Advertisement

Rheological Behavior of Processed Fluid and Semisolid Foods

  • M. Anandha Rao
Part of the Food Engineering Series book series (FSES)

Abstract

In this chapter, the rheological properties of processed fluid and semisolid foods will be discussed. Where data are available, the role of the composition of the foods on their rheological behavior will be emphasized. In addition, literature values of data on several foods, many of which are discussed here and some that are not discussed, are given at the end of this chapter.

Keywords

Shear Rate Apparent Viscosity Orange Juice Grape Juice Insoluble Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achayuthakan, P., Suphantharika, M., and Rao, M. A. 2006. Yield stress components of waxy corn starch-xanthan mixtures: Effect of xanthan concentration and different starches.Carbohydr. Polym. 65: 469–478.Google Scholar
  2. Alviar, M. and Reid, D. S. 1990. Determination of rheological behavior of tomato concentrates using back extrusion. J. Food Sci. 55: 554–555.Google Scholar
  3. Andon, S. A. 1987. Interaction of salad dressing ingredients and hydrocolloids. Food Eng. 59: 47–48.Google Scholar
  4. Autio, K. 1991. Measurement of flow curves for model liquids and real food systems with two commercial viscometers. J. Food Eng. 13: 57–66.Google Scholar
  5. Bayindirli, L. 1992. Mathematical analysis of variation of density and viscosity of apple juice with temperature and concentration. J. Food Proc. Preser. 16: 23–28.Google Scholar
  6. Bayindirli, L. 1993. Density and viscosity of grape juice as a function of concentration and temperature. J. Food Proc. Preser. 17: 147–151.Google Scholar
  7. Benezech, T. and Maingonnat, J. F. 1993. Flow properties of stirred yoghurt: structured parameter approach in describing time dependency. J. Texture Stud. 24: 455–473.Google Scholar
  8. Bhattacharya, S., Bal, S., Mukherjee, R. K., and Battacharya, S. 1991. Rheological behaviour of Tamarind Tamarindus indica kernel suspension. J. Food Eng. 13: 151–158Google Scholar
  9. Bianchi, M. A., Pilosof, A. M. R., and Bartholomai, G. B. 1985. Rheological behaviour of comminuted meat systems containing soy protein isolates. J. Texture Stud. 16: 193–206.Google Scholar
  10. Bistany, K. L. and Kokini, J. L. 1983. Dynamic viscoelastic properties of foods in texture control. J. Rheol. 27: 605–620.Google Scholar
  11. Bodenstab. S., Juillert, M., Bauer, W., and Sommer, K. 2003. Separating the role of particles and the suspending fluid for the flow of soy milks. J. Food Sci. 68(5): 1722–1730.Google Scholar
  12. Borwankar, R. P., Frye, L. A., Blaurock, A. E., and Sasevich, F. J. 1992. Rheological characterization of melting of margarines and tablespreads. J. Food Eng. 16: 55–74Google Scholar
  13. Brekke, J. E. and Myers, A. L. 1978. Viscometric behavior of guava purees and concentrates. J. Food Sci. 43: 272–273.Google Scholar
  14. Campanella, O. H. and Peleg, M. 1987. Determination of yield stress of semi-liquid foods from squeezing flow data. J. Food Sci. 52: 214–215, 217.Google Scholar
  15. Caradec, P. L. and Nelson, P. E. 1985. Effect of temperature on the serum viscosity of tomato juice. J. Food Sci. 50: 1497–1498.Google Scholar
  16. Carter, R. D. and Buslig, B. S. 1977. Viscosity and particle size distribution in commercial Florida frozen concentrated orange juice. Proc. Fla. State Hort. Soc. 90: 130–132.Google Scholar
  17. Chang, C. M., Powrie, W. D., and Fennema, O. 1972. Electron microscopy of mayonnaise. Can. Inst. Food Sci. Technol. J. 5: 134–137.Google Scholar
