: 7–18.Google Scholar
  52. Foegeding, E. A., Li, H., and Bottcher, S. R. 1998. Gelation of globular proteins, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.Google Scholar
  53. Foegeding, E. A. 2006. Food Biophysics of Protein Gels: A challenge of nano and macroscopic proportions. Food Biophys. 1:41–50.Google Scholar
  54. Fu, J.-T. 1998. Rheology of sol-gel and gel-sol transition of low-methoxyl pectin + Ca2+ gels: the effect of sweeteners, Ph.D thesis, Cornell University, Ithaca, NY.Google Scholar
  55. Fu, J.-T. and Rao, M. A. 1999. The influence of sucrose and sorbitol on gel-sol transition of low-methoxyl pectin + Ca2+ gels. Food Hydrocolloids 13: 371–380.Google Scholar
  56. Fu, J.-T. and Rao, M. A. 2001. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose. Food Hydrocolloids 15: 93–100.Google Scholar
  57. Fuchs, T., Richtering, W., Burchard, W., Kajiwara, K., and Kitamura, S. 1997. Gel point in physical gels: rheology and light scattering from thermoreversibly gelling schizophyllan. Polymer Gels and Networks 5(6): 541–559.Google Scholar
  58. Garnier, C. 1992. Gelification des pectines en presence de calcium: Étude physico-chimique et rheologique. Ph.D thesis, Université de Nantes, Nantes, France.Google Scholar
  59. Gidley, M. J., Morris, E. R., Murray, E. J., Powell, D. A., and Rees, D. A. 1979. Spectroscopic and stoichiometric characterisation of the calcium-mediated association of pectate chains in gels and in the solid state. J. Chem. Soc. Chem. Comm. (22): 990–992.Google Scholar
  60. Gilsenan, P. M., Richardson, R. K., and Morris, E. R. 2003. Associative and segregative interactions between gelatin and low-methoxy pectin: part 3 quantitative analysis of co-gel moduli. Food Hydrocolloids 17:751–761.Google Scholar
  61. Gluck-Hirsch, J. B. and Kokini, J. L. 1997. Determination of the molecular weight between crosslinks of waxy maize starches using the theory of rubber elasticity. J. Rheol. 41: 129–139.Google Scholar
  62. Gordon, M. and Ross-Murphy, S. B. 1975. The structure and properties of molecular trees and networks. Pure Appl. Chem. 43: 1–26.Google Scholar
  63. Gosal, W. S., Clark, A. H., and Ross-Murphy, S. B. 2002. Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir 18: 7174–7181.Google Scholar
  64. Gosal, W. S., Clark, A. H., and Ross-Murphy, S. B. 2004. Fibrillar β-lactoglobulin gels: part 2. dynamic mechanical characterization of heat-set systems. Biomacromolecules 5: 2420–2429.Google Scholar
  65. Goycoolea, F. M., Richardson, R. K., Morris, E. R., and Gidley, M. J. 1995. Stoichiometry and conformation of xanthan in synergistic gelation with locust bean gum or konjac glucomannan—evidence for heterotypic binding. Macromolecules 28: 8308–8320.Google Scholar
  66. Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. 1973. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett. 32(1): 195–198.Google Scholar
  67. Grinberg, V. Y., and Tolstoguzov, V. B. 1997. Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocolloids 11: 145–158.Google Scholar
  68. Grosso, C. R. F. and Rao, M. A. 1998. Dynamic rheology of structure development in low-methoxyl pectin+Ca2++sugar gels. Food Hydrocolloids 12: 357–363.Google Scholar
  69. Haque, A. and Morris, E. R. 1993. Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr. Polym. 22: 161–173.Google Scholar
  70. Haug, I., Williams, M. A. K., Lundin, L., Smidsrod, O., and Draget, K. I. 2003. Molecular interactions in, and rheological properties of, a mixed biopolymer system undergoing order/disorder transitions. Food Hydrocolloids 17: 439–444.Google Scholar
  71. Hermans, P. H. 1949. Gels, in Colloid Science, ed. H. R. Kruyt, Vol. 2, pp. 483–651, Elsevier Publishing Company, Amsterdam, The Netherlands.Google Scholar
