Advertisement

Herpes Simplex Virus Vectors for Gene Therapy of Lysosomal Storage Disorders

  • Edward A. Burton
  • Joseph C. Glorioso

Lysosomal storage diseases (LSDs) are a genetically heterogeneous group of conditions in which loss of specific lysosomal enzymes results in progressive accumulation of undegraded substrate, which results in cytotoxicity. LSDs represent an attractive target for gene therapy for several reasons. First, they are monogenic diseases, and, in the vast majority of cases, the causative genetic mutations are well characterised. Second, the diseases are recessive and due to genetic loss-of-function mutations, so that transfer of a single transgene would be expected to effect biochemical complementation. Third, experimental studies show that in most cases, low-level unregulated expression of the missing lysosomal enzyme can result in phenotypic correction. This is important, because current gene delivery technology is not capable of restoring precisely physiological amounts of the gene product to the cell. Finally, many lysosomal enzymes are released into the extracellular space and taken up by adjacent cells, so that protection of a broad area of tissue, or even cells at remote sites, may be possible through transduction of only a proportion of cells at a specific anatomical location.

Keywords

Gene Therapy Herpes Simplex Virus Type Latency Associate Transcript Gene Therapy Vector Herpes Simplex Virus Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvira, M. R., Goins, W. F., Cohen, J. B., and Glorioso, J. C. (1999). Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-asso-ciated transcript production during lytic and latent infection. J Virol 73, 3866-3876.PubMedGoogle Scholar
  2. Bak, I. J., Markham, C. H., Cook, M. L., and Stevens, J. G. (1977). Intraaxonal transport of Herpes simplex virus in the rat central nervous system. Brain Res 136, 415-429.PubMedGoogle Scholar
  3. Batterson, W., and Roizman, B. (1983). Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 46, 371-377.PubMedGoogle Scholar
  4. Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S., and LaVail, J. H. (2000). Retrograde axonal transport of herpes simplex virus: Evidence for a single mechanism and a role for tegument. Proc Natl Acad Sci USA 97, 8146-8150.PubMedGoogle Scholar
  5. Berthomme, H., Lokensgard, J., Yang, L., Margolis, T., and Feldman, L. T. (2000). Evidence for a bidirectional element located downstream from the herpes simplex virus type 1 latency-associated promoter that increases its activity during latency. J Virol 74, 3613-3622.PubMedGoogle Scholar
  6. Block, T. M., Deshmane, S., Masonis, J., Maggioncalda, J., Valyi Nagi, T., and Fraser, N. W. (1993). An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology 192, 618-630.PubMedGoogle Scholar
  7. Bloom, D. C., Maidment, N. T., Tan, A., Dissette, V. B., Feldman, L. T., and Stevens, J. G. (1995). Long-term expression of a reporter gene from latent herpes simplex virus in the rat hippocampus. Brain Res Mol Brain Res 31, 48-60.PubMedGoogle Scholar
  8. Bosch, A., Perret, E., Desmaris, N., and Heard, J. M. (2000). Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther 1, 63-70.PubMedGoogle Scholar
  9. Brooks, A. I., Stein, C. S., Hughes, S. M., Heth, J., McCray, P. M., Jr., Sauter, S. L., Johnston, J. C., Cory-Slechta, D. A., Federoff, H. J., and Davidson, B. L. (2002). Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci USA 99, 6216-6221.PubMedGoogle Scholar
  10. Burton, E. A., Hong, C. S., and Glorioso, J. C. (2003). The stable 2.0-kilobase intron of the herpes simplex virus Type 1 latency-associated transcript does not function as an antisense repressor of ICP0 in nonneuronal cells. J Virol 77, 3516-3530.PubMedGoogle Scholar
  11. Burton, E. A., Wechuck, J. B., Wendell, S. K., Goins, W. F., Fink, D. J., and Glorioso, J. C. (2001). Multiple applications for replication-defective herpes simplex virus vectors. Stem Cells 19, 358-377.PubMedGoogle Scholar
  12. Campbell, M. E., Palfreyman, J. W., and Preston, C. M. (1984). Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J Mol Biol 180, 1-19.PubMedGoogle Scholar
  13. Chattopadhyay, M., Goss, J., Lacomis, D., Goins, W. C., Glorioso, J. C., Mata, M., and Fink, D. J. (2003). Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals. Eur J Neurosci 17, 732-740.PubMedGoogle Scholar
  14. Chattopadhyay, M., Goss, J., Wolfe, D., Goins, W. C., Huang, S., Glorioso, J. C., Mata, M., and Fink, D. J. (2004). Protective effect of herpes simplex virus-mediated neurotrophin gene transfer in cisplatin neuropathy. Brain 127, 929-939.PubMedGoogle Scholar
  15. Chattopadhyay, M., Wolfe, D., Huang, S., Goss, J., Glorioso, J. C., Mata, M., and Fink, D. J. (2002). In vivo gene therapy for pyridoxine-induced neuropathy by herpes simplex virus-mediated gene transfer of neurotrophin-3. Ann Neurol 51, 19-27.PubMedGoogle Scholar
  16. Chen, S. H., Kramer, M. F., Schaffer, P. A., and Coen, D. M. (1997). A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71, 5878-5884.PubMedGoogle Scholar
  17. Chen, X., Li, J., Mata, M., Goss, J., Wolfe, D., Glorioso, J. C., and Fink, D. J. (2000). Herpes simplex virus type 1 ICP0 protein does not accumulate in the nucleus of primary neurons in culture. J Virol 74, 10132-10141.PubMedGoogle Scholar
  18. Chen, X., Schmidt, M. C., Goins, W. F., and Glorioso, J. C. (1995). Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-asso-ciated transcript expression during lytic and latent infections. J Virol 69, 7899-7908.PubMedGoogle Scholar
  19. Cheng, S. H., and Smith, A. E. (2003). Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther 10, 1275-1281.PubMedGoogle Scholar
  20. Cook, M. L., and Stevens, J. G. (1973). Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun 7, 272-288.PubMedGoogle Scholar
  21. Croen, K. D., Ostrove, J. M., Dragovic, L. J., Smialek, J. E., and Straus, S. E. (1987). Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med 317, 1427-1432.PubMedCrossRefGoogle Scholar
  22. DeLuca, N. A., McCarthy, A. M., and Schaffer, P. A. (1985). Isolation and chara-cterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56, 558-570.PubMedGoogle Scholar
  23. Deshmane, S. L., and Fraser, N. W. (1989). During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol 63, 943-947.PubMedGoogle Scholar
  24. Dixon, R. A., and Schaffer, P. A. (1980). Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. J Virol 36, 189-203.PubMedGoogle Scholar
  25. Dobson, A. T., Sederati, F., Devi Rao, G., Flanagan, W. M., Farrell, M. J., Stevens, J. G., Wagner, E. K., and Feldman, L. T. (1989). Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J Virol 63, 3844-3851.PubMedGoogle Scholar
  26. Dressler, G. R., Rock, D. L., and Fraser, N. W. (1987). Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J Gen Virol 68, 1761-1765.PubMedGoogle Scholar
  27. Drolet, B. S., Perng, G. C., Villosis, R. J., Slanina, S. M., Nesburn, A. B., and Wechsler, S. L. (1999). Expression of the first 811 nucleotides of the herpes simplex virus type 1 latency-associated transcript (LAT) partially restores wild-type spontaneous reactivation to a LAT-null mutant. Virology 253, 96-106.PubMedGoogle Scholar
  28. Drummond, C. W., Eglin, R. P., and Esiri, M. M. (1994). Herpes simplex virus encephalitis in a mouse model: PCR evidence for CNS latency following acute infection. J Neurol Sci 127, 159-163.PubMedGoogle Scholar
  29. Elliger, S. S., Elliger, C. A., Aguilar, C. P., Raju, N. R., and Watson, G. L. (1999). Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Ther 6, 1175-1178.PubMedGoogle Scholar
  30. Farrell, M. J., Dobson, A. T., and Feldman, L. T. (1991). Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci USA 88, 790-794.PubMedGoogle Scholar
  31. Fradette, J., Wolfe, D., Goins, W. F., Huang, S., Flanigan, R. M., and Glorioso, J. C. (2005). HSV vector-mediated transduction and GDNF secretion from adipose cells. Gene Ther. 12, 48-58.PubMedGoogle Scholar
