Adenovirus in Gene Therapy

  • Angela Montecalvo
  • Andrea Gambotto
  • Leonardo D’Aiuto

Gene therapy—the transference of genetic material into an individual—was first conceived as an approach to hereditary single-gene disease. Today the subject of gene therapy comprises multifactorial disorders such as cancer, cardiovascular disease, neurodegenerative disorders, and infectious disease. Ideally, a vector system for gene therapy would have the following attributes: (1) allow efficient transduction of the transgene into the target cells, (2) be safe (i.e., toxicity associated with the vector would be minimal or absent), (3) target only the desired cells within the target tissue, (4) express a therapeutic regulatable amount of the transgene, and (5) not integrate into the host genome. The ideal vector system, however, does not currently exist.

Viral-based vectors are the most common gene delivery systems employed for preclinical or clinical applications and adenoviral (Ad) vectors closely follow retroviruses as the most frequently used vectors for gene therapy. Although Ad vectors are not suitable for all applications, they are very efficient in delivering the therapeutic transgene to the cell nucleus. Other advantages of using Ad vectors include the simplicity of vector construction methods, efficient production, high yields and high stability, and reliable transduction of both proliferating and quiescent cell types.


Gene Therapy Major Histocompatibility Complex Class Cystic Fibrosis Transmembrane Conductance Regulator Adenoviral Vector Fabry Disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amalfitano, A., McVie-Wylie, A.J., Hu, H., Dawson, T.L., Raben, N., Plotz, P., and Chen, Y.T. (1999) Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc Natl Acad Sci U S A. 96, 8861-8866.CrossRefPubMedGoogle Scholar
  2. Barr, D., Tubb, J., Ferguson, D., Scaria, A., Lieber, A., Wilson C., Perkins, J., and Kay, M.A. (1995) Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: Comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther. 2, 151-155.PubMedGoogle Scholar
  3. Bessis, N., GarciaCozar, F.J., and Boissier, M.-C. (2004) Immune response to gene therapy vectors: influence on vector function and effectors mechanisms. Gene Ther. 11, 10-17.CrossRefGoogle Scholar
  4. Cheng, S.H. and Smith, A.E. (2003) Gene therapy progress and prospects: Gene delivery of lysosomal storage disorders. Gene Ther. 10, 1275-1281.CrossRefPubMedGoogle Scholar
  5. Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R. and Wilson, J. (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 6, 1574-1583.CrossRefPubMedGoogle Scholar
  6. D’Aiuto, L., de las Heras, J.I., Ross, A., Shen, M.H., and Cooke, H. (2003) Generation of a telomere-based episomal vector. Biotechnol Prog. 19, 1775-1780.CrossRefPubMedGoogle Scholar
  7. Daniele, A., Tomanin, R., Villani, G.R., Zacchello, F., Scarpa, M., and Di Natale, P. (2002) Uptake of recombinant iduronate-2-sulfatase into neuronal and glial cells in vitro. Biochim Biophys Acta. 1588, 203-209.PubMedGoogle Scholar
  8. Danthinne, X. and Imperiale M.J. (2000) Production of first generation adenovirus vector: A review. Gene Ther. 7, 1707-1714.CrossRefPubMedGoogle Scholar
  9. de Jong, R.N., Meijer, L.A.T., and van der Vliet, P.C. (2003) DNA binding properties of the adenovirus DNA replication priming protein pTP. Nucleic Acid Res. 31, 3274-3286.CrossRefPubMedGoogle Scholar
  10. Du, H., Heur, M., Witte, D.P., Ameis, D., and Grabowski, G.A. (2002) Lysosomal acid lipase deficiency: Correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther. 13, 1361-1372.CrossRefPubMedGoogle Scholar
  11. Engelhardt, J.F., Ye, X., Doranz, B., and Wilson, J.M. (1994) Ablation of E2a in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 91, 6196-6200.CrossRefPubMedGoogle Scholar
  12. Fasbender, A., Zabner, J., Chillon, M., Moninger, T.O., Puga, A.P., Davidson, B.L., and Welsh, M.J. (1997) Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem. 272, 6479-6489.CrossRefPubMedGoogle Scholar
  13. Gaggar, A., Shayakhmetov, D.M., and Lieber, A. (2003) CD46 is a cellular receptor for group B adenoviruses. Nature Med. 9, 1408-1412.CrossRefPubMedGoogle Scholar
  14. Ginsberg, H.S. (1996) The ups and downs of adenovirus vectors. Bull N Y Acad Med. 73, 53-8.PubMedGoogle Scholar
  15. Glorioso, J., De Luca, N.A., and Fink, D.J. (1995) Development and application of herpes simplexmvirus vectors for human gene therapy. Annu Rev Microbiol. 49, 675-710.CrossRefPubMedGoogle Scholar
  16. Gomez-Roman V.R. and Robert-Guroff, M. (2003) Adenoviruses as vectors for HIV vaccines. AIDS Reviews. 5, 178-185.PubMedGoogle Scholar
  17. Graham, F.L., Smiley, J., Russel, W.C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 36, 59-74.CrossRefPubMedGoogle Scholar
  18. Greber, U.F., Willetts, M., Webster, P., and Helenius, A. (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477-486.CrossRefPubMedGoogle Scholar
  19. