Measurement of Flow and Viscoelastic Properties

  • M. Anandha Rao
Part of the Food Engineering Series book series (FSES)


Techniques for measuring rheological properties of polymeric materials have been well described previously by others (e.g., Whorlow, 1980; Macosko, 1994). The text by (1963) is still a valuable reference that explains in detail many facets of earlier attempts to measure rheological properties of polymeric materials as well as basic equations of viscometric flows. The unique nature of fluid foods prompted this author to review both the rheological properties of fluid foods and their measurement about 30 years ago (Rao, 1977a, 1977b). Subsequent efforts on rheology of foods include those of (1992, 2005) and (1996).


Shear Rate Viscoelastic Property Extensional Viscosity Concentric Cylinder Texture Stud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Khalik, S. I., Hasseger, O., and Bird, R. B. 1974. Prediction of melt viscosity from viscosity data. Polym. Eng. Sci. 14: 859–867.CrossRefGoogle Scholar
  2. Abdelrahim, K. A., Ramaswamy, H. S., and Van de Voort, F. R. 1995. Rheological properties of starch solutions under aseptic processing temperatures. Food Res. Int. 28: 473–480.CrossRefGoogle Scholar
  3. Arola, D. F., Powell, R. L., Barrall, G. A. and McCarthy, M. J. 1999. Pointwise observations for rheological characterization using nuclear magnetic resonance imaging. J. Rheol. 43: 9–30.CrossRefGoogle Scholar
  4. Barnes, H. A., Hutton, J. F., and Walters, K. 1989. An Introduction to Rheology, Elsevier Science Publishers B.V., Amsterdam, The Netherlands.Google Scholar
  5. Barnes, H. A. and Carnali, J. O. 1990. The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J. Rheol. 34: 841–865.CrossRefGoogle Scholar
  6. Bird, R. B., Hasseger, O., and Abdel-Khalik S. I. 1974. Co-rotational rheological models and the Goddard expansion. AIChE J 20: 1041–1066.CrossRefGoogle Scholar
  7. Bird R. B., Armstrong, R. C., and Hasseger, O. 1977. Dynamics of Polymeric Liquids. John Wiley, New YorkGoogle Scholar
  8. Bistany, K. L. and Kokini, J. L. 1983. Dynamic viscoelastic properties of foods in texture control. J. Rheol. 27: 605–620.CrossRefGoogle Scholar
  9. Bongenaar, J. J. T., Kossen, N. W. F., Metz, B., and Meijboom, F. W. 1973. A method for characterizing the rheological properties of viscous fermentation broths. Biotechnol. Bioeng. 15: 201–206.CrossRefGoogle Scholar
  10. Briggs, J. L. and Steffe, J. F. 1996. Mixer viscometer constant (k’) for the Brookfield small sample adapter and flag impeller. J. Texture Stud. 27: 671–677.CrossRefGoogle Scholar
  11. Brodkey, R. S. 1967. The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA.Google Scholar
  12. Campanella, O. H. and Peleg, M. 1987. Analysis of the transient flow of mayonnaise in a coaxial cylinder viscometer. J. Rheol. 31: 439–452.CrossRefGoogle Scholar
  13. Campanella, O. H., Popplewell, L. M., Rosenau, J. R., and Peleg, M. 1987. Elongational viscosity measurements of melting American process cheese. J. Food Sci. 52: 1249–1251.CrossRefGoogle Scholar
  14. Cannon Instrument Co. 1982. Instructions for the Use of the Cannon-Ubbelohde Dilution Viscometer, State College, PA.Google Scholar
  15. Casiraghi, E. M., Bagley, E. B., and Christianson, D. D. 1985. Behavior of mozzarella, cheddar and processed cheese spread in lubricated and bonded uniaxial compression. J. Texture Stud. 16: 281–301.CrossRefGoogle Scholar
  16. Castell-Perez, M. E., Steffe, J. F., and Morgan, R. G. 1987. Actaptation of a Brookfield (HBTD) viscometer for mixer viscometer studies. J. Texture Stud. 18: 359–365.CrossRefGoogle Scholar
  17. Chamberlain, E. K. 1999. Rheological properties of acid converted waxy maize starches: effect of solvent, concentration and dissolution time. Ph.D. thesis, Cornell University, Ithaca, NY.Google Scholar
  18. Champenois, Y. C., Rao, M. A., and Walker, L. P. 1998. Influence of-amylase on the viscoelastic properties of starch-gluten pastes and gels. J. Sci. Food Agric. 127–133.Google Scholar
  19. Chatraei, S. H., Macosko, C. W., and Winter, H. H. 1981. A new biaxial extensional rheometer. J. Rheol. 25: 433–443.CrossRefGoogle Scholar
  20. Cheng, D. C.-H. 1986. Yield stress: a time-dependent property and how to measure it. Rheol. Acta, 25: 542–554.CrossRefGoogle Scholar
  21. Choi, Y. J., McCarthy, K. L., and McCarthy, M. J. 2002. Tomographie techniques for measuring fluid flow properties. J. Food Sci. 67(7): 2718–2724.CrossRefGoogle Scholar
  22. Clark, R. 1997. Evaluating syrups using extensional viscosity. Food Technol. 511: 49–52.Google Scholar
  23. Clark, A. H. and Ross-Murphy, S. B. 1987. Structural and mechanical properties of biopoly. gels. Adv. Polym. Sci. 83: 57–192CrossRefGoogle Scholar
  24. Cogswell, F. N. 1972. Converging flow of polym. melts in extrusion dies. Polym. Eng. Sci. 12: 64–73.CrossRefGoogle Scholar
  25. Cogswell, F. N. 1978. Converging flow and stretching flow: a compilation. J. Non-Newtonian Fluid Mech. 4: 23–38.CrossRefGoogle Scholar
  26. Comby, S., Doublier, J. L., and Lefebvre, J. 1986. Stress-relaxation study of high-methoxyl pectin gels, in Gums and Stabilisers for the Food Industry 3, eds., G. O. Phillips, D. J. Wedlock, and P. A. Williams, pp. 203–212. Elsevier Science Publishers, New York.Google Scholar
  27. Cox, W. P. and Merz, E. H. 1958. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28: 619–622.CrossRefGoogle Scholar
  28. Dail, R. V. and Steffe, J. F. 1990. Rheological characterization of crosslinked waxy maize starch solutions under low acid aseptic processing conditions using tube viscometry techniques. J. Food Sci. 55: 1660–1665.CrossRefGoogle Scholar
  29. Da Silva, P. M. S., Oliveira, J. C., and Rao, M. A. 1997. The effect of granule size distribution on the rheological behavior of heated modified and unmodified maize starch dispersions. J. Texture Stud. 28: 123–138.CrossRefGoogle Scholar
  30. Dealy, J. M. 1982. Rheometers for Molten Polymers. A Practical Guide to Testing and Property Measurement, Van Nostrand Reinhold, New York.Google Scholar
  31. Dickie, A. M. and Kokini, J. L. 1982. Use of the Bird-Leider equation in food rheology. J. Food Process Eng. 5: 157–174.CrossRefGoogle Scholar
  32. Diehl, K. C., Hamann, D. D., and Whitfield, J. K. 1979. Structural failure in selected raw fruits and vegetables. J. Text. Stud. 10: 371–400.CrossRefGoogle Scholar
  33. Dogan, N., McCarthy, M. J., and Powell, R. L. 2002. In-line measurement of rheological parameters and modeling of apparent wall slip in diced tomato suspensions using ultrasonics. J. Food Sci. 67(6): 2235–2240.CrossRefGoogle Scholar
  34. Dogan, N., McCarthy, M. J., and Powell, R. L. 2003. Comparison of in-line consistency measurement of tomato concentrates using ultrasonics and capillary methods. J. Food Process Eng. 25(6): 571–587.CrossRefGoogle Scholar
  35. Doraiswamy, D., Mujumdar, A. N., Tsao, I., Beris, A. N., Danforth, S. C., and Metzner, A. B. 1991. The Cox-Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J. Rheol. 35: 647–685.CrossRefGoogle Scholar
  36. Dzuy, N. Q. and Boger, D. V. 1983. Yield stress measurement for concentrated suspensions. J. Rheol. 27: 321–349.CrossRefGoogle Scholar
  37. Dzuy, N. Q. and Boger, D. V. 1985. Direct yield stress measurement with the vane method. J. Rheol. 29: 335–347.CrossRefGoogle Scholar
  38. Elliott, J. H. and Ganz, A. J. 1971. Modification of food characteristics with cellulose hydrocolloids, I. Rheological characterization of an organoleptic property. J. Texture Stud. 2: 220–229.CrossRefGoogle Scholar
  39. Elliott, J. H. and Ganz, A. J. 1977. Salad dressings-preliminary rheological characterization. J. Texture Stud. 8: 359–371.CrossRefGoogle Scholar
  40. Ferry, J. D. 1980. Viscoelastic Properties of Polymers, John Wiley, New YorkGoogle Scholar
  41. Genovese, D. B. and Rao, M. A. 2003a. Vane yield stress of starch dispersions. J. Food Sci. 68(7): 2295–2301.CrossRefGoogle Scholar
  42. Genovese, D. B. and Rao, M. A. 2003b. Apparent viscosity and first normal stress of starch dispersions: role of continuous and dispersed phases, and prediction with the Goddard-Miller model. Appl. Rheol. 13(4): 183–190.Google Scholar
  43. Genovese, D. B., Acquarone, V. M., Youn, K.-S., and Rao, M. A. 2004. Influence of fructose and sucrose on small and large deformation rheological behavior of heated Amioca starch dispersions. Food Sci. Technol.Int. 10(1): 51–57.CrossRefGoogle Scholar
  44. Giboreau, A., Cuvelier, G., and Launay, B. 1994. Rheological behavior of three biopolymer/water systems with emphasis on yield stress and viscoelastic properties. J. Texture Stud., 25: 119–137.CrossRefGoogle Scholar
  45. Grikshtas, R. and Rao, M. A. 1993. Determination of slip velocities in a concentric cylinder viscometer with Mooney and Kiljanski methods. J. Texture Stud. 24: 173–184.CrossRefGoogle Scholar
  46. Grosso, C. R. F. and Rao, M. A. 1998. Dynamic rheology of structure development in low-methoxyl pectin+Ca2++sugar gels. Food Hydrocolloids 12: 357–363.CrossRefGoogle Scholar
  47. Hamann, D. D. 1983. Structural failure in solid foods, in Physical Properties of Foods, eds. M. Peleg, and E. B. Bagley, pp. 351–383 AVI Publ., Westport, CT.Google Scholar
  48. Hamann, D. D. 1987. Methods for measurement of rheological changes during thermally induced gelation of proteins. Food Technol. 41(3): 100, 102–108.Google Scholar
  49. Hansen, L. M., Hoseney, R. C., and Faubion, J. M. 1990. Oscillatory probe rheometry as a tool for determining the rheological properties of starch-water systems. J. Texture Stud. 21: 213–224.CrossRefGoogle Scholar
  50. James, A. E., Williams, D. J. A., and Williams, P. R. 1987. Direct measurement of static yield properties of cohesive suspensions. Rheol. Acta 26: 437–446.CrossRefGoogle Scholar
  51. Jao, Y. C., Chen, A. H., Lewandowski, D., and Irwin, W. E. 1978. Engineering analysis of soy dough rheology in extrusion. J. Food Process Eng. 2: 97–112.CrossRefGoogle Scholar
  52. Keentok, M. 1982. The measurement of the yield stress of liquids. Rheol. Acta 21: 325–332.CrossRefGoogle Scholar