  32. French, S. W., Schmidt, M. C., and Glorioso, J. C. (1996). Involvement of a high-mobility-group protein in the transcriptional activity of herpes simplex virus latency-active promoter 2. Mol Cell Biol 16, 5393-5399.PubMedGoogle Scholar
  33. Garber, D. A., Schaffer, P. A., and Knipe, D. M. (1997). A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71, 5885-5893.PubMedGoogle Scholar
  34. Goins, W. F., Lee, K. A., Cavalcoli, J. D., O’Malley, M. E., DeKosky, S. T., Fink, D. J., and Glorioso, J. C. (1999). Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J Virol 73, 519-532.PubMedGoogle Scholar
  35. Goins, W. F., Sternberg, L. R., Croen, K. D., Krause, P. R., Hendricks, R. L., Fink, D. J., Straus, S. E., Levine, M., and Glorioso, J. C. (1994). A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol 68, 2239-2252.PubMedGoogle Scholar
  36. Goldenberg, D., Mador, N., Ball, M. J., Panet, A., and Steiner, I. (1997). The abundant latency-associated transcripts of herpes simplex virus type 1 are bound to polyribo-somes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia. J Virol 71, 2897-2904.PubMedGoogle Scholar
  37. Gomez Navarro, J., Contreras, J. L., Arafat, W., Jiang, X. L., Krisky, D., Oligino, T., Marconi, P., Hubbard, B., Glorioso, J. C., Curiel, D. T., and Thomas, J. M. (2000). Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther 7, 43-52.PubMedGoogle Scholar
  38. Gordon, Y. J., Johnson, B., Romanowski, E., and Araullo Cruz, T. (1988). RNA complementary to herpes simplex virus type 1 ICP0 gene demonstrated in neurons of human trigeminal ganglia. J Virol 62, 1832-1835.PubMedGoogle Scholar
  39. Goss, J. R., Goins, W. F., Lacomis, D., Mata, M., Glorioso, J. C., and Fink, D. J. (2002a). Herpes simplex-mediated gene transfer of nerve growth factor protects against peri-pheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes 51, 2227-2232.Google Scholar
  40. Goss, J. R., Harley, C. F., Mata, M., O’Malley, M. E., Goins, W. F., Hu, X., Glorioso, J. C., and Fink, D. J. (2002b). Herpes vector-mediated expression of proenkephalin reduces bone cancer pain. Ann Neurol 52, 662-665.Google Scholar
  41. Hao, S., Mata, M., Goins, W., Glorioso, J. C., and Fink, D. J. (2003a). Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect in neuropathic pain. Pain 102, 135-142.Google Scholar
  42. Hao, S., Mata, M., Wolfe, D., Huang, S., Glorioso, J. C., and Fink, D. J. (2003b). HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain. Mol Ther 8, 367-375.Google Scholar
  43. Ho, D. Y., and Mocarski, E. S. (1989). Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc Natl Acad Sci U S A 86, 7596-7600.PubMedGoogle Scholar
  44. Honess, R. W., and Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14, 8-19.PubMedGoogle Scholar
  45. Honess, R. W., and Roizman, B. (1975). Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc Natl Acad Sci USA 72, 1276-1280.PubMedGoogle Scholar
  46. Howard, M. K., Kershaw, T., Gibb, B., Storey, N., MacLean, A. R., Zeng, B. Y., Tel, B. C., Jenner, P., Brown, S. M., Woolf, C. J., et al. (1998). High efficiency gene transfer to the central nervous system of rodents and primates using herpes virus vectors lacking functional ICP27 and ICP34.5. Gene Ther 5, 1137-1147.PubMedGoogle Scholar
  47. Hui, E. K., and Lo, S. J. (1998). Does the latency associated transcript (LAT) of herpes simplex virus (HSV) function as a ribozyme during viral reactivation? Virus Genes 16, 147-148.PubMedGoogle Scholar
  48. Javier, R. T., Stevens, J. G., Dissette, V. B., and Wagner, E. K. (1988). A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166, 254-257.PubMedGoogle Scholar
  49. Jiang, C., Wechuck, J. B., Goins, W. F., Krisky, D. M., Wolfe, D., Ataai, M. M., and Glorioso, J. C. (2004). Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification. J Virol 78, 8994-9006.PubMedGoogle Scholar
  50. Johnson, P. A., Wang, M. J., and Friedmann, T. (1994). Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function. J Virol 68, 6347-6362.PubMedGoogle Scholar
