Skip to main content

Rheology of Food Gum and Starch Dispersions

  • Chapter
Rheology of Fluid and Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

Gums and starches are used extensively as thickening and gelling agents in foods. Therefore, understanding their rheological characteristics is of considerable interest. Because many food gums in dispersions have random coil configuration and starch dispersions have granules, it would be better to study their rheological behavior separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achayuthakan, P., Suphantharika, M., and Rao, M. A. 2006. Yield stress components of waxy corn starch-xanthan mixtures: effect of xanthan concentration and different starches. Carbohydr. Polym. 65: 469–478.

    Article  CAS  Google Scholar 

  • Aguilera, J. M. and Rojas, E. 1996. Rheological, thermal and microstructural properties of whey proteincassava starch gels. J. Food Sci. 61: 962–966.

    Article  CAS  Google Scholar 

  • Ahmad, F. B. and Williams, P. A. 1999. Effect of sugars on the thermal and rheological properties of sago starch. Biopolymers 50: 401–412.

    Article  CAS  Google Scholar 

  • Alloncle, M., Lefebvre, J., Llamas, G., and Doublier, J. L. 1989. A rheological characterization of cereal starch-galactomannan mixtures. Cereal-Chem. 66(2): 90–93.

    Google Scholar 

  • Annable, P., Fitton, M. G., Harris, B., Phillips, G. O., and Williams, P. A. 1994. Phase behaviour and rheology of mixed polymer systems containing starch. Food-Hydrocolloids 8(3/4): 351–359.

    Article  CAS  Google Scholar 

  • Axelos, M. A. V., Thibault, J. F., and Lefebvre, J. 1989. Structure of citrus pectins and viscometric study of their solution properties. Int. J. Biol. Macromol. 11: 186–191.

    Article  CAS  Google Scholar 

  • Bagley, E. B. and Christianson, D. D. 1982. Swelling capacity of starch and its relationship to suspension viscosity: effect of cooking time, temperature and concentration. J. Texture Stud. 13: 115–126.

    Article  CAS  Google Scholar 

  • Barnes, H. A. 1989. Shear thickening “Dilatancy” in suspensions of non aggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33: 329–366.

    Article  CAS  Google Scholar 

  • Biliaderis, C. G. 1992. Characterization of starch networks by small strain dynamic rheometry, in Developments in Carbohydrate Chemistry, eds. R. J. Alexander and H. F. Zobel, American Association of Cereal Chemists, St. Paul, MN.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C., and Hassager, O. 1977a. Dynamics of Polymeric Liquids-Fluid Mechanics, John Wiley and Sons, New York.

    Google Scholar 

  • Bird, R. B., Hassager, O., Armstrong, R. C., and Curtiss, C. F. 1977b. Dynamics of Polymeric Liquids-Kinetic Theory, John Wiley and Sons, New York.

    Google Scholar 

  • Blanshard, J. M. V. 1987. Starch granule structure and function: a physicochemical approach, in Starch: Properties and Potential, ed. T. Galliard pp. 16–54, John Wiley & Sons, New York.

    Google Scholar 

  • Boersma, W. H., Baets, P. J. M., Laven, J., and Stein, H. N. 1991. Time-dependent behavior and wall slip in concentrated shear thickening dispersions. J. Rheol. 35: 1093–1120.

    Article  CAS  Google Scholar 

  • Boersma, W. H., Laven, J., and Stein, H. N. 1992. Viscoelastic properties of concentrated shear-thickening dispersions. J. Colloid and Interface Sci. 149: 10–22.

    Article  CAS  Google Scholar 

  • Bossis, G. and Brady, J. F. 1989. The rheology of Brownian suspensions. J. Chemical Phys. 91: 1866–1879.

    Article  CAS  Google Scholar 

  • Boye, J. I., Alli, I., Ismail, A. A., Gibbs, B. F., and Konishi, Y. 1995. Factors affecting molecular characteristics of whey protein gelation. Int. Dairy J. 5: 337–353.

    Article  CAS  Google Scholar 

  • Bryant, C. M. and McClements, D. J. 2000. Influence of NaCl and CaCl2 on cold-set gelation of heat-denatured whey protein. J. Food Sci. 65: 801–804.

    Article  CAS  Google Scholar 

  • Bu-Contreras, R. 2001. Influence of physico-chemical factors on the firmness of potatoes and apples. Ph.D. thesis, Cornell University, Ithaca, New York, USA.

    Google Scholar 

  • Buscall, R., Goodwin, J. W, Hawkins, M. W, and Ottewell, R. H. 1982a. Viscoelastic properties of concentrated lattices I. Methods of examination. J. Chem. Soc. Fraday Trans. 78: 2873–2887.

    Article  CAS  Google Scholar 

  • Buscall, R., Goodwin, J. W, Hawkins, M. W, and Ottewell, R. H. 1982b. Viscoelastic properties of concentrated lattices II. Theor. Anal. 78: 2889–2899.

    CAS  Google Scholar 

  • Carreau, P. J., De Kee, D., and Chhabra, R. P. 1997. Rheology of Polymeric Systems: Principles and Applications, Hanser, New York.

    Google Scholar 

  • Chamberlain, E. K. 1996. Characterization of heated and thermally processed cross-linked waxy maize starch utilizing particle size analysis, microscopy and rheology. M.S. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Chamberlain, E. K. 1999. Rheological properties of acid converted waxy maize starches: effect of solvent, concentration and dissolution time. Ph.D. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Chamberlain, E. K. and Rao, M. A. 2000. Concentration dependence of viscosity of acid-hydrolyzed amylopectin solutions. Food Hydrocolloids 14: 163–171.

    Article  CAS  Google Scholar 

  • Chamberlain, E. K., Rao, M. A., and Cohen, C. 1998. Shear thinning and antithixotropic behavior of a heated cross-linked waxy maize starch dispersion. Int. J. Food Properties 2: 63–77; errata, 2: 195–196.

    Article  Google Scholar 

  • Champenois, Y. C., Rao, M. A., and Walker, L. P. 1998. Influence of gluten on the viscoelastic properties of starch pastes and gels. J. Sci. Food Agric. 78: 119–126.

    Article  CAS  Google Scholar 

  • Chedid, L. L. and Kokini, J. L. 1992. Influence of protein addition on rheological properties of amylose-and amylopectin-based starches in excess water. Cereal Chem. 69: 551–555.

    CAS  Google Scholar 

  • Cheer, R. L. and Lelievre, J. 1983. Effects of sucrose on the rheological behavior of wheat-starch pastes. J. Appl. Polym. Sci. 28(6): 1829–1836.

    Article  CAS  Google Scholar 

  • Chen, C.-J., Okechukwu, P. E., Damodaran, S., and Rao, M. A. 1996. Rheological properties of heated corn starch + soybean 7S and 11S globulin dispersions. J. Texture Stud. 27: 419–432.

    Article  Google Scholar 

  • Chou, T. D. and Kokini, J. L. 1987. Rheological properties and conformation of tomato paste pectins, citrus and apple pectins. J. Food Sci. 52: 1658–1664.

    Article  Google Scholar 

  • Chow, M. K. and Zukoski, C. F. 1995a. Gap size and shear history dependencies in shear thickening of a suspension ordered at rest. J. Rheol. 39: 15–32.

    Article  CAS  Google Scholar 

  • Chow, M. K. and Zukoski, C. F. 1995b. Nonequlibrium behavior of dense suspensions of uniform particles: volume fraction and size dependence of rheology and microstructure. J. Rheol. 39: 33–59.

    Article  CAS  Google Scholar 

  • Christianson, D. D. and Bagley, E. B. 1984. Yield stresses in dispersions of swollen deformable cornstarch granules. Cereal Chem. 61: 500–503.

    Google Scholar 

  • Christianson, D. D., Hodge, J. E., Osborne, D., and Detroy, R. W. 1981. Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chem. 58(6): 513–517.

    CAS  Google Scholar 

  • Colas, B. 1986. Flow behavior of crosslinked cornstarches. Lebensmittel Wissenschaft u. Technol. 19: 308–311.

    CAS  Google Scholar 

  • Cox, W. P. and Merz, E. H. 1958. Correlation of dynamic and steady flow viscosities. J. Polymer Sci. 28(118): 619.

    Article  CAS  Google Scholar 

  • Da Silva, P. M. S., Oliveira, J. C., and Rao, M. A. 1997. The effect of granule size distribution on the rheological behavior of heated modified and unmodified maize starch dispersions. J. Texture Stud. 28: 123–138.

    Article  Google Scholar 

  • Dail, R. V. and Steffe, J. F. 1990a. Dilatancy in starch solutions under low acid aseptic processing conditions. J. Food Sci. 55: 1764–1765.

    Article  CAS  Google Scholar 

  • Dail, R. V. and Steffe, J. F. 1990b. Rheological characterization of crosslinked waxy maize starch solutions under low acid aseptic processing conditions using tube viscometry techniques. J. Food Sci. 55: 1660–1665.

    Article  Google Scholar 

  • Davidson, R. L. 1980. Handbook of Water-Soluble Gums and Resins, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Davis, M. A. F., Gidley, M. J., Morris, E. R., Powell, D. A., and Rees, D. A. 1980. Intermolecular association in pectin solutions. Int. J. Biol. Macromol. 2: 330.

    Article  CAS  Google Scholar 

  • Dealy, J. M. and Wissburn, K. F. 1990. Melt Rheology and Its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York.

    Google Scholar 

  • De Kee, D. and Wissburn, K. F. 1998. Polymer rheology. Physics Today 51, no. 6: 24–29.

    Article  Google Scholar 

  • D’Haene, P., Mewis, J., and Fuller, G. G. 1993. Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J. Colloid Interface Sci. 156: 350–358.

    Article  Google Scholar 

  • Dintzis, F. R. and Bagley, E. B. 1995. Shear-thickening and transient flow effects in starch solutions. J. Appl. Polymer Sci. 56: 637–640.

    Article  CAS  Google Scholar 

  • Dolan, K. D. and Steffe, J. F. 1990. Modeling rheological behavior of gelatinizing starch solutions using mixer viscometry data. J. Texture Stud. 21: 265–294.

    Article  CAS  Google Scholar 

  • Dolan, K. D., Steffe, J. F., and Morgan, R. G. 1989. Back extrusion and simulation of viscosity development during starch gelatinization. J. Food Process Eng. 11: 79–101.

    Article  Google Scholar 

  • Doublier, J. L. 1981. Rheological studies on starch. Flow behavior of wheat starch pastes. Starch/Stärke 33: 415–420

    Article  CAS  Google Scholar 

  • Doublier, J. L. 1987. A rheological comparison of wheat, maize, faba bean and smooth pea starches. J. Cereal Sci. 5: 247–262.

    Article  Google Scholar 

  • Elbirli, B. and M. T. Shaw. 1978. Time constants from shear viscosity data. J. Rheol. 22: 561–570.

    Article  CAS  Google Scholar 

  • Eliasson, A. C. 1986. Viscoelastic behavior during the gelatinization of starch: 1. Comparison of wheat, maize, potato and waxy barley starches. J. Texture Stud. 17: 253–265.

    Article  CAS  Google Scholar 

  • Ellis, H. S., Ring, S. G., and Whittam, M. A. 1989. A comparison of the viscous behavior of wheat and maize starch pastes. J. Cereal Sci. 10: 33–44.

    Article  Google Scholar 

  • Evageliou, V., Richardson, R. K., and Morris, E. R. 2000. Effect of sucrose, glucose and fructose on gelation of oxidized starch. Carbohydr. Polym. 42: 261–272.