  53. Khagram, M., Gupta, R. K., and Sridhar, T. 1985. Extensional viscosity of xanthan gum solutions. J. Rheol. 29: 191–207.CrossRefGoogle Scholar
  54. Kiljanski, T. 1989. A method for correction of the wall-slip effect in a Couette rheometer. Rheol. Acta 28: 61–64.CrossRefGoogle Scholar
  55. Kokini, J. L. and Dickie, A. 1981. An attempt to identify and model transient viscoelastic flow in foods. J. Texture Stud. 12: 539–557.CrossRefGoogle Scholar
  56. Komatsu, H. and Sherman, P. 1974. A modified rigidity modulus technique for studying the rheological properties of w/o emulsions containing microcrystalline wax. J. Texture Stud. 5: 97–104.CrossRefGoogle Scholar
  57. Kulicke, W.-M. and Porter, R. S. 1980. Relation between steady shear flow and dynamic rheology. Rheol. Acta 19: 601–605.CrossRefGoogle Scholar
  58. Lai, K. P., Steffe, J. F, and Ng, P. K. W. 2000. Average shear rates in the Rapid Visco Analyser (RVA) mixing system. Cereal Chem. 77(6): 714–716.CrossRefGoogle Scholar
  59. Larson, R. G. 1985. Constitutive relationships for polymeric materials with power-law distributions of relaxation times. Rheol. Acta 24: 327–334.CrossRefGoogle Scholar
  60. Leider, P. J. and Bird, R. B. 1974. Squeezing flow between parallel disks-I. Theoretical analysis. Ind. Eng. Chem. Fundam. 13: 336–341.CrossRefGoogle Scholar
  61. Leppard, W. R. and Christiansen, E. B. 1975. Transient viscoelastic flow of polymer solutions. Am. Inst. Chem. Engrs. J. 21: 999–1006.Google Scholar
  62. Liao, H.-J. 1998. Simulation of continuous sterilization of fluid food products: the role of thermorheological behavior of starch dispersion and process, Ph.D. thesis, Cornell University, Ithaca, NY.Google Scholar
  63. Lin, K. S. C. and Aklonis, J. J. 1980. Evaluation of the stress-relaxation modulus of materials with rapid relaxation rates. J. Appl. Phys. 51: 5125–5130.CrossRefGoogle Scholar
  64. Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1993. Viscoelastic behavior of mixtures of locust bean gum and pectin dispersions. J. Food Eng. 18: 211–228.CrossRefGoogle Scholar
  65. Lopes da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1994. Influence of temperature on dynamic and steady shear rheology of pectin dispersions. Carbohydr. Polym. 23: 77–87.CrossRefGoogle Scholar
  66. Lopes da Silva, J. A., Rao, M. A., and Fu, J.-T. 1998. Rheology of structure development and loss during gelation and melting, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.Google Scholar
  67. Ma, L. and Barbosa-Cánovas, G. V. 1995. Instrumentation for the rheological characterization of foods. Food Sci. Technol. Int. 1: 3–17.CrossRefGoogle Scholar
  68. Macosko, C. W. 1994. Rheology: Principles, Measurements and Applications, VCH Publishers, New York.Google Scholar
  69. Maranzano, B. J. and Wagner, N. J. 2002. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear-thickening transition. J. Chem. Phys. 117: 10291–10302.CrossRefGoogle Scholar
  70. Mason, P. L., Bistany, K. L., Puoti, M. G., and Kokini, J. L. 1982. A new empirical model to simulate transient shear stress growth in semi-solid foods. J. Food Process Eng. 6: 219–233.CrossRefGoogle Scholar
  71. Matsumoto, T., Hitomi, C., and Onogi, S. 1975. Rheological properties of disperse systems of spherical particles in polystyrene solution at long time-scales. Trans. Soc. Rheol. 194: 541.CrossRefGoogle Scholar