  72. Higgs, P. G. and Ball, R. C. 1990. A “reel-chain” model for the elasticity of biopolymer gels, and its relationship to slip-link treatments of entanglements, in Physical Networks. Polymers and Gels, eds. W, Burchard and S. B. Ross-Murphy, Chapter 15, Elsevier Applied Science Publishers, Barking, England.Google Scholar
  73. Hinrichs, J. and Rademacher, B. 2004. High pressure thermal denaturation kinetics of whey proteins. J. Dairy Res. 71(4): 480–488.Google Scholar
  74. Hsieh, Y. L. and Regenstein, J. M. 1992a. Modeling gelation of egg albumen and ovalbumin. J. Food Sci. 57:856–861.Google Scholar
  75. Hsieh, Y. L. and Regenstein, J. M. 1992b. Elastic attributes of heated egg protein gels. J. Food Sci. 57(4): 862–868.Google Scholar
  76. Hsieh, Y-L., Regenstein, J. M., and Rao, M. A. 1993. The gel point of whey and egg proteins from dynamic Theological data. J. Food Sci. 58: 116–119.Google Scholar
  77. Ikeda, S., Nitta, Y., Kim, B. S., Temsiripong, T., Pongsawatmanit, R., and Nishinari, K. 2004. Single-phase mixed gels of xyloglucan and gellan. Food Hydrocolloids 18: 669–675.Google Scholar
  78. Iso, N., Mizuno, H., Saito, T., Ohzeki, F., and Kurihara. N. 1984. The change of the rheological properties of surimi (minced fish-meat) by heating. Bull. Japan. Soc. Sci. Fish. 50: 1045–1049.Google Scholar
  79. Joanny, J. F. 1989. The sol-gel transition. Physica B 156,157: 381–385.Google Scholar
  80. Kasapis, S., Morris, E. R., Norton, I. T., and Brown, C. R. T. 1993a. Phase-equilibria and gelation in gelatin maltodextrin systems. 3. Phase-separation in mixed gels. Carbohydr. Polym. 21:261–268.Google Scholar
  81. Kasapis, S., Morris, E. R., Norton, I. T., and Clark, A. H. 1993b. Phase equilibria and gelation in gelatin/maltodextrin systems—Part I: gelation of individual components. Carbohydr. Polym. 21: 243–248.Google Scholar
  82. Kasapis, S., Morris, E. R., Norton, I. T., and Clark, A. H. 1993c. Phase-equilibria and gelation in gelatin maltodextrin systems. 4. Composition-dependence of mixed-gel moduli. Carbohydra. Polym. 21: 269–276.Google Scholar
  83. Katsuta, K. and Kinsella, J. E. 1990. Effects of temperature on viscoelastic properties and activation energies of whey protein gels. J. Food Sci. 55: 1296–1302.Google Scholar
  84. Kavanagh, G. M. and Ross-Murphy, S. B. 1998. Rheological characterisation of polymer gels. Prog. Polym. Sci. 23: 533–562.Google Scholar
  85. Kawabata, A. 1977. Studies on chemical and physical properties of pectic substances from fruits. Mem. Tokyo Univ. Agric. 19: 115–200.Google Scholar
  86. Kerner, E. H. 1956. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. Sect. B 69:808–813.Google Scholar
  87. Kim, B. S., Takemasa, M., and Nishinari, K. 2006. Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules 7: 1223–1230.Google Scholar
  88. Kloek, W., Luyten, H., and van Vliet, T. 1996. Small and large deformation behaviour of mixtures of xanthan and enzyme modified galactomannans. Food Hydrocolloids 10: 123–129.Google Scholar
  89. Kohyama, K., Iida, H., and Nishinari, K. 1993. A mixed system composed of different molecular weights konjac glucomannan and kappa-carrageenan: large deformation and dynamic viscoelastic study. Food Hydrocolloids 7: 213–226.Google Scholar
  90. Kuang, Q. L., Cheng, G. X., Zhao, J., and Li, Y. J. 2006. Thermogelation hydrogels of methylcellulose and glycerol-methylcellulose systems. J. Appl. Polym. Sci. 100(5): 4120–4126.Google Scholar
  91. Langendorff, V., Cuvelier, G., Michon, C., Launay, B., Parker, A., and de Kruif, C. G. 2000. Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocolloids 14: 273–280.Google Scholar
  92. Lewis, T. B. and Nielsen, L. E. 1970. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14: 1449–1471.Google Scholar