  18. Chang, Y. and Hartel, R. W. 1997. Flow properties of freeze concentrated skim milk. J. Food Eng. 31: 375–386.Google Scholar
  19. Chevalley, J. 1975. Rheology of chocolate. J. Texture Stud. 6: 177–196.Google Scholar
  20. Chevalley, J. 1991. An adaptation of the Casson equation for the rheology of chocolate. J. Texture Stud. 22: 219–229.Google Scholar
  21. Crandall, P. G., Chen, C. S., and Carter, R. D. 1982. Models for predicting viscosity of orange juice concentrate. Food Technol. 36(5): 245–252.Google Scholar
  22. den Ouden, F. W. C. and van Vliet, T. 1993. Determination of particle size distribution in tomato concentrate, in Food Colloids and Polymers: Stability and Mechanical Properties, eds. E. Dickinson and P. Walstra, pp. 285–288, The Royal Society of Chemistry, Cambridge, England.Google Scholar
  23. Dickinson, E. and Stainsby, G. 1982. Colloids in Food, Applied Science Publishers, New York.Google Scholar
  24. Dickinson, E. and Stainsby, G. 1987. Progress in the formulation of food emulsions and foams. Food Technol. 41:74,76-81, 116.Google Scholar
  25. Durán, L. and Costell, E. 1982. Rheology of apricot puree: characterization of flow. J. Texture Stud. 13: 43–58.Google Scholar
  26. Durán, L. and Costell, E. 1985. Influence of homogenization on the rheological behaviour of apricot puree. Acta Alimentaria 14: 201–210.Google Scholar
  27. Elliott, J. H. and Ganz, A. J. 1977. Salad dressings—preliminary rheological characterization. J. Texture Stud. 8: 359–377.Google Scholar
  28. Fang, T. N., Tiu, C., Wu, X., and Dong, S. 1996. Rheological behaviour of cocoa dispersions. J. Texture Stud. 26: 203–215.Google Scholar
  29. Fang, T., Zhang, H., Hsieh, T. T., and Tiu, C. 1997. Rheological behavior of cocoa dispersions with cocoa butter replacers. J. Texture Stud. 27: 11–26.Google Scholar
  30. Fernandez-Martin, F. 1972. Influence of temperature and composition on some physical properties of milk and milk concentrates. II. Viscosity. J. Dairy Res. 39: 75–82.Google Scholar
  31. Figoni, P. I. and Shoemaker, C. F. 1983. Characterization of time dependent flow properties of mayonnaise under steady shear. J. Texture Stud. 14: 431–442.Google Scholar
  32. Fito, P. J., Clemente, G., and Sanz, F. J. 1983. Rheological behaviour of tomato concentrates hot break and cold break. J. Food Eng. 2: 51–62.Google Scholar
  33. Ganani, E. and Powell, R. E. 1985. Suspensions of rodlike particles: literature review and data correlations. J. Compos. Mater. 19: 194–215.Google Scholar
  34. Garcia, R., Rivera, J., and Rolz, C. 1974. Rheological properties of tropical products and their enzymic classification. Proc. IV. Int. cong. Fd. Sci. Technol. 2: 18–26.Google Scholar
  35. Genovese, D. B. and Rao, M. A. 2003. Vane yield stress of starch dispersions. J. Food Sci. 68(7): 2295–2301.Google Scholar
  36. Genovese, D. B. and Rao, M. A. 2005. Components of vane yield stress of structured food dispersions. J. Food Sci. 70(8): E498–E504.Google Scholar
  37. Gunjal, B. B. and Waghmare, N. J. 1987. Flow characteristics of pulp, juice and nectar of “Baneshan” and “Neelum” mangoes. J. Food Sci. Technol. India 24: 20–23.Google Scholar
  38. Harper, J. C. 1960. Viscometric behavior in relation to evaporation of fruit purees. Food Technol. 14: 557–560.Google Scholar
  39. Harper, J. C. and Lieberman, K. W. 1962. Rheological behavior of pear purees. Proc. I Int. Cong. Food Sci. Technol. 1: 719–728.Google Scholar
  40. Harper, J. C. and El-Sahrigi, A. F. 1965. Viscometric behavior of tomato concentrates. J. Food Sci. 30: 470–476.Google Scholar