  72. McCarthy, K. L. and Seymour, J. D. 1993. A fundamental approach for the relationship between the Bostwick measurement and Newtonian fluid viscosity. J. Texture Stud. 24(1): 1–10.CrossRefGoogle Scholar
  73. McCarthy, K. L. and Seymour, J. D. 1994. Gravity current analysis of the Bostwick consistometer for power law foods. J. Texture Stud. 25(2): 207–220.CrossRefGoogle Scholar
  74. McKelvey, J. N. 1962. Polymer Processing, John Wiley and Sons, New York.Google Scholar
  75. Metz, B., Kossen, N. W. F., and van Suijdam, J. C. 1979. The rheology of mould suspensions in Advances in Biochemical Engineering, eds. Ghose, T. K. A. Fiechter, and N. Blakebrough, Vol. 2, pp. 103–156, New York: Springer Verlag.Google Scholar
  76. Metzner, A. B. and Otto, R. E. 1957. Agitation of non-Newtonian fluids. Am. Inst. Chem. Eng. J. 3: 3–10.Google Scholar
  77. Michaels, A. S. and Bolger, J. C. 1962. The plastic flow behavior of flocculated kaolin suspensions. Ind. Eng. Chem. Fund. 1: 153–162.CrossRefGoogle Scholar
  78. Mills, P. and Kokini, J. L. 1984. Comparison of steady shear and dynamic viscoelastic properties of guar and karaya gums. J. Food Sci. 49: 1–4and 9.CrossRefGoogle Scholar
  79. Mitchell, J. R. 1984. Rheological techniques, in Food Analysis: Principles and Techniques, eds. D. W. Gruenwedel and J. R. Whitaker, pp. 151–220, Marcel Dekker, New York.Google Scholar
  80. Mooney, M. 1931. Explicit formulas for slip and fluidity. J. Rheol. 2: 210–222.CrossRefGoogle Scholar
  81. Morris, E. R. 1981. Rheology of hydrocolloids, in Gums and Stabilisers for the Food Industry 2, eds. G. O. Philips, D. J. Wedlock, and P. A. Williams, pp. 57–78, Pergamon Press Ltd., Oxford, Great Britain.Google Scholar
  82. Morris, E. R., Cutler, A. N., Ross-Murphy, S. B. and Rees, D. A. 1981. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1: 5–21.CrossRefGoogle Scholar
  83. Nicolas, Y. and Paques, M. 2003. Microrheology: an experimental technique to visualize food structure behavior under compression-extension deformation conditions. J Food Sci. 68(6): 1990–1994.CrossRefGoogle Scholar
  84. Nussinovitch, A., Kaletunc, G., Normand, M. D., and Peleg, M. 1990. Recoverable work versus asymptotic relaxation modulus in agar, carrageenan and gellan gels. J. Texture Stud. 21: 427–438.CrossRefGoogle Scholar
  85. Oakenfull, D. 1984. A method for using measurements of shear modulus to estimate the size and thermodynamic stability of junction zones in non-covalently cross-linked gels. J. Food Sci. 49: 1103–1104, 1110.CrossRefGoogle Scholar
  86. Oakenfull, D. G., Parker, N. S., and Tanner, R. I. 1989. Method for determining absolute shear modulus of gels from compression tests. J. Texture Stud. 19: 407–417.CrossRefGoogle Scholar
  87. Okechukwu, P. E., Rao, M. A., Ngoddy, P. O., and McWatters, K. H. 1991. Rheology of sol-gel thermal transition in cowpea flour and starch slurry. J. Food Sci. 56: 1744–1748.CrossRefGoogle Scholar
  88. Owen, S. R., Tung, M. A., and Paulson, A. T. 1992. Thermorheological studies of food polymer dispersions. J. Food Eng. 16: 39–53.CrossRefGoogle Scholar
  89. Padmanabhan, M. 1995. Measurement of extensional viscosity of viscoelastic liquid foods. J. Food Eng. 25: 311–327.CrossRefGoogle Scholar
  90. Padmanabhan, M. and Bhattacharya, M. 1993. Planar extensional viscosity of corn meal dough. J. Food Eng. 18: 389–411.CrossRefGoogle Scholar
  91. Peleg, M. 1980. Linearization of relaxation and creep curves of solid biological materials. J. Rheol. 24: 451–463.CrossRefGoogle Scholar
  92. Perkins, T. T., Smith, D. E., and Chu, S. 1997. Single polymer dynamics in an elongational flow. Science 276: 2016–2021.CrossRefGoogle Scholar
  93. Plazek, D. J. 1996. 1995 Bingham medal address: Oh, thermorheological simplicity, wherefore art thou? J. Rheol. 40: 987–1014.CrossRefGoogle Scholar
  94. Qiu, C.-G. and Rao, M. A. 1988. Role of pulp content and particle size in yield stress of apple sauce. J. Food Sci. 53: 1165–1170.CrossRefGoogle Scholar
  95. Qiu, C.-G. and Rao, M. A. 1989. Effect of dispersed phase on the slip coefficient of apple sauce in a concentric cylinder viscometer. J. Texture Stud. 20: 57–70.CrossRefGoogle Scholar
  96. Rao, M. A. 1975. Measurement of flow properties of food suspensions with a mixer. J. Texture Stud. 6: 533–539.CrossRefGoogle Scholar
  97. Rao, M. A. 1977a. Rheology of liquid foods-a review. J. Texture Stud. 8: 135–168.CrossRefGoogle Scholar
  98. Rao, M. A. 1977b. Measurement of flow properties of fluid foods-developments, limitations, and interpretation of phenomena. J. Texture Stud. 8: 257–282.CrossRefGoogle Scholar
  99. Rao, M. A. 1992. Measurement of viscoelastic properties of fluid and semisolid foods, in Viscoelastic Properties of Food, eds. M. A. Rao and J. F. Steffe, pp. 207–232, Elsevier Applied Science Publishers, London.Google Scholar
  100. Rao, M. A. 2005. Rheological properties of fluid foods, in Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, and A. K. Datta, 3rd ed., pp. 41–99, CRC Press, Boca Raton, FL.Google Scholar
  101. Rao, M. A. and Cooley, H. J. 1984. Determination of effective shear rates of complex geometries. J. Texture Stud. 15: 327–335.CrossRefGoogle Scholar
  102. Rao, M. A. and Cooley, H. J. 1992. Rheology of tomato pastes in steady and dynamic shear. J. Texture Stud. 23: 415–425.CrossRefGoogle Scholar
  103. Rao, M. A. and Cooley, H. J. 1993. Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. J. Food Sci. 58: 876–879.CrossRefGoogle Scholar
  104. Rao, M. A., Cooley, H. J., and Liao, H.-J. 1999. High temperature rheology of tomato puree and starch dispersion with a direct-drive viscometer. J. Food Process Eng. 22: 29–40.CrossRefGoogle Scholar
  105. Rao, V. N. M., Delaney, R. A. M., and Skinner, G. E. 1995. Rheological properties of solid foods, in Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, 2nd ed., pp. 55–97, Marcel Dekker, Inc., New York.Google Scholar
  106. Rayment, P., Ross-Murphy, S. B., and Ellis, P. R. 1998. Rheological properties of guar galactomannan and rice starch mixtures. II. Creep measurements. Carbohydr. Polym. 35: 55–63.CrossRefGoogle Scholar
  107. Rieger, F. and Novak, V. 1973. Power consumption of agitators in highly viscous non-Newtonian liquids. Trans. Inst. Chemi. Eng. 51: 105–111.Google Scholar
  108. Roberts, I. 2003. In-line and on-line rheology measurement of food, in “Texture in Food, Volume 1: Semi-Solid Foods,” pp. 161–182, edited by Brian M. McKenna, Woodhead Publishing Ltd., Cambridge, UK.Google Scholar
  109. Saunders, P. R. and Ward, A. G. 1954. An absolute method for the rigidity modulus of gelatine gel, in Proceedings of the Second International Congress on Rheology, ed. V. G. W. Harrison, pp. 284–290. Academic Press, New York.Google Scholar