  93. Liang, J. N., Stevens, E. S., Morris, E. R., and Rees, D. A. 1979. Spectroscopic origin of conformationsensitive contributions to polysaccharide optical activity: vacuum-ultraviolet circular dichroism. Biopolymers 18: 327–333.Google Scholar
  94. Lin, Y. G., Mallin, D. T., Chien, J. C. W., and Winter, H. H. 1991. Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 24: 850–854.Google Scholar
  95. Lopes da Silva, J. A., Rao, M. A., and Fu, J-T. 1998. Rheology of structure development and loss during gelation and melting, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.Google Scholar
  96. Lopes da Silva, J. A. and Rao, M. A. 2006. Pectins: Structure, functionality and uses, in Food Polysaccharides and Their Applications: Second Edition, Revised and Expanded, eds. A. M. Stephen, G. O. Phillips, and P. A. William, pp. 353–411, CRC Press, Inc., Boca Raton and New York.Google Scholar
  97. Lopes da Silva, J. A. L., Gonçalves, M. P., Doublier, J. L., and Axelos, M. A.V. 1996. Effect of galactomannans on the viscoelastic behaviour of pectin/calcium networks. Polymer Gels and Networks 4: 65–83.Google Scholar
  98. Loret, C., Meunier, V., Frith, W. J., and Fryer, P. J. 2004. Rheological characterisation of the gelation behaviour of maltodextrin aqueous solutions. Carbohydr. Polym. 57(2): 153–163.Google Scholar
  99. Lu, L., Liu, X. X., Dai, L., and Tong, Z. 2005. Difference in concentration dependence of relaxation critical exponent n for alginate solutions at sol-gel transition induced by calcium cations. Biomacromolecules 6(4): 2150–2156.Google Scholar
  100. Lundell, C., Walkenstrom, P., Loren, N., and Hermansson, A. M. 2004. Influence of elongational flow on phase separated inclusions within gelling biopolymer drops. Food Hydrocolloids 18: 805–815.Google Scholar
  101. Mannion, R. O., Melia, C. D., Launay, B., Cuvelier, G., Hill, S. E., Harding, S. E., and Mitchell, J. R. 1992. Xanthan/locust bean gum interactions at room temperature. Carbohydr. Polym. 19: 91–97.Google Scholar
  102. Manoj, P., Kasapis, S., and Hember, M. W. N. 1997. Sequence-dependent kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohydr. Polym. 32: 141–153.Google Scholar
  103. Manson, J. A. and Sperling, L. H. 1976. Polymer Blends and Composites, Plenum Press, NY.Google Scholar
  104. Mao, C. F. and Rwei, S. P. 2006. Cascade analysis of mixed gels of xanthan and locust bean gum. Polymer 47: 7980–7987.Google Scholar
  105. Maroziene, A. and de Kruif, C. G. 2000. Interaction of pectin and casein micelles. Food Hydrocolloids 14: 391–394.Google Scholar
  106. Marrs, W. M. 1982. Gelatin carbohydrate interactions and their effect on the structure and texture of confectionery gels. Prog. Food Nutr. Sci. 6: 259–268.Google Scholar
  107. Martin, J. E., Adolf, D., and Wilcoxon, J. P. 1989. Viscoelasticity near the sol-gel transition. Phys. Rev. A Gen. Phys. 39: 1325–1332.Google Scholar
  108. Matia-Merino, L., Lau, K., and Dickinson, E. 2004. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids 18:271–281.Google Scholar
  109. Matsumoto, T., Kawai, M., and Masuda, T. 1992. Influence of chain stiffness on the gelation and gel structure of alginate aqueous systems. J. Chem. Soc. Faraday Trans. 88(18): 2673–2676.Google Scholar
  110. McClain, P. E., Kuntz, E., and Pearson, A. M. 1969. Application of stress-strain behaviour to thermally contracted collagen from epimysical connective tissues. J. Agric. Food Chem. 17: 629–632.Google Scholar
  111. Michon, C., Cuvelier, G., and Launay, B. 1993. Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheol. Acta 32: 94–103.Google Scholar
  112. Michon, C., Cuvelier, G., Launay, B., and Parker, A. 1996. Viscoelastic properties of λ-carrageenan/gelatin mixtures. Carbohydr. Polym. 31: 161–169.Google Scholar
  113. Miles, M. J., Morris, V. J., and Ring, S. G. 1985. Gelation of amylose. Carbohyd. Res. 135: 257–269.Google Scholar