  41. Harrison, L. J. and Cunningham, F. E. 1985. Factors influencing the quality of mayonnaise: a review. J. Food Qual. 8: 1–20.Google Scholar
  42. Harrison, L. J. and Cunningham, F. E. 1986. Influence of frozen storage time on properties of salted yolk and its functionality in mayonnaise. J. Food Qual. 9: 167–174.Google Scholar
  43. Hartel, R. W. 1998. Phase transitions in chocolate and coatings, in Phase/State Transitions in Foods: Chemical, Structural, and Rheological Changes, eds. M. A. Rao and R. W. Hartel, Chapter 5, pp. 217–251, Marcel Dekker, Inc., New York.Google Scholar
  44. Hayes, G. D. 1987. Food Engineering Data Handbook, John Wiley and Sons, Inc., New York.Google Scholar
  45. Higgs, S. J. 1974. An investigation into the flow behaviour of complex non-Newtonian foodstuffs. J. Phys. D: Appl. Phys. 7: 1184–1191.Google Scholar
  46. Holdsworth, S. D. 1971. Applicability of rheological models to the interpretation of flow and processing behavior of fluid food products. J. Texture Stud. 2: 393–418.Google Scholar
  47. Holdsworth, S.D. 1993. Rheological models used for the prediction of the flow properties of food products: a literature review. Trans. IChemE 71, Part C: 139–179.Google Scholar
  48. Hunter, R. J. and Nicol, S. K. 1968. The dependence of plastic flow behavior of clay suspensions on surface properties. J. Colloid and Interface Sci. 28: 250–259.Google Scholar
  49. Ibarz, A. and Pagan, J. 1987. Rheology of raspberry juices. J. Food Eng. 6: 269–289.Google Scholar
  50. Ibarz, A., Vicente, M., and Graell, J. 1987. Rheological behavior of apple juice and pear juice and their concentrates. J. Food Eng. 6: 257–267.Google Scholar
  51. Ibarz, A., Pagan, J., and Miguelsanz, R. 1992a. Rheology of clarified Fruit Juices. II, blackcurrant juices. J. Food Eng. 15: 63–73.Google Scholar
  52. Ibarz, A., Gonzalez, C., Esplugas, S., and Vicente, M. 1992b. Rhoelogy of clarified juices. 1: Peach juices. J. Food Eng. 15: 49–61.Google Scholar
  53. Jeffrey, D. J. and Acrivos, A. 1976. The rheological properties of suspensions of rigid particles. Am. Inst. Chem. Engineers. J. 22: 417–432.Google Scholar
  54. Jinescu, V. V. 1974. The rheology of suspensions. Int. Chem. Eng. 14: 397–420.Google Scholar
  55. Kiosseoglou, V. D. and Sherman, P. 1983. Influence of egg yolk lipoproteins on the rheology and stability of o/w emulsions and mayonnaise 1. Viscoelasticity of groundnut oil-in-water emulsions and mayonnaise. J. Texture Stud. 14: 397–417.Google Scholar
  56. Kokini, J. L. 1992. Rheological properties of Foods, in Handbook of Food Engineering, eds. D. R. Heldman and D. B. Lund, pp. 1–38. Marcel Dekker Inc., New York.Google Scholar
  57. Kokini, J. L. and Dickie, A. 1981. An attempt to identify and model transient viscoelastic flow in foods. J. Texture Stud. 12: 539–557.Google Scholar
  58. Kokini, J. L. and Plutchok, G. J. 1987. Viscoelastic properties of semisolid foods and their biopolymeric components. Food Technol. 41(3): 89–95.Google Scholar
  59. Krishna, A. G. G. 1993. Influence of viscosity on wax settling and refining loss in rice bran oil. J. Am. Oil Chem. Soc. 70: 895–898.Google Scholar
  60. Lang, W., Sokhansanj, S., and Sosulski, F. W. 1992. Modelling the temperature dependence of kinematic viscosity for refined canola oil. J. Am. Oil Chem. Soc. 69: 1054–1055.Google Scholar
  61. Larson, R. G. 1985. Constitutive relationships for polymeric materials with power-law distributions of relaxation times. Rheol. Acta 24: 327–334.Google Scholar
  62. Lopez, A., Ibarz, A., Pagan, J., and Vilavella, M. 1989. Rheology of wine musts during fermentation. J. Food Eng. 10: 155–161.Google Scholar