  51. Johnson, P. A., Yoshida, K., Gage, F. H., and Friedmann, T. (1992). Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Brain Res Mol Brain Res 12, 95-102.PubMedGoogle Scholar
  52. Jung, S. C., Han, I. P., Limaye, A., Xu, R., Gelderman, M. P., Zerfas, P., Tirumalai, K., Murray, G. J., During, M. J., Brady, R. O., and Qasba, P. (2001). Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci USA 98, 2676-2681.PubMedGoogle Scholar
  53. Kesari, S., Lee, V. M., Brown, S. M., Trojanowski, J. Q., and Fraser, N. W. (1996). Selective vulnerability of mouse CNS neurons to latent infection with a neuro-attenuated herpes simplex virus-1. J Neurosci 16, 5644-5653.PubMedGoogle Scholar
  54. Kohn, D. B., Sadelain, M., and Glorioso, J. C. (2003). Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3, 477-488.PubMedGoogle Scholar
  55. Krisky, D. M., Marconi, P. C., Oligino, T. J., Rouse, R. J., Fink, D. J., Cohen, J. B., Watkins, S. C., and Glorioso, J. C. (1998a). Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 5, 1517-1530.Google Scholar
  56. Krisky, D. M., Wolfe, D., Goins, W. F., Marconi, P. C., Ramakrishnan, R., Mata, M., Rouse, R. J., Fink, D. J., and Glorioso, J. C. (1998b). Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5, 1593-1603.Google Scholar
  57. Krummenacher, C., Zabolotny, J. M., and Fraser, N. W. (1997). Selection of a noncom-sensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript. J Virol 71, 5849-5860.PubMedGoogle Scholar
  58. Kwong, A. D., and Frenkel, N. (1987). Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci USA 84, 1926-1930.PubMedGoogle Scholar
  59. Kwong, A. D., and Frenkel, N. (1989). The herpes simplex virus virion host shutoff function. J Virol 63, 4834-4839.PubMedGoogle Scholar
  60. Kwong, A. D., Kruper, J. A., and Frenkel, N. (1988). Herpes simplex virus virion host shutoff function. J Virol 62, 912-921.PubMedGoogle Scholar
  61. Lachmann, R. H., and Efstathiou, S. (1997). Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71, 3197-3207.PubMedGoogle Scholar
  62. Leib, D. A., Nadeau, K. C., Rundle, S. A., and Schaffer, P. A. (1991). The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc Natl Acad Sci USA 88, 48-52.PubMedGoogle Scholar
  63. Liu, J., Wolfe, D., Hao, S., Huang, S., Glorioso, J. C., Mata, M., and Fink, D. J. (2004). Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 10, 57-66.PubMedGoogle Scholar
  64. Lokensgard, J. R., Berthomme, H., and Feldman, L. T. (1997). The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the trans-cription start site for long-term expression during latency. J Virol 71, 6714-6719.PubMedGoogle Scholar
  65. Lokensgard, J. R., Bloom, D. C., Dobson, A. T., and Feldman, L. T. (1994). Long-term promoter activity during herpes simplex virus latency. J Virol 68, 7148-7158.PubMedGoogle Scholar
  66. Loutsch, J. M., Perng, G. C., Hill, J. M., Zheng, X., Marquart, M. E., Block, T. M., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1999). Identical 371-base-pair deletion mutations in the LAT genes of herpes simplex virus type 1 McKrae and 17syn+ result in different in vivo reactivation phenotypes. J Virol 73, 767-771.PubMedGoogle Scholar
  67. Mackem, S., and Roizman, B. (1982). Structural features of the herpes simplex virus alpha gene 4, 0, and 27 promoter-regulatory sequences which confer alpha regulation on chimeric thymidine kinase genes. J Virol 44, 939-949.PubMedGoogle Scholar
  68. Mador, N., Goldenberg, D., Cohen, O., Panet, A., and Steiner, I. (1998). Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol 72, 5067-5075.PubMedGoogle Scholar
  69. Maidment, N. T., Tan, A. M., Bloom, D. C., Anton, B., Feldman, L. T., and Stevens, J. G. (1996). Expression of the lacZ reporter gene in the rat basal forebrain, hippocampus, and nigrostriatal pathway using a nonreplicating herpes simplex vector. Exp Neurol 139, 107-114.PubMedGoogle Scholar
  70. Malatack, J. J., Consolini, D. M., and Bayever, E. (2003). The status of hematopoietic stem cell transplantation in lysosomal storage disease. Pediatr Neurol 29, 391-403.PubMedGoogle Scholar
