Rheology of Food Gum and Starch Dispersions

  • M. Anandha Rao
Part of the Food Engineering Series book series (FSES)


Gums and starches are used extensively as thickening and gelling agents in foods. Therefore, understanding their rheological characteristics is of considerable interest. Because many food gums in dispersions have random coil configuration and starch dispersions have granules, it would be better to study their rheological behavior separately.


Shear Rate Starch Granule Apparent Viscosity Whey Protein Isolate Gelatinization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achayuthakan, P., Suphantharika, M., and Rao, M. A. 2006. Yield stress components of waxy corn starch-xanthan mixtures: effect of xanthan concentration and different starches. Carbohydr. Polym. 65: 469–478.CrossRefGoogle Scholar
  2. Aguilera, J. M. and Rojas, E. 1996. Rheological, thermal and microstructural properties of whey proteincassava starch gels. J. Food Sci. 61: 962–966.CrossRefGoogle Scholar
  3. Ahmad, F. B. and Williams, P. A. 1999. Effect of sugars on the thermal and rheological properties of sago starch. Biopolymers 50: 401–412.CrossRefGoogle Scholar
  4. Alloncle, M., Lefebvre, J., Llamas, G., and Doublier, J. L. 1989. A rheological characterization of cereal starch-galactomannan mixtures. Cereal-Chem. 66(2): 90–93.Google Scholar
  5. Annable, P., Fitton, M. G., Harris, B., Phillips, G. O., and Williams, P. A. 1994. Phase behaviour and rheology of mixed polymer systems containing starch. Food-Hydrocolloids 8(3/4): 351–359.CrossRefGoogle Scholar
  6. Axelos, M. A. V., Thibault, J. F., and Lefebvre, J. 1989. Structure of citrus pectins and viscometric study of their solution properties. Int. J. Biol. Macromol. 11: 186–191.CrossRefGoogle Scholar
  7. Bagley, E. B. and Christianson, D. D. 1982. Swelling capacity of starch and its relationship to suspension viscosity: effect of cooking time, temperature and concentration. J. Texture Stud. 13: 115–126.CrossRefGoogle Scholar
  8. Barnes, H. A. 1989. Shear thickening “Dilatancy” in suspensions of non aggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33: 329–366.CrossRefGoogle Scholar
  9. Biliaderis, C. G. 1992. Characterization of starch networks by small strain dynamic rheometry, in Developments in Carbohydrate Chemistry, eds. R. J. Alexander and H. F. Zobel, American Association of Cereal Chemists, St. Paul, MN.Google Scholar
  10. Bird, R. B., Armstrong, R. C., and Hassager, O. 1977a. Dynamics of Polymeric Liquids-Fluid Mechanics, John Wiley and Sons, New York.Google Scholar
  11. Bird, R. B., Hassager, O., Armstrong, R. C., and Curtiss, C. F. 1977b. Dynamics of Polymeric Liquids-Kinetic Theory, John Wiley and Sons, New York.Google Scholar
  12. Blanshard, J. M. V. 1987. Starch granule structure and function: a physicochemical approach, in Starch: Properties and Potential, ed. T. Galliard pp. 16–54, John Wiley & Sons, New York.Google Scholar
  13. Boersma, W. H., Baets, P. J. M., Laven, J., and Stein, H. N. 1991. Time-dependent behavior and wall slip in concentrated shear thickening dispersions. J. Rheol. 35: 1093–1120.CrossRefGoogle Scholar
  14. Boersma, W. H., Laven, J., and Stein, H. N. 1992. Viscoelastic properties of concentrated shear-thickening dispersions. J. Colloid and Interface Sci. 149: 10–22.CrossRefGoogle Scholar
  15. Bossis, G. and Brady, J. F. 1989. The rheology of Brownian suspensions. J. Chemical Phys. 91: 1866–1879.CrossRefGoogle Scholar
  16. Boye, J. I., Alli, I., Ismail, A. A., Gibbs, B. F., and Konishi, Y. 1995. Factors affecting molecular characteristics of whey protein gelation. Int. Dairy J. 5: 337–353.CrossRefGoogle Scholar
  17. Bryant, C. M. and McClements, D. J. 2000. Influence of NaCl and CaCl2 on cold-set gelation of heat-denatured whey protein. J. Food Sci. 65: 801–804.CrossRefGoogle Scholar
  18. Bu-Contreras, R. 2001. Influence of physico-chemical factors on the firmness of potatoes and apples. Ph.D. thesis, Cornell University, Ithaca, New York, USA.Google Scholar
  19. Buscall, R., Goodwin, J. W, Hawkins, M. W, and Ottewell, R. H. 1982a. Viscoelastic properties of concentrated lattices I. Methods of examination. J. Chem. Soc. Fraday Trans. 78: 2873–2887.CrossRefGoogle Scholar
  20. Buscall, R., Goodwin, J. W, Hawkins, M. W, and Ottewell, R. H. 1982b. Viscoelastic properties of concentrated lattices II. Theor. Anal. 78: 2889–2899.Google Scholar
  21. Carreau, P. J., De Kee, D., and Chhabra, R. P. 1997. Rheology of Polymeric Systems: Principles and Applications, Hanser, New York.Google Scholar
  22. Chamberlain, E. K. 1996. Characterization of heated and thermally processed cross-linked waxy maize starch utilizing particle size analysis, microscopy and rheology. M.S. thesis, Cornell University, Ithaca, NY.Google Scholar
  23. Chamberlain, E. K. 1999. Rheological properties of acid converted waxy maize starches: effect of solvent, concentration and dissolution time. Ph.D. thesis, Cornell University, Ithaca, NY.Google Scholar
  24. Chamberlain, E. K. and Rao, M. A. 2000. Concentration dependence of viscosity of acid-hydrolyzed amylopectin solutions. Food Hydrocolloids 14: 163–171.CrossRefGoogle Scholar
  25. Chamberlain, E. K., Rao, M. A., and Cohen, C. 1998. Shear thinning and antithixotropic behavior of a heated cross-linked waxy maize starch dispersion. Int. J. Food Properties 2: 63–77; errata, 2: 195–196.CrossRefGoogle Scholar
  26. Champenois, Y. C., Rao, M. A., and Walker, L. P. 1998. Influence of gluten on the viscoelastic properties of starch pastes and gels. J. Sci. Food Agric. 78: 119–126.CrossRefGoogle Scholar
  27. Chedid, L. L. and Kokini, J. L. 1992. Influence of protein addition on rheological properties of amylose-and amylopectin-based starches in excess water. Cereal Chem. 69: 551–555.Google Scholar
  28. Cheer, R. L. and Lelievre, J. 1983. Effects of sucrose on the rheological behavior of wheat-starch pastes. J. Appl. Polym. Sci. 28(6): 1829–1836.CrossRefGoogle Scholar
  29. Chen, C.-J., Okechukwu, P. E., Damodaran, S., and Rao, M. A. 1996. Rheological properties of heated corn starch + soybean 7S and 11S globulin dispersions. J. Texture Stud. 27: 419–432.CrossRefGoogle Scholar
  30. Chou, T. D. and Kokini, J. L. 1987. Rheological properties and conformation of tomato paste pectins, citrus and apple pectins. J. Food Sci. 52: 1658–1664.CrossRefGoogle Scholar
  31. Chow, M. K. and Zukoski, C. F. 1995a. Gap size and shear history dependencies in shear thickening of a suspension ordered at rest. J. Rheol. 39: 15–32.CrossRefGoogle Scholar
  32. Chow, M. K. and Zukoski, C. F. 1995b. Nonequlibrium behavior of dense suspensions of uniform particles: volume fraction and size dependence of rheology and microstructure. J. Rheol. 39: 33–59.CrossRefGoogle Scholar
  33. Christianson, D. D. and Bagley, E. B. 1984. Yield stresses in dispersions of swollen deformable cornstarch granules. Cereal Chem. 61: 500–503.Google Scholar