  63. Manohar, B., Ramakrishna, P., and Ramteke, R.S. 1990. Effect of pectin content on flow properties of mango pulp concentrates. J. Texture Stud. 21: 179–190.Google Scholar
  64. Manohar, B., Ramakrishna, P., and Udayashankar, K. 1991. Some physical properties of tamarind Tamarindus indica L. juice concentrates. J. Food Eng. 13: 241–258.Google Scholar
  65. Maschmeyer, R. O. and Hill, C. T. 1977. Rheology of concentrated suspensions of fibers in tube flow. Trans. Soc. Rheol. 21: 183–194.Google Scholar
  66. McCarthy, K. L. and Seymour, J. D. 1994a. A fundamental approach for the relationship between the Bostwick measurement and Newtonian fluid viscosity. J. Texture Stud. 24: 1–10.Google Scholar
  67. McCarthy, K. L. and Seymour, J. D. 1994b. Gravity current analysis of the Bostwick consistometer for power law foods. J. Texture Stud. 25: 207–220.Google Scholar
  68. Metz B., Kossen, N. W. F., and van Suijdam, J. C. 1979. The rheology of mould suspensions, in Advances in Biochemical Engineering, eds. T. K. Ghose, A. Fiechter, and N. Blakebrough, Vol. 2. pp. 103–156, Springer Verlag, New York.Google Scholar
  69. Metzner, A. B. 1985. Rheology of suspensions in polymeric liquids. J. Rheol. 29: 739–775.Google Scholar
  70. Michaels, A. S. and Bolger, J. C. 1962. The plastic behavior of flocculated kaolin suspensions. Ind. Eng. Chem. Fundam. 1: 153–162.Google Scholar
  71. Mizrahi, S. and Firstenberg, R. 1975. Effect of orange juice composition on flow behaviour of six-fold concentrate. J. Texture Stud. 6: 523–532.Google Scholar
  72. Mizrahi, S. 1979. A review of the physicochemical approach to the analysis of the structural viscosity of fluid food products. J. Texture Stud. 10: 67–82.Google Scholar
  73. Mizrahi, S. and Berk, Z. 1970. Flow behavior of concentrated orange juice. J. Texture Stud. 1: 342–355.Google Scholar
  74. Mizrahi, S. and Berk, Z. 1972. Flow behaviour of concentrated orange juice: mathematical treatment. J. Texture Stud. 3: 69–79.Google Scholar
  75. Munro, J. A. 1943. The viscosity and thixotropy of honey. J. Econ. Entomol. 36: 769–777.Google Scholar
  76. Musser, J. C. 1973. Gloss on chocolate and confectionery coatings, in proceedings of the 27th Pennsylvania Manuf. Confect. Assoc. Production Conference, Lancaster, PA, pp. 46–50.Google Scholar
  77. Noureddini, H., Teoh, B. C., and Clements, L. D. 1992. Viscosities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc. 69: 1189–1191.Google Scholar
  78. Okechukwu, P. E. and Rao M. A. 1995. Influence of granule size on viscosity of corn starch suspension. J. Texture Stud. 26: 501–516.Google Scholar
  79. Paredes, M. D. C., Rao, M. A., and Bourne, M. C. 1988. Rheological characterization of salad dressings. 1. Steady shear, thixotropy and effect of temperature. J. Texture Stud. 19: 247–258.Google Scholar
  80. Paredes, M. D. C., Rao, M. A., and Bourne, M. C. 1989. Rheological characterization of salad dressings. 2. Effect of storage. J. Texture Stud. 20: 235–250.Google Scholar
  81. Perry, J. H. 1950. Chemical Engineer’s Handbook, 3rd ed., p. 374. McGraw-Hill, New York.Google Scholar
  82. Praschan, V. C. 1981. Quality Control Manual for Citrus Processing Plants, Safety Harbor, Florida: Intercit.Google Scholar
  83. Qiu, C.-G. and Rao, M. A. 1988. Role of pulp content and particle size in yield stress of apple sauce. J. Food Sci. 53: 1165–1170.Google Scholar
  84. Quemada, D., Fland, P., and Jezequel, P. H. 1985. Rheological properties and flow of concentrated diperse media. Chem. Eng. Comm. 32: 61–83.Google Scholar
  85. Ramaswamy, H. S. and Basak, S. 1991. Rheology of stirred yoghurts. J. Texture Stud. 22: 231–241.Google Scholar
  86. Rao, M. A., Otoya Palomi, L. N., and Bernhardt, L. W. 1974. Flow properties of tropical fruit purees. J. Food Sci. 39: 160–161.Google Scholar
  87. Rao, M. A. 1977. Rheology of liquid foods-a review. J. Texture Stud. 8: 135–168.Google Scholar
  88. Rao, M. A. 1987. Predicting the flow properties of food suspensions of plant origin. Mathematical models help clarify the relationship between composition and rheological behavior. Food Technol. 41(3): 85–88.Google Scholar
  89. Rao, M.A. and Bourne, M. C. 1977. Analysis of the plastometer and correlation of Bostwick consistometer data. J. Food Sci. 42: 261–264.Google Scholar
  90. Rao, M. A. and Cooley, H. J. 1984. Determination of effective shear rates of complex geometries. J. Texture Stud. 15: 327–335.Google Scholar
  91. Rao, M. A. and Cooley, H. J. 1992. Rheology of tomato pastes in steady and dynamic shear. J. Texture Stud. 23: 415–425.Google Scholar
  92. Rao, M. A., Kenny, J. F., and Nelson, R. R. 1977. Viscosity of American Wines as a function of temperature (In German). Mitteilungen-Klosterneuberg. 27: 223–226.Google Scholar
  93. Rao, M. A., Bourne, M. C., and Cooley, H. J. 1981. Flow properties of tomato concentrates. J. Texture Stud. 12: 521–538.Google Scholar
  94. Rao, M. A., Cooley, H. J., and Vitali, A. A. 1984. Flow properties of concentrated fruit juices at low temperatures. Food Technol. 38(3): 113–119.Google Scholar
  95. Rao, M. A., Cooley, H. J., Nogueira, J. N., and McLellan, M. R. 1986. Rheology of apple sauce: effect of apple cultivar, firmness, and processing parameters. J. Food Sci. 51: 176–179.Google Scholar
  96. Rao, K. L., Eipeson, W. E., Rao, P. N. S., Patwardhan, M. V., and Ramanathan, P. K. 1985. Rheological properties of mango pulp and concentrate. J. Food Sci. Technol. India 22: 30–33.Google Scholar
  97. Rao, M. A., Cooley, H. J., Ortloff, C., Chang, K., and Wijts, S. C. 1993. Influence of rheological properties of fluid and semi solid foods on the performance of a filler. J. Food Process Eng. 16: 289–304.Google Scholar
  98. Ross-Murphy, S. B. 1984. Rheological methods, in Biophysical Methods in Food Research, ed. H. W.-S. Chan, pp. 138–199, Blackwell Scientific Publications, London.Google Scholar
  99. Rovedo, C. O., Viollaz, P. E., and Suarez, C. 1991. The effect of pH and temperature on the rheological behavior of Dulce de Leche. A typical dairy Argentine product. J. Dairy Sci. 74: 1497–1502.Google Scholar
  100. Rozema, H. and Beverloo, W. A. 1974. Laminar isothermal flow of non Newtonian fluids in a circular pipe.Lebensmittel Wissenschaft und Technologie. 7: 223–228.Google Scholar
  101. Saravacos, G. D. 1968. Tube viscometry of fruit purees and juices. Food Technol. 22: 1585–1968.Google Scholar
  102. Saravacos, G. D. 1970. Effect of temperature on viscosity of fruit juices and purees. J. Food Sci. 35: 122–125.Google Scholar
  103. Saravacos, G. D. and Moyer, J. C. 1967. Heating rates of fruit products in an agitated kettle. Food Technol. 27: 372–376.Google Scholar
  104. Servais, C. Ranc, H., and Roberts, I. D. 2004. Determination of chocolate viscosity. J. Texture Stud. 34(5–6): 467–498Google Scholar
  105. Sierzant, R. and Smith, D. E. 1993. Flow behavior properties and density of whole milk retentates as affected by temperature. Milchwissenschaft. 48(1): 6–10.Google Scholar
  106. Sommer, K. 1975. Bestimmung des strömungs-bzw. Festkörperreibungsanteils der viscosität kozentrierter Suspensionen. Rheol. Acta 14: 347–351. (Cited in Bodenstab et al. 2003).Google Scholar