  110. Schlichting, H. 1960. Boundary Layer Theory, McGraw-Hill, New York.Google Scholar
  111. Senouci, A. and Smith, A. C. 1988. An experimental study of food melt rheology. I. Shear viscosity using a slit die viscometer and a capillary rheometer. Rheol. Acta 27: 546–554.CrossRefGoogle Scholar
  112. Sestak, J., Zitny, R., and Houska, M. 1983. Simple rheological models of food liquids for process design and quality assessment. J. Food Eng. 2: 35–49.CrossRefGoogle Scholar
  113. Shama, F. and P. Sherman. 1969. The influence of work softening on the viscoelastic properties of butter and margarine. J. Texture Stud. 1: 196–205.CrossRefGoogle Scholar
  114. Shama, F. and Sherman, P. 1973. Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral methods. J. Texture Stud. 4: 111–118.CrossRefGoogle Scholar
  115. Sharma, S. K., Hill, A. R., Goff, H. D., and Yada, R. 1989. Measurement of coagulation time and curd firmness of renneted milk using a Nametre viscometer. Milchwissenschaft 44(11): 682–685Google Scholar
  116. Sharma, S. K., Hill, A. R., and Mittal, G. S. 1992. Evaluation of methods to measure coagulation time of ultrafiltered milk. Milchwissenschaft 47(11): 701–704.Google Scholar
  117. Sherman, P. 1966. The texture of ice cream 3. Rheological properties of mix and melted ice cream. J. Food Sci. 31: 707–716.CrossRefGoogle Scholar
  118. Sherman, P. 1970. Industrial Rheology, Academic Press, New York.Google Scholar
  119. Sherman, P. and Benton, M. 1980. Influence of skim milk powder/recodan R S ratio on the viscoelasticity of groundnut oil-in-water imitation milks. J. Texture Stud. 11: 1–13.CrossRefGoogle Scholar
  120. Shomer, I., Rao, M. A., Bourne, M. C., and Levy, D. 1993. Rheological behavior of potato tuber cell suspensions during temperature fluctuations and cellulase treatments. J. Sci. Food. Agric. 63: 245–250.CrossRefGoogle Scholar
  121. Smith, T. L., Ferry, J. D., and Schremp, F. W. 1949. Measurement of the mechanical properties of polymer solutions by electromagnetic transducers. J. App. Phys. 20: 144–153.CrossRefGoogle Scholar
  122. Sridhar, T., Tirtaatmadja, V., Nguyen, D. A., and Gupta, R. K. 1991. Measurement of extensional viscosity of polymer solutions. J. Non-Newtonian Fluid Mech. 40: 271–280.CrossRefGoogle Scholar
  123. Stainsby, G., Ring, S. G., and Chilvers, G. R. 1984. A static method for determining the absolute shear modulus of a syneresing gel. J. Texture Stud. 15: 23–32.CrossRefGoogle Scholar
  124. Steffe, J. F. 1996. Rheological Methods in Food Process Engineering, Freeman Press, East Lansing, Michigan.Google Scholar
  125. Steiner, E. H. 1958. A new rheological relationship to express the flow properties of melted chocolate. Revue Internationale de la Chocolaterie 13: 290–295.Google Scholar
  126. Tamura, M. S., Henderson, J. M., Powell, R. L., and Shoemaker, C. F. 1989. Evaluation of the helical screw rheometer as an on-line viscometer. J. Food Sci. 54: 483–484.CrossRefGoogle Scholar
  127. Tanner, R. I. 1988. Recoverable elastic strain and swelling ratio, in Rheological Measurements, eds. A. A. Collyer and D. W. Clegg, pp. 93–118, Elsevier Applied Science, New York.Google Scholar
  128. Tattiyakul, J. 1997. Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. M. S. thesis, Cornell University, Ithaca, NY.Google Scholar
  129. Tattiyakul, J. and Rao, M. A. 2000. Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydrate Polymers 43: 215–222.CrossRefGoogle Scholar
  130. Truong, V. D. and Daubert, C. R. 2000. Comparative study of large strain methods for assessing failure characteristics of selected food gels. J. Texture Stud. 31: 335–353.CrossRefGoogle Scholar
  131. Truong, V. D. and Daubert, C. R. 2001. Textural characterization of cheeses using vane rheometry and torsion analysis. J. Food Sci. 66: 716–721.CrossRefGoogle Scholar
  132. Van Wazer, J. R., Lyons, J. W., Kim, K. Y, and Colwell, R. E. 1963. Viscosity and Flow Measurement, Interscience Publishers, New York.Google Scholar
  133. Vernon Carter, E. J. and Sherman, P. 1980. Rheological properties and applications of mesquite tree Prosopis juliflora gum 2. Rheological properties and stability of o/w emulsions containing mesquite gum. J. Texture Stud. 11: 351–365.CrossRefGoogle Scholar
  134. Vitali, A. A. and Rao, M. A. 1982. Flow behavior of guava puree as a function of temperature and concentration. J. Texture Stud. 13: 275–289.CrossRefGoogle Scholar
  135. Whorlow, R. W. 1980a. Rheological Techniques, Ellis Harwood, Chichester, England.Google Scholar
  136. Whorlow, R. W. 1980b. Rheological Techniques, Halsted Press, New York.Google Scholar
  137. Wood, F. W. and Goff, T. C. 1973. The determination of the effective shear rate in the Brabender Viscograph and in other systems of complex geometry. Die Starke 25: 89–91.CrossRefGoogle Scholar
  138. Wu, M. C., Lanier, T. C., and Hamann, D. D. 1985a. Rigidity and viscosity changes of croacker actomyosin during thermal gelation. J. Food Sci. 50: 14–19.CrossRefGoogle Scholar
  139. Wu, M. C., Lanier, T. C. and Hamman, D. D. 1985b. Thermal transitions of admixed starch/fish protein systems during heating. J. Food Sci. 50: 20–25.CrossRefGoogle Scholar
  140. Yang, W. H. and Rao, M. A. 1998. Complex viscosity-temperature master curve of cornstarch dispersion during gelatinization. J. Food Proc. Eng. 21: 191–207.CrossRefGoogle Scholar
  141. Yoo, B. and Rao, M. A. 1995. Yield stress and relative viscosity of tomato concentrates: effect of total solids and finisher screen size. J. Food Sci. 60: 777–779, 785.CrossRefGoogle Scholar
  142. Yoo, B. and Rao, M. A. 1996. Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. J. Texture Studies 27: 451–459.CrossRefGoogle Scholar
  143. Yoo, B., Rao, M. A., and Steffe, J. F. 1995. Yield stress of food suspensions with the vane method at controlled shear rate and shear stress. J. Texture Stud. 26: 1–10.CrossRefGoogle Scholar
  144. Yoshimura, A. and Prud’homme, R. K. 1988a. Wall slip corrections for Couette and parallel disk viscometers. J. Rheol. 32: 53–67.CrossRefGoogle Scholar
  145. Yoshimura, A. and Prud’homme, R. K. 1988b. Wall slip effects on dynamic oscillatory measurements. J. Rheol. 32: 575–584.CrossRefGoogle Scholar
  146. Youn, K.-S. and Rao, M. A. 2003. Rheology and relationship among rheological parameters of cross-linked waxy maize starch dispersions heated in fructose solutions. J. Food Sci. 68: 187–194.CrossRefGoogle Scholar
  147. Zhou, Z., Solomon, M. J., Scales, P. J., and Boger, D. V. 1999. The yield stress of concentrated flocculated suspensions of size distributed particles. J. Rheol. 43: 651–671.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Anandha Rao
    • 1
  1. 1.Department of Food Science and Technology CornellUniversity GenevaNew York

Personalised recommendations