  34. Christianson, D. D., Hodge, J. E., Osborne, D., and Detroy, R. W. 1981. Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chem. 58(6): 513–517.Google Scholar
  35. Colas, B. 1986. Flow behavior of crosslinked cornstarches. Lebensmittel Wissenschaft u. Technol. 19: 308–311.Google Scholar
  36. Cox, W. P. and Merz, E. H. 1958. Correlation of dynamic and steady flow viscosities. J. Polymer Sci. 28(118): 619.CrossRefGoogle Scholar
  37. Da Silva, P. M. S., Oliveira, J. C., and Rao, M. A. 1997. The effect of granule size distribution on the rheological behavior of heated modified and unmodified maize starch dispersions. J. Texture Stud. 28: 123–138.CrossRefGoogle Scholar
  38. Dail, R. V. and Steffe, J. F. 1990a. Dilatancy in starch solutions under low acid aseptic processing conditions. J. Food Sci. 55: 1764–1765.CrossRefGoogle Scholar
  39. Dail, R. V. and Steffe, J. F. 1990b. Rheological characterization of crosslinked waxy maize starch solutions under low acid aseptic processing conditions using tube viscometry techniques. J. Food Sci. 55: 1660–1665.CrossRefGoogle Scholar
  40. Davidson, R. L. 1980. Handbook of Water-Soluble Gums and Resins, McGraw-Hill Book Co., New York.Google Scholar
  41. Davis, M. A. F., Gidley, M. J., Morris, E. R., Powell, D. A., and Rees, D. A. 1980. Intermolecular association in pectin solutions. Int. J. Biol. Macromol. 2: 330.CrossRefGoogle Scholar
  42. Dealy, J. M. and Wissburn, K. F. 1990. Melt Rheology and Its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York.Google Scholar
  43. De Kee, D. and Wissburn, K. F. 1998. Polymer rheology. Physics Today 51, no. 6: 24–29.CrossRefGoogle Scholar
  44. D’Haene, P., Mewis, J., and Fuller, G. G. 1993. Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J. Colloid Interface Sci. 156: 350–358.CrossRefGoogle Scholar
  45. Dintzis, F. R. and Bagley, E. B. 1995. Shear-thickening and transient flow effects in starch solutions. J. Appl. Polymer Sci. 56: 637–640.CrossRefGoogle Scholar
  46. Dolan, K. D. and Steffe, J. F. 1990. Modeling rheological behavior of gelatinizing starch solutions using mixer viscometry data. J. Texture Stud. 21: 265–294.CrossRefGoogle Scholar
  47. Dolan, K. D., Steffe, J. F., and Morgan, R. G. 1989. Back extrusion and simulation of viscosity development during starch gelatinization. J. Food Process Eng. 11: 79–101.CrossRefGoogle Scholar
  48. Doublier, J. L. 1981. Rheological studies on starch. Flow behavior of wheat starch pastes. Starch/Stärke 33: 415–420CrossRefGoogle Scholar
  49. Doublier, J. L. 1987. A rheological comparison of wheat, maize, faba bean and smooth pea starches. J. Cereal Sci. 5: 247–262.CrossRefGoogle Scholar
  50. Elbirli, B. and M. T. Shaw. 1978. Time constants from shear viscosity data. J. Rheol. 22: 561–570.CrossRefGoogle Scholar
  51. Eliasson, A. C. 1986. Viscoelastic behavior during the gelatinization of starch: 1. Comparison of wheat, maize, potato and waxy barley starches. J. Texture Stud. 17: 253–265.CrossRefGoogle Scholar
  52. Ellis, H. S., Ring, S. G., and Whittam, M. A. 1989. A comparison of the viscous behavior of wheat and maize starch pastes. J. Cereal Sci. 10: 33–44.CrossRefGoogle Scholar
  53. Evageliou, V., Richardson, R. K., and Morris, E. R. 2000. Effect of sucrose, glucose and fructose on gelation of oxidized starch. Carbohydr. Polym. 42: 261–272.CrossRefGoogle Scholar
  54. Evans, I. D. and Haisman, D. R. 1979. Rheology of gelatinized starch suspensions. J. Texture Stud. 10: 347–370.CrossRefGoogle Scholar