  114. Miyoshi, E., Takaya, T., and Nishinari, K. 1998. Effects of glucose, mannose and konjac glucomannan on the gel-sol transition in gellan gum aqueous solutions by rheology and DSC. Polymer Gels and Networks 6: 273–290.Google Scholar
  115. Mochizuki, Y., Saito, T., Iso, N., Mizuno, H., Aochi, A., and Noda, M. 1987. Effects of adding fat on rheological properties of fish meat gel. Bull. Japan. Soc. Sci. Fish. 53: 1471–1474.Google Scholar
  116. Mohammed, Z. H., Hember, M. W. N., Richardson, R. K., and Morris, E. R. 1998. Application of polymer blending laws to composite gels of agarose and crosslinked waxy maize starch. Carbohydr. Polym. 36: 27–36.Google Scholar
  117. Monteiro, S. R., Tavares, C. A., Evtuguin, D. V., Moreno, N., and Lopes da Silva, J. A. 2005. Influence of galactomannans with different molecular weights on the gelation of whey proteins at neutral pH. Biomacromolecules 6: 3291–3299.Google Scholar
  118. Montembault, A., Viton, C., and Domard, A. 2005. Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26(14): 1633–1643.Google Scholar
  119. Morris, E. R. 1990. Mixed polymer gels, in Food Gels, ed. P. Harris, pp. 291–359, Elsevier Science Publishers, Barking, UK.Google Scholar
  120. Morris, E. R. 1992. The effect of solvent partition on the mechanical properties of biphasic biopolymer gels: an approximate theoretical treatment. Carbohydr. Polym. 17: 65–70.Google Scholar
  121. Morris, E. R. 1998. Segregative interactions in biopolymer co-gels, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.Google Scholar
  122. Morris, E. R. 2000. Rheology of biopolymer co-gels, in Hydrocolloids, Part 2: Fundamentals and Applications in Food, Biology, and Medicine, ed. K. Nishinari, pp. 135–0146, Elsevier Science, Amsterdam, The Netherlands.Google Scholar
  123. Morris, E. R., Rees, D. A., Norton, I. T., and Goodall, D. M. 1980a. Calorimetric and chiroptical evidence of aggregate-driven helix formation in carrageenan systems. Carbohydr. Res. 80: 317–323.Google Scholar
  124. Morris, E. R., Gidley, M. J., Murray, E. J., Powell, D. A., and Rees, D. A. 1980b. Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties. Int. J. Biol. Macromol. 2: 327–330.Google Scholar
  125. Morris, V. J. and Chilvers, G. R. 1981. Rheological studies on specific ion forms of iota-carrageenate gels. J. Sci. Food. Agric. 32: 1235–1241.Google Scholar
  126. Muller, H. G. 1969. Application of the statistical theory of rubber elasticity to gluten and dough. Cereal Chem. 46: 443–446.Google Scholar
  127. Muller, R., Gérard, E., Dugand, P., Rempp, P., and Gnanou, Y. 1991. Rheological characterization of the gel point: a new interpretation. Macromolecules 24: 1321–1326.Google Scholar
  128. Ndi, E. E., Swanson, B. G., Barbosa-Canovas, G. V., and Luedecke, L. O. 1996. Rheology and microstructure of β-lactoglobulin/sodium polypectate gels. J. Agric. Food Chem. 44: 86–92.Google Scholar
  129. Neiser, S., Draget, K. I., and Smidsrød, O. 1998. Gel formation in heat treated bovine serum albuminsodium alginate systems. Food Hydrocolloids 12:127–132.Google Scholar
  130. Nishinari, K., Koide, S., and Ogino, K. 1985. On the temperature dependence of elasticity of thermoreversible gels. J. de Physique 46: 793–797.Google Scholar
  131. Nishinari, K., Koide, S., Williams, P. A., and Phillips, G. O. 1990. A zipper model approach to the thermoreversible gel-sol transition. J. de Physique 51: 1759–1768.Google Scholar
  132. Nishinari, K., Miyoshi, E., Takaya, T., and Williams, P. A. 1996. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan. Carbohydr. Polym. 30: 193–207.Google Scholar
  133. Nitta, Y., Kim, B. S., and Nishinari, K. 2003. Synergistic gel formation of xyloglucan/gellan mixtures as studied by rheology, DSC, and circular dichroism. Biomacromolecules 4: 1654–1660.Google Scholar