    Article  CAS  Google Scholar 

  • Evans, I. D. and Haisman, D. R. 1979. Rheology of gelatinized starch suspensions. J. Texture Stud. 10: 347–370.

    Article  Google Scholar 

  • Evans, I. D. and Haisman, D. R. 1982. The effect of solutes on the gelatinization temperature range of potato starch. Starch/Stäerke 34(7): 224–231.

    Article  CAS  Google Scholar 

  • Evans, I. D. and Lips, A. 1992. Viscoelasticity of gelatinized starch dispersions. J. Texture Stud. 23: 69–86.

    Article  Google Scholar 

  • Evans, I. D. and Lips, A. 1993. Influence of soluble polymers on the elasticity of concentrated dispersions of deformable food microgel particles, in Food Colloids and Polymers: Stability and Mechanical Properties, eds. E. Dickinson and P. Walstra, The Royal Society of Chemistry, Cambridge, England.

    Google Scholar 

  • Faubion, J. M. and Hoseney, R. C. 1990. The viscoelastic properties of wheat flour doughs, in Dough Rheology and Baked Product Texture, eds. H. Faridi and J. M. Faubion, Van Nostrand Reinhold, New York, USA, pp. 29–66.

    Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, John Wiley, New York

    Google Scholar 

  • Fukuoka, M., Ohta, K., and Watanabe, H. 2002. Determination of the terminal extent of starch gelatinization in a limited water system. J. Food Eng. 53: 39–42.

    Article  Google Scholar 

  • Galliard, T. and Bowler, P. 1987. Morphology and composition of starch, in Starch: Properties and Potential, Critical Reports on Applied Chemistry, ed. T. Galliard, Vol. 13, pp. 54–78, John Wiley and Sons, New York.

    Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003a. Role of starch granule characteristics (volume fraction, rigidity, and fractal dimension) on rheology of starch dispersions with and without amylose. Cereal Chem. 80: 350–355.

    Article  CAS  Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003b. Apparent viscosity and first normal stress of starch dispersions: role of continuous and dispersed phases, and prediction with the Goddard-Miller model. Appl. Rheol. 13(4): 183–190.

    CAS  Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003c. Vane yield stress of starch dispersions. J. Food Sci. 68(7): 2295–2301.

    Article  CAS  Google Scholar 

  • Genovese, D. B., Acquarone, V. M., Youn, K.-S., and Rao, M. A. 2004. Influence of fructose and sucrose on small and large deformation rheological behavior of heated Amioca starch dispersions. Food Science and Technology International 10(1): 51–57.

    Article  CAS  Google Scholar 

  • Giboreau, A., Cuvelier, G., and Launay, B. 1994. Rheological behavior of three biopolymer/water systems with emphasis on yield stress and viscoelastic properties. J. Texture Stud. 25: 119–137.

    Article  Google Scholar 

  • Glicksman, M. 1969. Gum Technology in the Food Industry, Academic Press, New York.

    Google Scholar 

  • Graessley, W. W. 1967. Viscosity of entangling polydisperse polymers. J. Chem. Phys. 47: 1942–1953.

    Article  CAS  Google Scholar 

  • Graessley, W. W. 1974. The entanglement concept in polymer rheology. Adv. Polymer Sci. 16: 1–179, Springer-Verlag, Berlin.

    Google Scholar 

  • Graessley, W. W. 1980. Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21: 258–262.

    Article  CAS  Google Scholar 

  • Griskey, R. G. and Green, R. G. 1971. Flow of dilatant shear-thickening fluids. Am. Inst. Chem. Engrs. J. 17: 725–728.

    Google Scholar 

  • Harris, E. K. Jr. 1970. Viscometric properties of polymer solutions and blends as functions of concentration and molecular weight. Ph.D thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Harrod, M. 1989. Modelling of flow properties of starch pastes prepared by different procedures. J. Food Process Eng. 11: 257–275.

    Article  Google Scholar 

  • Hoffman, R. L. 1972. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16: 155–173.