  71. Malm, G., Mansson, J. E., Winiarski, J., Mosskin, M., and Ringden, O. (2004). Five-year follow-up of two siblings with aspartylglucosaminuria undergoing allogeneic stem-cell transplantation from unrelated donors. Transplantation 78, 415-419.PubMedGoogle Scholar
  72. Marconi, P., Simonato, M., Zucchini, S., Bregola, G., Argnani, R., Krisky, D., Glorioso, J. C., and Manservigi, R. (1999). Replication-defective herpes simplex virus vectors for neurotrophic factor gene transfer in vitro and in vivo. Gene Ther 6, 904-912.PubMedGoogle Scholar
  73. Marshall, K. R., Lachmann, R. H., Efstathiou, S., Rinaldi, A., and Preston, C. M. (2000). Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J Virol 74, 956-964.PubMedGoogle Scholar
  74. Martino, G., Poliani, P. L., Furlan, R., Marconi, P., Glorioso, J. C., Adorini, L., and Comi, G. (2000a). Cytokine therapy in immune-mediated demyelinating diseases of the central nervous system: A novel gene therapy approach. J Neuroimmunol 107, 184-190.Google Scholar
  75. Martino, G., Poliani, P. L., Marconi, P. C., Comi, G., and Furlan, R. (2000b). Cytokine gene therapy of autoimmune demyelination revisited using herpes simplex virus type-1-derived vectors. Gene Ther 7, 1087-1093.Google Scholar
  76. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E., and Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 1531-1574.PubMedGoogle Scholar
  77. McGeoch, D. J., Dolan, A., Donald, S., and Brauer, D. H. (1986). Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res 14, 1727-1745.PubMedGoogle Scholar
  78. McGeoch, D. J., Dolan, A., Donald, S., and Rixon, F. J. (1985). Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181, 1-13.PubMedGoogle Scholar
  79. Mellerick, D. M., and Fraser, N. W. (1987). Physical state of the latent herpes simplex virus genome in a mouse model system: Evidence suggesting an episomal state. Virology 158, 265-275.PubMedGoogle Scholar
  80. Miranda Saksena, M., Armati, P., Boadle, R. A., Holland, D. J., and Cunningham, A. L. (2000). Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol 74, 1827-1839.PubMedGoogle Scholar
  81. Moriuchi, S., Krisky, D. M., Marconi, P. C., Tamura, M., Shimizu, K., Yoshimine, T., Cohen, J. B., and Glorioso, J. C. (2000). HSV vector cytotoxicity is inversely corre-lated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Ther 7, 1483-1490.PubMedGoogle Scholar
  82. Natsume, A., Wolfe, D., Hu, J., Huang, S., Puskovic, V., Glorioso, J. C., Fink, D. J., and Mata, M. (2003). Enhanced functional recovery after proximal nerve root injury by vector-mediated gene transfer. Exp Neurol 184, 878-886.PubMedGoogle Scholar
  83. Newcomb, W. W., Homa, F. L., Thomsen, D. R., Trus, B. L., Cheng, N., Steven, A., Booy, F., and Brown, J. C. (1999). Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol 73, 4239-4250.PubMedGoogle Scholar
  84. Nicosia, M., Deshmane, S. L., Zabolotny, J. M., Valyi Nagy, T., and Fraser, N. W. (1993). Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region. J Virol 67, 7276-7283.PubMedGoogle Scholar
  85. Ozuer, A., Wechuck, J. B., Goins, W. F., Wolfe, D., Glorioso, J. C., and Ataai, M. M. (2002a). Effect of genetic background and culture conditions on the production of herpesvirus-based gene therapy vectors. Biotechnol Bioeng 77, 685-692.Google Scholar
  86. Ozuer, A., Wechuck, J. B., Russell, B., Wolfe, D., Goins, W. F., Glorioso, J. C., and Ataai, M. M. (2002b). Evaluation of infection parameters in the production of replication-defective HSV-1 viral vectors. Biotechnol Prog 18, 476-482.Google Scholar
  87. Palmer, J. A., Branston, R. H., Lilley, C. E., Robinson, M. J., Groutsi, F., Smith, J., Latchman, D. S., and Coffin, R. S. (2000). Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 74, 5604-5618.PubMedGoogle Scholar
  88. Passini, M. A., Watson, D. J., Vite, C. H., Landsburg, D. J., Feigenbaum, A. L., and Wolfe, J. H. (2003). Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 77, 7034-7040.PubMedGoogle Scholar