  134. Nolte, H., John, S., Smidsrød, O., and Stokke, B. T. 1992. Gelation of xanthan with trivalent metal ions. Carbohydr. Polym. 18: 243–251.Google Scholar
  135. Norziah, M. H., Foo, S. L., and Karim, A. A. 2006. Rheological studies on mixtures of agar (Gracilaria changii) and κ-carrageenan. Food Hydrocolloids 20: 204–217.Google Scholar
  136. Oakenfull, D. G. 1984. A method for using measurements of shear modulus to estimate the size and thermodynamic stability of junction zones in noncovalently cross-linked gels. J. Food Sci. 49:1103–1104, 1110.Google Scholar
  137. Oakenfull, D. G. 1987. The chemistry of high-methoxyl pectins, in The Chemistry and Technology of Pectin, ed., R. H. Walter Chapter 5, Academic Press, New York.Google Scholar
  138. Olsson, C., Stading, M., and Hermansson, A. M. 2000. Rheological influence of nongelling amylopectins on beta-lactoglobulin gel structures. Food Hydrocolloids 14: 473–483.Google Scholar
  139. Olsson, C., Langton, M., and Hermansson, A. M. 2002. Microstructures of beta-lactoglobulin/amylopectin gels on different length scales and their significance for rheological properties. Food Hydrocolloids 16(2): 111–126.Google Scholar
  140. Owen, A. J. and Jones, R. A. L. 1998. Rheology of simultaneously phase separating and gelling biopolymer mixtures. Macromolecules 31: 7336–7339.Google Scholar
  141. Papageorgiou, M., Kasapis, S., and Richardson, R. K. 1994. Steric exclusion phenomena in gellan gelatin systems.1. Physical-properties of single and binary gels. Food Hydrocolloids 8: 97–112.Google Scholar
  142. Paradossi, G., Chiessi, E., Barbiroli, A., and Fessas, D. 2002. Xanthan and glucomannan mixtures: Synergistic interactions and gelation. Biomacromolecules 3: 498–504.Google Scholar
  143. Peniche-Covas, C. A. L., Dev, S. B., Gordon, M., Judd, M., and Kajiwara, K. 1974. The critically branched state in a covalent synthetic system and in the reversible gelation of gelatin. Faraday Discuss. Chem. Soc. 57: 165–180.Google Scholar
  144. Pezron, I., Herning, T., Djabourov, M., and Leblond, J. 1990. Scattering from a biopolymer solution in the sol and gel states: the gelatin example in Physical Networks. Polymers and Gels, eds. W. Burchard and S. B. Ross-Murphy, Chapter 18, Elsevier Applied Science Publishers, Barking, UK.Google Scholar
  145. Pouzot, M., Nicolai, T., Durand, D., and Benyahia, L. 2004. Structure factor and elasticity of a heat-set globular protein gel. Macromolecules 37: 614–620.Google Scholar
  146. Rao, M. A. 1992. Measurement of viscoelastic properties of fluid and semisolid Foods, in Viscoelastic Properties of Foods, eds. M. A. Rao, and Steffe, J. F., Chapter 8, Elsevier Applied Science Publishers, Barking, England.Google Scholar
  147. Rao, M. A. and Cooley, H. J. 1993. Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. J. Food Sci. 58: 876–879.Google Scholar
  148. Rao, M. A. and Cooley, H. J. 1995. Rates of structure development during gelation and softening of high-methoxyl pectin-sodium alginate-fructose mixtures. Food Hydrocolloids 9: 229–235.Google Scholar
  149. Plashchina, I. G., Fomina, O. A., Braudo, E. E., and Tolstoguzov, V. B. 1979. Creep study of high-esterified pectin gels. I. The creep of saccharose-containing gels. Colloid Poly. Sci. 257: 1180–1187.Google Scholar
  150. Rees, D. A. 1969. Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv. Carbohydr. Chem. Biochem. 24: 267–332.Google Scholar
  151. Rees, D. A. 1972. Polysaccharide gels—a molecular view. Chemistry and Industry, 19: 630–636.Google Scholar
  152. Richardson, P. H., Clark, A. H., Russell, A. L., Aymard, P. and Norton, I. T. 1999. Galactomannan gelation: A thermal and rheological investigation analyzed using the cascade model. Macromolecules 32(5): 1519–1527.Google Scholar