    Article  CAS  Google Scholar 

  • Hoseney, R. C. 1998. Gelatinization phenomena of starch, in Phase/State Transitions in Foods: Chemica, Structural, and Rheological Changes, eds. M. A. Rao and R. W. Hartel, pp. 95–110, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Kaletunc-Gencer, G. and Peleg, M. 1986. Rheological characteristics of selected food gum mixtures in solution. J. Text. Stud. 17: 61–70.

    Article  CAS  Google Scholar 

  • Krieger, I. J. 1985. Rheology of polymer colloids, in Polymer Colloids, eds. R. Buscall, T. Corner, and J. F. Stageman, pp. 219–246, Elsevier Applied Science, New York.

    Google Scholar 

  • Kubota, K., Hosakawa, Y, Suziki, K., and Hosaka, H. 1979. Studies on the gelatinization rate of rice and potato starches. J. Food Sci. 44: 1394–1397.

    Article  Google Scholar 

  • Kulicke, W.M. and Porter, R.S. 1980. Relation between steady shear flow and dynamic rheology. Rheologica Acta 19: 601–605.

    Article  CAS  Google Scholar 

  • Langan, R. E. 1986. Food industry, in Modified Starches: Properties and Uses, pp. 199–212, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lapasin, R., Pricl, S., and Tracanelli, P. 1991. Rheology of hydroxyethyl guar gum derivatives. Carbohydr. polym. 14: 411–427.

    Article  CAS  Google Scholar 

  • Laun, H. M. Bung, R., and Schmidt, F. 1991. Rheology of extremely shear thickening polymer dispersions passively viscosity switching fluids. J. Rheol. 35: 999–1034.

    Article  CAS  Google Scholar 

  • Launay, B., Doublier, J. L. and Cuvelier, G. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides, in Functional Properties of Food Macromolecules, eds. J. R. Mitchell and D. A. Ledward, Chapter 1, pp. 1–78, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Leach, H. W., McGowen, L. D., and Schoch, T. J. 1959. Structure of starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem. 36: 534–544.

    CAS  Google Scholar 

  • Liao, H.-J., Okechukwu, P. E., Damodaran, S., and Rao, M. A. 1996. Rheological and calorimetric properties of heated corn starch-soybean protein isolate dispersions. J. Texture Stud. 27: 403–418.

    Article  Google Scholar 

  • Liao, H.-J., Tattiyakul, J., and Rao, M. A. 1999. Superposition of complex viscosity curves during gelatinization of starch dispersion and dough. J. Food Proc. Eng. 22: 215–234.

    Article  Google Scholar 

  • Lindahl, L. and Eliasson, A. C. 1986. Effects of wheat proteins on the viscoelastic properties of starch gels. J. Sci. Food Agric. 37: 1125–1132.

    Article  CAS  Google Scholar 

  • Lopes da Silva, J. A. L. 1994. Rheological characterization of pectin and pectingalactomannan dispersions and gel. Ph.D thesis, Escola Superior de Biotecnologia, Porto, Portugal.

    Google Scholar 

  • Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1992. Rheological properties of high-methoxyl pectin and locust bean gum solutions in steady shear. J. Food Sci. 57: 443–448.

    Article  CAS  Google Scholar 

  • Lopes da Silva, J. A. L. and Rao, M. A. 1992. Viscoelastic properties of food gum dispersions, in Viscoelastic Properties of Foods, eds. M. A. Rao and J. F. Steffe, pp. 285–316, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1993. Viscoelastic behavior of mixtures of locust bean gum and pectin dispersions. J. Food Eng. 18: 211–228.

    Article  Google Scholar 

  • Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1994. Influence of temperature on dynamic and steady shear rheology of pectin dispersions. Carbohydr. Polym. 23: 77–87.

    Article  CAS  Google Scholar 

  • Lopes da Silva, J. A. L. and Rao, M. A. 2006. Pectins: Structure, functionality, and uses, in Food Polysaccharides and Their Applications: Second Edition, Revised and Expanded, eds. A. M. Stephen, G. O. Phillips, and P. A. Williams, pp. 353–411, CRC Press, Inc., Boca Raton, New York.

    Google Scholar 

  • Lund, D. 1984. Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization. Crit. Rev. Food Sci. and Nutr. 20: 249–273.

    Article  CAS  Google Scholar 

  • Madeka, H. and Kokini, J. L. 1992. Effect of addition of zien and gliadin on the rheological properties of amylopectin starch with low-to-intermediate moisture. Cereal Chem. 69: 489–494.

    CAS  Google Scholar 

  • Matsumoto, T., Hitomi, C., and Onogi, S. 1975. Rheological properties of disperse systems of spherical particles in polystyrene solution at long time scales. Trans. Soc. Rheol. 19: 541–545.

    Article  CAS  Google Scholar 

  • McConnaughey, W. B. and Petersen, N. O. 1980. Cell poker: an apparatus for stress-strain measurements on living cells. Rev. Sci. Instrum. 51: 575–580.

    Article  CAS  Google Scholar 

  • McSwiney, M., Singh, H., and Campanella, O. H. 1994. Thermal aggregation and gelation of bovine β-lactoglobulin. Food Hydrocolloids 8: 441–453.

    Article  CAS  Google Scholar 

  • Miller, S. A. and Mann, C. A. 1944. Agitation of two-phase systems of immiscible liquids. Trans. Am. Inst. Chem. Engrs. 40: 709.

    CAS  Google Scholar 

  • Mills, P. L. and Kokini, J. L. 1984. Comparison of steady shear and dynamic viscoelastic properties of guar and karaya gums. J. Food Sci. 49: 1–4 and 9.

    Article  Google Scholar 

  • Mleko, S. and Foegeding, E. A. 1999. Formation of whey protein polymers: effects of a two-step heating process on rheological properties. J. Texture Stud. 30: 137–149.

    Article  Google Scholar 

  • Mleko, S. and Foegeding, E. A. 2000. pH induced aggregation and weak gel formation of whey protein polymers. J. Food Sci. 65: 139–143.

    Article  CAS  Google Scholar 

  • Morris, E. R. 1981. Rheology of hydrocolloids, in Gums and Stabilisers for the Food Industry 2, eds. G. O. Philips, D. J. Wedlock, and P. A. Williams, p. 57, Pergamon Press Ltd., Oxford, Great Britain.

    Google Scholar 

  • Morris, V. J. 1986. Multicomponent gels, in Gums and Stabilisers for the Food Industry 3, eds. G. O. Philips, D. J. Wedlock, and P. A. Williams, pp. 87–99, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Morris, V. J. 1990. Starch gelation and rétrogradation. Trends Food Sci. Technol. July, 1: 2–6.

    Google Scholar 

  • Morris, E. R. and Ross-Murphy, B. 1981. Chain flexibility of polysaccharides and glicoproteins from viscosity measurements, in Techniques in Carbohydrate Metabolism, ed. D. H. Northcote, B310, pp. 1–46, Elsevier, Amsterdam.

    Google Scholar 

  • Morris, E. R., Cutler, A. N., Ross-Murphy, S. B., and Rees, D. A. 1981. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1: 5–21.

    Article  CAS  Google Scholar 

  • Muhrbeck, P. and Eliasson, A. C. 1991. Rheological properties of protein/starch mixed gels. J. Texture Stud. 22: 317–332.

    Article  Google Scholar 

  • Noel, T. R., Ring, S. G., and Whittam, M. A. 1993. Physical properties of starch products: structure and function, in Food Colloids and Polymers: Stability and Mechanical Properties, eds. E. Dickinson and P. Wolstra, pp. 126–137, Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Norisuye, T. 1996. Conformation and properties of amylose in dilute solution. Food-Hydrocolloids 10(1): 109–115.

    Article  CAS  Google Scholar 

  • Okechukwu, P. E. and Rao, M. A. 1995. Influence of granule size on viscosity of cornstarch suspension. J. Texture Stud. 26: 501–516.

    Article  Google Scholar 

  • Okechukwu, P. E. and Rao, M. A. 1996a. Kinetics of cornstarch granule swelling in excess water, in Gums & Stabilisers for the Food Industry 8, eds. G. O. Phillips, P. A. Williams, and D. J. Wedlock), pp. 49–57, The Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Okechukwu, P. E. and Rao, M. A. 1996b. Role of granule size and size distribution in the viscosity of cowpea starch dispersions heated in excess water. J. Texture Stud. 27: 159–173.

    Article  Google Scholar 

  • Okechukwu, P. E. and Rao, M. A. 1997. Calorimetric and rheological behavior of cowpea protein plus starch cowpea and corn gels. Food Hydrocolloids 11: 339–345.

    Article  CAS  Google Scholar 

  • Okechukwu, P. E., Rao, M. A., Ngoddy, P. O., and McWatters, K. H. 1991. Flow behavior and gelatinizationof cowpea flour and starch dispersions. J. Food Sci. 56: 1311–1315.

    Article  CAS  Google Scholar 

  • Paoletti, S., Cesaro, A., Delben, F., and Ciana, A. 1986. Ionic effects on the conformation, equilibrium, properties, and rheology of pectate in aqueous solution and gels, in Chemistry and Function of pectins, eds. M. L. Fishman and J. J. Jen, pp. 73–87, ACS Symposium Series, American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Petrofsky, K. E. and Hoseney, R. C. 1995. Rheological properties of dough made with starch and gluten from several cereal sources. Cereal Chem. 72(1): 53–58.

    CAS  Google Scholar 

  • Plazek, D. J. 1996. 1995 Bingham medal address: Oh, thermorheological simplicity, wherefore art thou? J. Rheology 40: 987–1014.

    Article  CAS  Google Scholar 

  • Plutchok, G. J. and Kokini, J. L. 1986. Predicting steady and oscillatory shear rheological properties of CMC and guar gum blends from concentration and molecular weight data. J. Food Sci. 515: 1284–1288.

    Article  Google Scholar 

  • Quemada, D., Fland, P., and Jezequel, P. H. 1985. Rheological properties and flow of concentrated diperse media. Chem. Eng. Comm. 32: 61–83.

    Article  CAS  Google Scholar 

  • Rao, M. A. and Tattiyakul, J. 1999. Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydrate Polymers 38: 123–132.

    Article  CAS  Google Scholar 

  • Ravindra, P., Genovese, D. B., Foegeding, E. A., and Rao, M. A. 2004. Rheology of mixed whey protein isolate/cross-linked waxy maize starch gelatinized dispersions. Food Hydrocolloids 18: 775–781.

    Article  CAS  Google Scholar 

  • Robinson, G., Ross-Murphy, S. B., and Morris, E. R. 1982. Viscosity-molecular weight relationships, intrinsic chain flexibility and dynamic solution properties of guar galactomannan. Carbohydr. Res. 107: 17–32.

    Article  CAS  Google Scholar 

  • Rochefort, W. E. and Middleman, S. 1987. Rheology of xanthan gum: salt, temperature and strain effects in oscillatory and steady shear experiments. J. Rheol. 31: 337–369.

    Article  CAS  Google Scholar 

  • Rodriguez, F. 1989. Principles of Polymer Systems, 3rd ed., Hemisphere Publishing Corp., New York.

    Google Scholar 

  • Roos, Y. H. 1995. Phase Transitions in Foods, Academic Press, New York.

    Google Scholar 

  • Ross-Murphy, S. B. 1984. Rheological methods, in Biophysical Methods in Food Research, ed. H. W.-S. Chan, pp. 138–199, Blackwell Scientific, London.

    Google Scholar 

  • Russel, W. B., Saville, D. A., and Schowalter, W. R. 1989. Colloidal Dispersions, Cambridge University Press, Cambridge, U. K.

    Google Scholar 

  • Sawayama, S., Kawabata, A., Nakahara, H., and Kamata, T. 1988. A light scattering study on the effects of pH on pectin aggregation in aqueous solution. Food Hydrocolloids 2: 31–37.

    Article  CAS  Google Scholar 

  • Svegmark, K. and Hermansson, A. M. 1992. Microstructure and rheological properties of composites of potato starch granules and amylose: a comparison of observed and predicted structures. Food Struct. 12: 181–193.

    Google Scholar 

  • Tam, K.C. and Tiu, C. 1989. Steady and dynamic shear properties of aqueous polymer solutions. Journal of Rheology 33: 257–280.

    Article  CAS  Google Scholar 

  • Tam, K. C. and Tiu, C. 1993. Improved correlation for shear-dependent viscosity of polyelectrolyte solutions. J. Non-Newtonian Fluid Mech. 46: 275–288.

    Article  CAS  Google Scholar 

  • Tattiyakul, J. 1997. Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. M.S. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Tattiyakul, J. and Rao, M. A. 2000. Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydr. Polym. 43: 215–222.

    Article  CAS  Google Scholar 

  • Tester, R. F. and Morrison, W. R. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem. 67(6): 551–557.

    CAS  Google Scholar 

  • Tirrell, M. 1994. Rheology of polymeric liquids, in Rheology: Principles, Measurements, and Applications, ed. Macosko, C. W. 1994. VCH Publishers, New York.

    Google Scholar 

  • Tolstoguzov, V. B. 1985. Functional properties of protein-polysaccharide mixtures, in Functional Properties of Food Macromolecules, eds. J. Mitchell and D. A. Ledward, pp. 385–415, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Tolstoguzov, V. B. 1991. Functional properties of food proteins and role of protein-polysaccharide interaction—review. Food Hydrocolloids 4: 429–468.

    Article  CAS  Google Scholar 

  • Van Camp, J., Messens, W., Clément, J. and Huyghebaert, A. 1997. Influence of pH and calcium chloride on the high-pressure-induced aggregation of a whey protein concentrate. J. Agric. Food Chem. 45: 1600–1607.

    Article  Google Scholar 

  • Whistler, R. L. and Daniel, J. R. 1985. Carbohydrates, in Food Chemistry, ed. O. R. Fennema, pp. 69–138, New York, Marcel Dekker.

    Google Scholar 

  • Whitcomb, P. J. and Macosko, C. W. 1978. Rheology of xanthan gum. J. Rheol. 22: 493–505.

    Article  CAS  Google Scholar 

  • Yang, W. H. 1997. Rheological behavior and heat transfer to a canned starch dispersion: computer simulation and experiment. Ph.D thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Yang, W. H., Datta, A. K., and Rao, M. A. 1997. Rheological and calorimetric behavior of starch gelatinization in simulation of heat transfer, in Engineering and Food at ICEF 7/Part 2, ed., pp. K1–K5. Sheffield Academic Press, London.

    Google Scholar 

  • Yang, W. H. and Rao, M. A. 1998. Complex viscosity-temperature master curve of cornstarch dispersion during gelatinization. J. Food Proc. Eng. 21: 191–207.

    Article  Google Scholar 

  • Yoo, B., Figueiredo, A. A., and Rao, M. A. 1994. Rheological properties of mesquite seed gum in steady and dynamic shear. Lebensmittel Wissenschaft und Technologie 27: 151–157.

    Article  CAS  Google Scholar 

  • Zahalak, G. L, McConnaughey, W. B., and Elson, E. L. 1990. Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J. Biomechanical Eng. 112: 283–294.

    Article  CAS  Google Scholar 

  • Zasypkin, D. V., Braudo, E. E., and Tolstoguzov, V. B. 1997. Multicomponent biopolymer gels. Food Hydrocolloids 11: 159–170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, M.A. (2007). Rheology of Food Gum and Starch Dispersions. In: Rheology of Fluid and Semisolid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70930-7_4

Download citation

Publish with us

Policies and ethics