  107. Sornsrivichai, T. 1986. A study on rheological properties of tomato concentrates as affected by concentration methods, processing conditions, and pulp content, Ph.D. thesis, Cornell University, Ithaca, NY.Google Scholar
  108. Sterling, C. and Wuhrmann, J. J. 1960. Rheology of cocoa butter. I. Effect of contained fat crystals on flow properties. Food Res. 25: 460–463.Google Scholar
  109. Takada, N. and Nelson, P. E. 1983. A new consistency method for tomato products: the precipitate weight ratio. J. Food Sci. 48: 1460–1462.Google Scholar
  110. Tanaka, M. and Fukuda, H. 1976. Studies on the texture of salad dressings containing xanthan gum. Can. Inst. Food Sci. Technol. J. 9: 130–134.Google Scholar
  111. Tanglertpaibul, T. and Rao, M. A. 1987a. Rheological properties of tomato concentrates as affected by particle size and methods of concentration. J. Food Sci. 52: 141–145.Google Scholar
  112. Tanglertpaibul, T. and Rao, M. A. 1987b. Flow properties of tomato concentrates: effect of serum viscosity and pulp content. J. Food Sci. 52: 318–321.Google Scholar
  113. Tárrega, A., Costell, E., and Rao M. A. 2006. Vane yield stress of native and cross-linked starch dispersions in skim milk: effect of starch concentration and λ-carrageenan addition. Food Sci. & Tech. Int. 12(3): 253–260.Google Scholar
  114. Timms, R. E. 1985. Physical properties of oils and mixtures of oils. J. Am. Oil Chem. Soc. 62(2): 241–248.Google Scholar
  115. Trifiro, A., Saccani, G., Gherardi, S., and Bigliardi, D. 1987. Effect of content and sizes of suspended particles on the rheological behavior of apricot purees. Industria Conserve 62: 97–104.Google Scholar
  116. Varshney, N. N. and Kumbhar, B. K. 1978. Effect of temperature and concentration on rheological properties of pineapple and orange juice. J. Food Sci. Technol. India 15(2): 53–55.Google Scholar
  117. Velez-Ruiz, J. F. and Barbosa-Canovas, G. V. 1998. Rheological Properties of concentrated milk as a function of concentration, temperature and storage time. J. Food Eng. 35: 177–190.Google Scholar
  118. Vitali, A. A. 1983. Rheological behavior of frozen concentrated orange juice at low temperatures (in Portuguese), Ph.D. thesis, University of São Paulo, São Paulo, Brazil.Google Scholar
  119. Vitali, A. A. and Rao, M. A. 1984a. Flow Properties of low-pulp concentrated orange juice: serum viscosity and effect of pulp content. J. Food Sci. 49: 876–880.Google Scholar
  120. Vitali, A. A. and Rao, M. A. 1984b. Flow Properties of low-pulp concentrated orange juice: Effect of temperature and concentration. J. Food Sci. 49: 882–888.Google Scholar
  121. Wayne, J. E. B. and Shoemaker, C. F. 1988. Rheological characterization of commercially processed fluid milks. J. Texture Stud 19: 143–152.Google Scholar
  122. Weyland, M. 1994. Functional effects of emulsifiers in chocolate. Manuf. Confect. 745: 111–117.Google Scholar
  123. Wildemuth, C. R. and Williams, M. C. 1984. Viscosity of suspensions modeled with a shear-dependent maximum packing fraction. Rheol. Acta 23: 627–635.Google Scholar
  124. Yoo, B. and Rao, M. A. 1994. Effect of unimodal particle size and pulp content on rheological properties of tomato puree. J. Texture Stud. 25: 421–436.Google Scholar
  125. Yoo, B. and Rao, M. A. 1996. Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. J. Texture Stud. 27: 451–459.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Anandha Rao
    • 1
  1. 1.Department of Food Science and Technology CornellUniversity GenevaNew York

Personalised recommendations