  55. Evans, I. D. and Haisman, D. R. 1982. The effect of solutes on the gelatinization temperature range of potato starch. Starch/Stäerke 34(7): 224–231.CrossRefGoogle Scholar
  56. Evans, I. D. and Lips, A. 1992. Viscoelasticity of gelatinized starch dispersions. J. Texture Stud. 23: 69–86.CrossRefGoogle Scholar
  57. Evans, I. D. and Lips, A. 1993. Influence of soluble polymers on the elasticity of concentrated dispersions of deformable food microgel particles, in Food Colloids and Polymers: Stability and Mechanical Properties, eds. E. Dickinson and P. Walstra, The Royal Society of Chemistry, Cambridge, England.Google Scholar
  58. Faubion, J. M. and Hoseney, R. C. 1990. The viscoelastic properties of wheat flour doughs, in Dough Rheology and Baked Product Texture, eds. H. Faridi and J. M. Faubion, Van Nostrand Reinhold, New York, USA, pp. 29–66.Google Scholar
  59. Ferry, J. D. 1980. Viscoelastic Properties of Polymers, John Wiley, New YorkGoogle Scholar
  60. Fukuoka, M., Ohta, K., and Watanabe, H. 2002. Determination of the terminal extent of starch gelatinization in a limited water system. J. Food Eng. 53: 39–42.CrossRefGoogle Scholar
  61. Galliard, T. and Bowler, P. 1987. Morphology and composition of starch, in Starch: Properties and Potential, Critical Reports on Applied Chemistry, ed. T. Galliard, Vol. 13, pp. 54–78, John Wiley and Sons, New York.Google Scholar
  62. Genovese, D. B. and Rao, M. A. 2003a. Role of starch granule characteristics (volume fraction, rigidity, and fractal dimension) on rheology of starch dispersions with and without amylose. Cereal Chem. 80: 350–355.CrossRefGoogle Scholar
  63. Genovese, D. B. and Rao, M. A. 2003b. Apparent viscosity and first normal stress of starch dispersions: role of continuous and dispersed phases, and prediction with the Goddard-Miller model. Appl. Rheol. 13(4): 183–190.Google Scholar
  64. Genovese, D. B. and Rao, M. A. 2003c. Vane yield stress of starch dispersions. J. Food Sci. 68(7): 2295–2301.CrossRefGoogle Scholar
  65. Genovese, D. B., Acquarone, V. M., Youn, K.-S., and Rao, M. A. 2004. Influence of fructose and sucrose on small and large deformation rheological behavior of heated Amioca starch dispersions. Food Science and Technology International 10(1): 51–57.CrossRefGoogle Scholar
  66. Giboreau, A., Cuvelier, G., and Launay, B. 1994. Rheological behavior of three biopolymer/water systems with emphasis on yield stress and viscoelastic properties. J. Texture Stud. 25: 119–137.CrossRefGoogle Scholar
  67. Glicksman, M. 1969. Gum Technology in the Food Industry, Academic Press, New York.Google Scholar
  68. Graessley, W. W. 1967. Viscosity of entangling polydisperse polymers. J. Chem. Phys. 47: 1942–1953.CrossRefGoogle Scholar
  69. Graessley, W. W. 1974. The entanglement concept in polymer rheology. Adv. Polymer Sci. 16: 1–179, Springer-Verlag, Berlin.Google Scholar
  70. Graessley, W. W. 1980. Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21: 258–262.CrossRefGoogle Scholar
  71. Griskey, R. G. and Green, R. G. 1971. Flow of dilatant shear-thickening fluids. Am. Inst. Chem. Engrs. J. 17: 725–728.Google Scholar
  72. Harris, E. K. Jr. 1970. Viscometric properties of polymer solutions and blends as functions of concentration and molecular weight. Ph.D thesis, University of Wisconsin, Madison.Google Scholar
  73. Harrod, M. 1989. Modelling of flow properties of starch pastes prepared by different procedures. J. Food Process Eng. 11: 257–275.CrossRefGoogle Scholar
  74. Hoffman, R. L. 1972. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16: 155–173.CrossRefGoogle Scholar
  75. Hoseney, R. C. 1998. Gelatinization phenomena of starch, in Phase/State Transitions in Foods: Chemica, Structural, and Rheological Changes, eds. M. A. Rao and R. W. Hartel, pp. 95–110, Marcel Dekker, Inc., New York.Google Scholar
  76. Kaletunc-Gencer, G. and Peleg, M. 1986. Rheological characteristics of selected food gum mixtures in solution. J. Text. Stud. 17: 61–70.CrossRefGoogle Scholar
  77. Krieger, I. J. 1985. Rheology of polymer colloids, in Polymer Colloids, eds. R. Buscall, T. Corner, and J. F. Stageman, pp. 219–246, Elsevier Applied Science, New York.Google Scholar
  78. Kubota, K., Hosakawa, Y, Suziki, K., and Hosaka, H. 1979. Studies on the gelatinization rate of rice and potato starches. J. Food Sci. 44: 1394–1397.CrossRefGoogle Scholar
  79. Kulicke, W.M. and Porter, R.S. 1980. Relation between steady shear flow and dynamic rheology. Rheologica Acta 19: 601–605.CrossRefGoogle Scholar
  80. Langan, R. E. 1986. Food industry, in Modified Starches: Properties and Uses, pp. 199–212, CRC Press, Boca Raton, FL.Google Scholar
  81. Lapasin, R., Pricl, S., and Tracanelli, P. 1991. Rheology of hydroxyethyl guar gum derivatives. Carbohydr. polym. 14: 411–427.CrossRefGoogle Scholar
  82. Laun, H. M. Bung, R., and Schmidt, F. 1991. Rheology of extremely shear thickening polymer dispersions passively viscosity switching fluids. J. Rheol. 35: 999–1034.CrossRefGoogle Scholar
  83. Launay, B., Doublier, J. L. and Cuvelier, G. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides, in Functional Properties of Food Macromolecules, eds. J. R. Mitchell and D. A. Ledward, Chapter 1, pp. 1–78, Elsevier Applied Science Publishers, London.Google Scholar
  84. Leach, H. W., McGowen, L. D., and Schoch, T. J. 1959. Structure of starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem. 36: 534–544.Google Scholar
  85. Liao, H.-J., Okechukwu, P. E., Damodaran, S., and Rao, M. A. 1996. Rheological and calorimetric properties of heated corn starch-soybean protein isolate dispersions. J. Texture Stud. 27: 403–418.CrossRefGoogle Scholar
  86. Liao, H.-J., Tattiyakul, J., and Rao, M. A. 1999. Superposition of complex viscosity curves during gelatinization of starch dispersion and dough. J. Food Proc. Eng. 22: 215–234.CrossRefGoogle Scholar
  87. Lindahl, L. and Eliasson, A. C. 1986. Effects of wheat proteins on the viscoelastic properties of starch gels. J. Sci. Food Agric. 37: 1125–1132.CrossRefGoogle Scholar
  88. Lopes da Silva, J. A. L. 1994. Rheological characterization of pectin and pectingalactomannan dispersions and gel. Ph.D thesis, Escola Superior de Biotecnologia, Porto, Portugal.Google Scholar
  89. Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1992. Rheological properties of high-methoxyl pectin and locust bean gum solutions in steady shear. J. Food Sci. 57: 443–448.CrossRefGoogle Scholar
  90. Lopes da Silva, J. A. L. and Rao, M. A. 1992. Viscoelastic properties of food gum dispersions, in Viscoelastic Properties of Foods, eds. M. A. Rao and J. F. Steffe, pp. 285–316, Elsevier Applied Science Publishers, London.Google Scholar
  91. Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1993. Viscoelastic behavior of mixtures of locust bean gum and pectin dispersions. J. Food Eng. 18: 211–228.CrossRefGoogle Scholar
  92. Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1994. Influence of temperature on dynamic and steady shear rheology of pectin dispersions. Carbohydr. Polym. 23: 77–87.CrossRefGoogle Scholar
  93. Lopes da Silva, J. A. L. and Rao, M. A. 2006. Pectins: Structure, functionality, and uses, in Food Polysaccharides and Their Applications: Second Edition, Revised and Expanded, eds. A. M. Stephen, G. O. Phillips, and P. A. Williams, pp. 353–411, CRC Press, Inc., Boca Raton, New York.Google Scholar
  94. Lund, D. 1984. Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization. Crit. Rev. Food Sci. and Nutr. 20: 249–273.CrossRefGoogle Scholar
  95. Madeka, H. and Kokini, J. L. 1992. Effect of addition of zien and gliadin on the rheological properties of amylopectin starch with low-to-intermediate moisture. Cereal Chem. 69: 489–494.Google Scholar
  96. Matsumoto, T., Hitomi, C., and Onogi, S. 1975. Rheological properties of disperse systems of spherical particles in polystyrene solution at long time scales. Trans. Soc. Rheol. 19: 541–545.CrossRefGoogle Scholar
  97. McConnaughey, W. B. and Petersen, N. O. 1980. Cell poker: an apparatus for stress-strain measurements on living cells. Rev. Sci. Instrum. 51: 575–580.CrossRefGoogle Scholar
  98. McSwiney, M., Singh, H., and Campanella, O. H. 1994. Thermal aggregation and gelation of bovine β-lactoglobulin. Food Hydrocolloids 8: 441–453.CrossRefGoogle Scholar
  99. Miller, S. A. and Mann, C. A. 1944. Agitation of two-phase systems of immiscible liquids. Trans. Am. Inst. Chem. Engrs. 40: 709.Google Scholar
  100. Mills, P. L. and Kokini, J. L. 1984. Comparison of steady shear and dynamic viscoelastic properties of guar and karaya gums. J. Food Sci. 49: 1–4 and 9.CrossRefGoogle Scholar
  101. Mleko, S. and Foegeding, E. A. 1999. Formation of whey protein polymers: effects of a two-step heating process on rheological properties. J. Texture Stud. 30: 137–149.CrossRefGoogle Scholar
  102. Mleko, S. and Foegeding, E. A. 2000. pH induced aggregation and weak gel formation of whey protein polymers. J. Food Sci. 65: 139–143.CrossRefGoogle Scholar
  103. Morris, E. R. 1981. Rheology of hydrocolloids, in Gums and Stabilisers for the Food Industry 2, eds. G. O. Philips, D. J. Wedlock, and P. A. Williams, p. 57, Pergamon Press Ltd., Oxford, Great Britain.Google Scholar
  104. Morris, V. J. 1986. Multicomponent gels, in Gums and Stabilisers for the Food Industry 3, eds. G. O. Philips, D. J. Wedlock, and P. A. Williams, pp. 87–99, Elsevier Applied Science Publishers, London.Google Scholar
  105. Morris, V. J. 1990. Starch gelation and rétrogradation. Trends Food Sci. Technol. July, 1: 2–6.Google Scholar
  106. Morris, E. R. and Ross-Murphy, B. 1981. Chain flexibility of polysaccharides and glicoproteins from viscosity measurements, in Techniques in Carbohydrate Metabolism, ed. D. H. Northcote, B310, pp. 1–46, Elsevier, Amsterdam.Google Scholar
  107. Morris, E. R., Cutler, A. N., Ross-Murphy, S. B., and Rees, D. A. 1981. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1: 5–21.CrossRefGoogle Scholar
  108. Muhrbeck, P. and Eliasson, A. C. 1991. Rheological properties of protein/starch mixed gels. J. Texture Stud. 22: 317–332.CrossRefGoogle Scholar
  109. Noel, T. R., Ring, S. G., and Whittam, M. A. 1993. Physical properties of starch products: structure and function, in Food Colloids and Polymers: Stability and Mechanical Properties, eds. E. Dickinson and P. Wolstra, pp. 126–137, Royal Society of Chemistry, Cambridge, UK.Google Scholar
  110. Norisuye, T. 1996. Conformation and properties of amylose in dilute solution. Food-Hydrocolloids 10(1): 109–115.CrossRefGoogle Scholar
  111. Okechukwu, P. E. and Rao, M. A. 1995. Influence of granule size on viscosity of cornstarch suspension. J. Texture Stud. 26: 501–516.CrossRefGoogle Scholar
  112. Okechukwu, P. E. and Rao, M. A. 1996a. Kinetics of cornstarch granule swelling in excess water, in Gums & Stabilisers for the Food Industry 8, eds. G. O. Phillips, P. A. Williams, and D. J. Wedlock), pp. 49–57, The Oxford University Press, Oxford, U.K.Google Scholar
  113. Okechukwu, P. E. and Rao, M. A. 1996b. Role of granule size and size distribution in the viscosity of cowpea starch dispersions heated in excess water. J. Texture Stud. 27: 159–173.CrossRefGoogle Scholar
  114. Okechukwu, P. E. and Rao, M. A. 1997. Calorimetric and rheological behavior of cowpea protein plus starch cowpea and corn gels. Food Hydrocolloids 11: 339–345.CrossRefGoogle Scholar
  115. Okechukwu, P. E., Rao, M. A., Ngoddy, P. O., and McWatters, K. H. 1991. Flow behavior and gelatinizationof cowpea flour and starch dispersions. J. Food Sci. 56: 1311–1315.CrossRefGoogle Scholar
  116. Paoletti, S., Cesaro, A., Delben, F., and Ciana, A. 1986. Ionic effects on the conformation, equilibrium, properties, and rheology of pectate in aqueous solution and gels, in Chemistry and Function of pectins, eds. M. L. Fishman and J. J. Jen, pp. 73–87, ACS Symposium Series, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  117. Petrofsky, K. E. and Hoseney, R. C. 1995. Rheological properties of dough made with starch and gluten from several cereal sources. Cereal Chem. 72(1): 53–58.Google Scholar
  118. Plazek, D. J. 1996. 1995 Bingham medal address: Oh, thermorheological simplicity, wherefore art thou? J. Rheology 40: 987–1014.CrossRefGoogle Scholar
  119. Plutchok, G. J. and Kokini, J. L. 1986. Predicting steady and oscillatory shear rheological properties of CMC and guar gum blends from concentration and molecular weight data. J. Food Sci. 515: 1284–1288.CrossRefGoogle Scholar
  120. Quemada, D., Fland, P., and Jezequel, P. H. 1985. Rheological properties and flow of concentrated diperse media. Chem. Eng. Comm. 32: 61–83.CrossRefGoogle Scholar
  121. Rao, M. A. and Tattiyakul, J. 1999. Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydrate Polymers 38: 123–132.CrossRefGoogle Scholar
  122. Ravindra, P., Genovese, D. B., Foegeding, E. A., and Rao, M. A. 2004. Rheology of mixed whey protein isolate/cross-linked waxy maize starch gelatinized dispersions. Food Hydrocolloids 18: 775–781.CrossRefGoogle Scholar
  123. Robinson, G., Ross-Murphy, S. B., and Morris, E. R. 1982. Viscosity-molecular weight relationships, intrinsic chain flexibility and dynamic solution properties of guar galactomannan. Carbohydr. Res. 107: 17–32.CrossRefGoogle Scholar
  124. Rochefort, W. E. and Middleman, S. 1987. Rheology of xanthan gum: salt, temperature and strain effects in oscillatory and steady shear experiments. J. Rheol. 31: 337–369.CrossRefGoogle Scholar
  125. Rodriguez, F. 1989. Principles of Polymer Systems, 3rd ed., Hemisphere Publishing Corp., New York.Google Scholar
  126. Roos, Y. H. 1995. Phase Transitions in Foods, Academic Press, New York.Google Scholar
  127. Ross-Murphy, S. B. 1984. Rheological methods, in Biophysical Methods in Food Research, ed. H. W.-S. Chan, pp. 138–199, Blackwell Scientific, London.Google Scholar
  128. Russel, W. B., Saville, D. A., and Schowalter, W. R. 1989. Colloidal Dispersions, Cambridge University Press, Cambridge, U. K.Google Scholar
  129. Sawayama, S., Kawabata, A., Nakahara, H., and Kamata, T. 1988. A light scattering study on the effects of pH on pectin aggregation in aqueous solution. Food Hydrocolloids 2: 31–37.CrossRefGoogle Scholar
  130. Svegmark, K. and Hermansson, A. M. 1992. Microstructure and rheological properties of composites of potato starch granules and amylose: a comparison of observed and predicted structures. Food Struct. 12: 181–193.Google Scholar
  131. Tam, K.C. and Tiu, C. 1989. Steady and dynamic shear properties of aqueous polymer solutions. Journal of Rheology 33: 257–280.CrossRefGoogle Scholar
  132. Tam, K. C. and Tiu, C. 1993. Improved correlation for shear-dependent viscosity of polyelectrolyte solutions. J. Non-Newtonian Fluid Mech. 46: 275–288.CrossRefGoogle Scholar
  133. Tattiyakul, J. 1997. Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. M.S. thesis, Cornell University, Ithaca, NY.Google Scholar
  134. Tattiyakul, J. and Rao, M. A. 2000. Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydr. Polym. 43: 215–222.CrossRefGoogle Scholar
  135. Tester, R. F. and Morrison, W. R. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem. 67(6): 551–557.Google Scholar
  136. Tirrell, M. 1994. Rheology of polymeric liquids, in Rheology: Principles, Measurements, and Applications, ed. Macosko, C. W. 1994. VCH Publishers, New York.Google Scholar
  137. Tolstoguzov, V. B. 1985. Functional properties of protein-polysaccharide mixtures, in Functional Properties of Food Macromolecules, eds. J. Mitchell and D. A. Ledward, pp. 385–415, Elsevier Applied Science Publishers, London.Google Scholar
  138. Tolstoguzov, V. B. 1991. Functional properties of food proteins and role of protein-polysaccharide interaction—review. Food Hydrocolloids 4: 429–468.CrossRefGoogle Scholar
  139. Van Camp, J., Messens, W., Clément, J. and Huyghebaert, A. 1997. Influence of pH and calcium chloride on the high-pressure-induced aggregation of a whey protein concentrate. J. Agric. Food Chem. 45: 1600–1607.CrossRefGoogle Scholar
  140. Whistler, R. L. and Daniel, J. R. 1985. Carbohydrates, in Food Chemistry, ed. O. R. Fennema, pp. 69–138, New York, Marcel Dekker.Google Scholar
  141. Whitcomb, P. J. and Macosko, C. W. 1978. Rheology of xanthan gum. J. Rheol. 22: 493–505.CrossRefGoogle Scholar
  142. Yang, W. H. 1997. Rheological behavior and heat transfer to a canned starch dispersion: computer simulation and experiment. Ph.D thesis, Cornell University, Ithaca, NY.Google Scholar
  143. Yang, W. H., Datta, A. K., and Rao, M. A. 1997. Rheological and calorimetric behavior of starch gelatinization in simulation of heat transfer, in Engineering and Food at ICEF 7/Part 2, ed., pp. K1–K5. Sheffield Academic Press, London.Google Scholar
  144. Yang, W. H. and Rao, M. A. 1998. Complex viscosity-temperature master curve of cornstarch dispersion during gelatinization. J. Food Proc. Eng. 21: 191–207.CrossRefGoogle Scholar
  145. Yoo, B., Figueiredo, A. A., and Rao, M. A. 1994. Rheological properties of mesquite seed gum in steady and dynamic shear. Lebensmittel Wissenschaft und Technologie 27: 151–157.CrossRefGoogle Scholar
  146. Zahalak, G. L, McConnaughey, W. B., and Elson, E. L. 1990. Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J. Biomechanical Eng. 112: 283–294.CrossRefGoogle Scholar
  147. Zasypkin, D. V., Braudo, E. E., and Tolstoguzov, V. B. 1997. Multicomponent biopolymer gels. Food Hydrocolloids 11: 159–170.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Anandha Rao
    • 1
  1. 1.Department of Food Science and Technology CornellUniversity GenevaNew York

Personalised recommendations