  153. Richardson, R. K. and Ross-Murphy, S. B. 1981a. Mechanical properties of globular protein gels: 1. Incipient gelation behaviour. Int. J. Biol. Macromol. 3: 315–322.Google Scholar
  154. Richardson, R. K. and Ross-Murphy, S. B. 1981b. Mechanical properties of globular protein gels. II: Concentration, pH and ionic strength dependence. British Poly. J. 13: 11–16.Google Scholar
  155. Richter, S., Boyko, V., Matzker, R., and Schroter, K. 2004. Gelation studies: Comparison of the critical exponents obtained by dynamic light scattering and rheology, 2(a)—A thermoreversible gelling system: mixtures of xanthan gum and locust-bean gum. Macromolecular Rapid Communications 25(16): 1504–1509.Google Scholar
  156. Rhim, J. W., Nunes, R. V., Jones, V. A., and Swartzel, K. R. 1989. Determination of kinetic parameters using linearly increasing temperature. J. Food Sci. 54: 446–450.Google Scholar
  157. Rodd, A. B., Cooper-White, J., Dunstan, D. E., and Boger, D. V. 2001. Gel point studies for chemically modified biopolymer networks using small amplitude oscillatory rheometry. Polymer 42(1): 185–198.Google Scholar
  158. Rodriguez-Hernandez, A. I. and Tecante, A. 1999. Dynamic viscoelastic behavior of gellan-iotacarrageenan and gellan-xanthan gels. Food Hydrocolloids 13: 59–64.Google Scholar
  159. Ross-Murphy, S. B. 1991a. The estimation of junction zone size from geltime measurements. Carbohydr. Polym. 14:281–294.Google Scholar
  160. Ross-Murphy, S. B. 1991b. Incipient behaviour of gelatin gels. Rheologica Acta 30: 401–411.Google Scholar
  161. Sanchez, C., Schmitt, C., Babak, V. G., and Hardy, J. 1997. Rheology of whey protein isolate xanthan mixed solutions and gels. Effect of pH and xanthan concentration. Nahrung 41: 336–343.Google Scholar
  162. Scanlan, J. C. and Winter, H. H. 1991. Composition dependence of the viscoelasticity of end-linking poly(dimethylsiloxane) at the gel point. Macromolecules 24: 47–54.Google Scholar
  163. Schorsch, C., Garnier, C., and Doublier, J. L. 1997. Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum. Carbohydr. Polym. 34: 165–175.Google Scholar
  164. Schultz, R. K. and Myers, R. R. 1969. The chemorheology of poly(vinyl alcohol)-borate gels. Macromolecules 2: 281–285.Google Scholar
  165. Shih W-H, Shih W. Y., Kim, S-I, Liu, J., and Aksay, I. A. 1990. Scaling behavior of the elastic properties of colloidal gels. Physical Review A 42(8): 4772–4779.Google Scholar
  166. Shim, J. and Mulvaney, S. J. 2001. Effect of heating temperature, pH, concentration and starch/whey protein ratio on the viscoelastic properties of corn starch/whey protein mixed gels. J. Sci. Food Agric. 81:706–717.Google Scholar
  167. Simeone, M., Sibillo, V., Tassieri, M., and Guido, S. 2002. Shear-induced clustering of gelling droplets in aqueous biphasic mixtures of gelatin and dextran. J. Rheol. 46: 1263–1278.Google Scholar
  168. Simeone, M., Tassieri, M., Sibillo, V., and Guido, S. 2005. Effect of sol-gel transition on shear-induced drop deformation in aqueous mixtures of gellan and kappa-carrageenan. J. Colloid Interface Sci. 281: 488–494.Google Scholar
  169. Sperling, L. H. 1986. Introduction to Physical Polymer Science, John Wiley, New York.Google Scholar
  170. Stading, M. and Hermansson, A. M. 1990. Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids 4: 121–135.Google Scholar
  171. Stading, M. and Hermansson, A. M. 1993. Rheological behaviour of mixed gels of κ-carrageenan-locust bean gum. Carbohydr. Polym. 22: 49–56.Google Scholar
  172. Stanley, D. W., Aguilera, J. M., Baker, K. W., and Jackman, R. L. 1998. Structure/property relationships of foods as affected by processing and storage, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 1–56, Marcel Dekker, Inc., NY.Google Scholar
  173. Stauffer, D., Coniglio, A., and Adam, M. 1982. Gelation and critical phenomena. Adv. Polymer Sci. 44: 103–158.Google Scholar
  174. Stokes, J. R., Wolf, B., and Frith, W. J. 2001. Phase-separated biopolymer mixture rheology: prediction using a viscoelastic emulsion model. J. Rheol. 45: 1173–1191.Google Scholar
  175. Syrbe, A., Fernandes, P. B., Dannenberg, F., Bauer, W. J., and Klostermeyer, H. 1995. Whey protein-polysaccharide mixtures: polymer incompatibility and its application, in Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, pp. 328–339, The Royal Society of Chemistry, London.Google Scholar
  176. Takagi, I. and Simidu, W. 1972. On rheological properties and structure of kamaboko. I. Application of rubber elasticity theory to kamaboko. Bull. Japan. Soc. Sci. Fish. 38: 299–303.Google Scholar
  177. Tavares, C. and Lopes da Silva, J. A. 2003. Rheology of galactomannan-whey protein mixed systems. Int. Dairy J. 13:699–706.Google Scholar
  178. Tavares, C., Monteiro, S. R., Moreno, N., and Lopes da Silva, J. A. 2005. Does the branching degree of galactomannans influences their effect on whey protein gelation? Colloids and Surfaces A. Physicochemical and Engineering Aspects, pp. 270–271: 213–219.Google Scholar
  179. te Nijenhuis, K. 1981. Investigation into the ageing process in gels of gelatin/water systems by the measurement of their dynamic moduli. Part I—phenomenology. Colloid Polym. Sci. 259: 522–535.Google Scholar
  180. te Nijenhuis, K. 1997. Thermoreversible networks. Adv. Polym. Sci. 130: 1–235.Google Scholar
  181. te Nijenhuis, K. and Winter, H. H. 1989. Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules 22: 411–414.Google Scholar
  182. Tobitani, A. and Ross-Murphy, S. B. 1997a. Heat-induced gelation of globular proteins. 1. Model for the effects of time and temperature on the gelation time of BSA. Macromolecules 30: 4845–4854.Google Scholar
  183. Tobitani, A. and Ross-Murphy, S. B. 1997b. Heat-induced gelation of globular proteins. 2. Effect of environmental factors on single component and mixed protein gels. Macromolecules 30: 4855–4862.Google Scholar
  184. Tokita, M., Niki, R., and Hikichi, K. 1984. Percolation theory and elastic modulus of gel. J. Phys. Soc. Japan 53: 480–482.Google Scholar
  185. Tolstoguzov, V. B. 1985. Functional properties of protein-polysaccharide mixtures, in Functional Properties of Food Macromolecules, eds. J. Mitchell and D. A. Ledward, pp. 385–415, Elsevier Applied Science Publishers, London.Google Scholar
  186. Tolstoguzov, V. B. 2001. Functional properties of food proteins and role of protein-polysaccharide interactions. Food Hydrocolloids 4: 429–468.Google Scholar
  187. Treloar, L. R. G. 1975. The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, England.Google Scholar
  188. Tuinier, R., ten Grotenhuis, E., Holt, C., Timmins, P. A., and de Krui, C. G. 1999. Depletion interaction of casein micelles and an exocellular polysaccharide. Phys. Rev. E 60: 848–856.Google Scholar
  189. Tuinier, R., ten Grotenhuis, E., and de Kruif, C. G. 2000. The effect of depolymerised guar gum on the stability of skim milk. Food Hydrocolloids 14:1–7.Google Scholar
  190. Tung, C.-Y. M. and Dynes, P. J. 1982. Relationship between viscoelastic properties and gelation in thermosetting systems. J. Appl. Polym. Sci. 27: 569–574.Google Scholar
  191. Turquois, T., Taravel, F. R., and Rochas, C. 1993. Synergy of the agarose-carob galactomannan blend inferred from nmr and rheological studies. Carbohydr. Res. 238: 27–38.Google Scholar
  192. Tziboula, A. and Horne, D. S. 1999. Influence of whey protein denaturation on κ-carrageenan gelation. Colloid Surf. B: Biointerfaces 12: 299–308.Google Scholar
  193. Van der Linden, E. and Sagis, L. M. C. 2001. Isotropic force percolation in protein gels. Langmuir 17: 5821–5824.Google Scholar
  194. Walkenstrom, P., Panighetti, N., Windhab, E., and Hermansson, A. M. 1998. Effects of fluid shear and temperature on whey protein gels, pure or mixed with xanthan. Food Hydrocolloids 12: 469–479.Google Scholar
  195. Wang, Z.-Y., Zhang, Q.-Z., Konno, M., and Saito, S. 1991. Sol-gel transition of alginate solution by the additions of various divalent cations: critical behavior of relative viscosity. Chem. Phys. Lett. 186(4, 5): 463–466.Google Scholar
  196. Wang, S., van Dijk, J. A. P. P., Odijk, T., and Smit, J. A. M. 2001. Depletion induced demixing in aqueous protein-polysaccharide solutions. Biomacromolecules 2: 1080–1088.Google Scholar
  197. Watase, M. and Nishinari, K. 1987a. Dynamic viscoelasticity and anomalous thermal behaviour of concentrated agarose gels. Die Makromolekulare Chemie 188: 1177–1186.Google Scholar
  198. Watase, M. and Nishinari, K. 1987b. Rheological and thermal properties of carrageenan gels—effect of sulfate content. Die Makromolekulare Chemie 188: 2213–2220.Google Scholar
  199. Watase, M. and Nishinari, K. 1993. Effects of pH and DMSO content on the thermal and rheological properties of high methoxyl pectin-water gels. Carbohydr. Polym. 20: 175–181.Google Scholar
  200. Watase, M., Nishinari, K., Clark, A. H., and Ross-Murphy, S. B. 1989. Differential scanning calorimetry, rheology, X-ray, and NMR of very concentrated agarose gels. Macromolecules 22: 1196–1201.Google Scholar
  201. Weinbreck, F. 2004. Whey protein/Polysaccharide Coacervates: Structure and Dynamics. Ph.D thesis, Utrecht University, The Netherlands.Google Scholar
  202. Williams, P. A., Day, D. A., Langdon, M. J., Phillips, O. G., and Nishinari, K. 1991. Synergistic interaction of xanthan gum with glucomannans and galactomannans. Food Hydrocolloids 6: 489–493.Google Scholar
  203. Winter, H. H. and Chambon, F. 1986. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 30: 367–382.Google Scholar
  204. Winter, H. H. and Mours, M. 1997. Rheology of polymers near liquid-solid transitions. Adv. Polym. Sci. 134:165–234.Google Scholar
  205. Winter, H. H., Morganelli, P., and Chambon, F. 1988. Stoichiometry effects on rheology of model polyurethanes at the gel point. Macromolecules 21: 532–535.Google Scholar
  206. Wolf, B., Frith, W. J., Singleton, S., Tassieri, M., and Norton, I. T. 2001. Shear behaviour of biopolymer suspensions with spheroidal and cylindrical particles. Rheol. Acta 40: 238–247.Google Scholar
  207. Wolf, B., Scirocco, R., Frith, W. J., and Norton, I. T. 2000. Shear-induced anisotropic microstructure in phase-separated biopolymer mixtures. Food Hydrocolloids 14: 217–225.Google Scholar
  208. Wu, H. and Morbidelli, M. 2001. A model relating structure of colloidal gels to their elastic properties. Langmuir 17: 1030–1036.Google Scholar
  209. Zasypkin, D. V., Braudo, E. E., and Tolstoguzov, V. B. 1997. Multicomponent biopolymer gels. Food Hydrocolloids 11: 159–170.Google Scholar
  210. Zasypkin, D. V., Dumay, E., and Cheftel, J. C. 1996. Pressure-and heat-induced gelation of mixed β-lactoglobulin/xanthan solutions. Food Hydrocolloids 10: 203–211.Google Scholar
  211. Zhang, J. and Rochas, C. 1990. Interactions between agarose and κ-carrageenans in aqueous solutions. Carbohydr. Polym. 13: 257–271.Google Scholar
  212. Ziegler, G. R. and Rizvi, S. S. H. 1989. Determination of cross-link density in egg white gels from stress relaxation data. J. Food. Sci. 54: 218–219.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. A. Lopes da Silva
    • 1
  • M. Anandha Rao
    • 2
  1. 1.Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.Department of Food Science and Technology CornellUniversity GenevaNew York

Personalised recommendations