  89. Perng, G. C., Dunkel, E. C., Geary, P. A., Slanina, S. M., Ghiasi, H., Kaiwar, R., Nesburn, A. B., and Wechsler, S. L. (1994). The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68, 8045-8055.PubMedGoogle Scholar
  90. Perng, G. C., Ghiasi, H., Slanina, S. M., Nesburn, A. B., and Wechsler, S. L. (1996a). The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary trans-cript. J Virol 70, 976-984.Google Scholar
  91. Perng, G. C., Jones, C., Ciacci Zanella, J., Stone, M., Henderson, G., Yukht, A., Slanina, S. M., Hofman, F. M., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (2000a). Virusinduced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287, 1500-1503.Google Scholar
  92. Perng, G. C., Slanina, S. M., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1996b). A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reacti-vation of latent HSV-1. J Virol 70, 2014-2018.Google Scholar
  93. Perng, G. C., Slanina, S. M., Yukht, A., Drolet, B. S., Keleher, W., Jr., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1999). A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation. J Virol 73, 920-929.PubMedGoogle Scholar
  94. Perng, G. C., Slanina, S. M., Yukht, A., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (2000b). The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74, 1885-1891.Google Scholar
  95. Perry, L. J., and McGeoch, D. J. (1988). The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 2831-2846.PubMedGoogle Scholar
  96. Preston, C. M., Frame, M. C., and Campbell, M. E. (1988). A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell 52, 425-434.PubMedGoogle Scholar
  97. Puskovic, V., Wolfe, D., Goss, J., Huang, S., Mata, M., Glorioso, J. C., and Fink, D. J. (2004). Prolonged biologically active transgene expression driven by HSV LAP2 in brain in vivo. Mol Ther 10, 67-75.PubMedGoogle Scholar
  98. Puvion Dutilleul, F., Pichard, E., and Leduc, E. H. (1985). Influence of embedding media on DNA structure in herpes simplex virus type 1. Biol Cell 54, 195-198.PubMedGoogle Scholar
  99. Rajcani, J., and Vojvodova, A. (1998). The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol 42, 103-118.PubMedGoogle Scholar
  100. Read, G. S., and Frenkel, N. (1983). Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides. J Virol 46, 498-512.PubMedGoogle Scholar
  101. Rivera, L., Beuerman, R. W., and Hill, J. M. (1988). Corneal nerves contain intra-axonal HSV-1 after virus reactivation by epinephrine iontophoresis. Curr Eye Res 7, 1001-1008.PubMedGoogle Scholar
  102. Rock, D. L., Nesburn, A. B., Ghiasi, H., Ong, J., Lewis, T. L., Lokensgard, J. R., and Wechsler, S. L. (1987). Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61, 3820-3826.PubMedGoogle Scholar
  103. Rodahl, E., and Haarr, L. (1997). Analysis of the 2-kilobase latency-associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1: Evidence for a stable, nonlinear structure. J Virol 71, 1703-1707.PubMedGoogle Scholar
  104. Roizman, B., and Sears, A. E. (1996). Chapter 72: Herpes simplex viruses and their replication. In Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley, eds. (Philadelphia, Lippincott- Raven), pp. 2231-2295.Google Scholar
  105. Sacks, W. R., Greene, C. C., Aschman, D. P., and Schaffer, P. A. (1985). Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55, 796-805.PubMedGoogle Scholar
  106. Samaniego, L. A., Neiderhiser, L., and DeLuca, N. A. (1998). Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72, 3307-3320.PubMedGoogle Scholar
  107. Samaniego, L. A., Wu, N., and DeLuca, N. A. (1997). The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 71, 4614-4625.PubMedGoogle Scholar
  108. Sasaki, K., Chancellor, M. B., Goins, W. F., Phelan, M. W., Glorioso, J. C., de Groat, W. C., and Yoshimura, N. (2004). Gene therapy using replication-defective herpes simplex virus vectors expressing nerve growth factor in a rat model of diabetic cystopathy. Diabetes 53, 2723-2730.PubMedGoogle Scholar
  109. Sedarati, F., Izumi, K. M., Wagner, E. K., and Stevens, J. G. (1989). Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J Virol 63, 4455-4458.PubMedGoogle Scholar
  110. Smith, C., Lachmann, R. H., and Efstathiou, S. (2000). Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J Gen Virol 3, 649-662.Google Scholar
  111. Snyder, E. Y., Taylor, R. M., and Wolfe, J. H. (1995). Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367-370.PubMedGoogle Scholar
  112. Soares, K., Hwang, D. Y., Ramakrishnan, R., Schmidt, M. C., Fink, D. J., and Glorioso, J. C. (1996). Cis-acting elements involved in transcriptional regulation of the herpes simplex virus type 1 latency-associated promoter 1 (LAP1) in vitro and in vivo. J Virol 70, 5384-5394.PubMedGoogle Scholar
  113. Spear, P. G. (1993). Entry of alphaherpesviruses into cells. Seminars in Virology 4, 167-180.Google Scholar
  114. Spivack, J. G., and Fraser, N. W. (1987). Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J Virol 61, 3841-3847.PubMedGoogle Scholar
  115. Steiner, I., Spivack, J. G., Lirette, R. P., Brown, S. M., MacLean, A. R., Subak Sharpe, J. H., and Fraser, N. W. (1989). Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. Embo J 8, 505-511.PubMedGoogle Scholar
  116. Stevens, A. C., and Spear, P. G. (1997). Herpesvirus capsid assembly and envelopment. In Structural Biology of Viruses, W. Chiu, R. Burnett, and R. Garcea, (Eds. New York, Oxford University Press).Google Scholar
  117. Stevens, J. G., Wagner, E. K., Devi Rao, G. B., Cook, M. L., and Feldman, L. T. (1987). RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056-1059.PubMedGoogle Scholar
  118. Thomas, S. K., Gough, G., Latchman, D. S., and Coffin, R. S. (1999). Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency. J Virol 73, 6618-6625.PubMedGoogle Scholar
  119. Thompson, R. L., and Sawtell, N. M. (1997). The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71, 5432-5440.PubMedGoogle Scholar
  120. Wang, Q., Guo, J., and Jia, W. (1997). Intracerebral recombinant HSV-1 vector does not reactivate latent HSV-1. Gene Ther 4, 1300-1304.PubMedGoogle Scholar
  121. Wolfe, D., Goins, W. F., Kaplan, T. J., Capuano, S. V., Fradette, J., Murphey-Corb, M., Robbins, P. D., Cohen, J. B., and Glorioso, J. C. (2001). Herpesvirus-mediated systemic delivery of nerve growth factor. Molecular Therapy 3, 61-69.PubMedGoogle Scholar
  122. Wolfe, D., Niranjan, A., Trichel, A., Wiley, C., Ozuer, A., Kanal, E., Kondziolka, D., Krisky, D., Goss, J., DeLuca, N., et al. (2004). Safety and biodistribution studies of an HSV multigene vector following intracranial delivery to non-human primates. Gene Ther. 11, 1675-84.PubMedGoogle Scholar
  123. Wu, N., Watkins, S. C., Schaffer, P. A., and DeLuca, N. A. (1996). Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J Virol 70, 6358-6369.PubMedGoogle Scholar
  124. Yamada, M., Oligino, T., Mata, M., Goss, J. R., Glorioso, J. C., and Fink, D. J. (1999). Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxy-dopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc Natl Acad Sci USA 96, 4078-4083.PubMedGoogle Scholar
  125. Zwaagstra, J., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1989). In vitro promoter activity associated with the latency-associated transcript gene of herpes simplex virus type 1. J Gen Virol 70, 2163-2169.PubMedGoogle Scholar
  126. Zwaagstra, J. C., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1991). Identification of a major regulatory sequence in the latency associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology 182, 287-297.PubMedGoogle Scholar
  127. Zwaagstra, J. C., Ghiasi, H., Slanina, S. M., Nesburn, A. B., Wheatley, S. C., Lillycrop, K., Wood, J., Latchman, D. S., Patel, K., and Wechsler, S. L. (1990). Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuronderived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64, 5019-5028.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Edward A. Burton
    • 1
  • Joseph C. Glorioso
    • 2
  1. 1.Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations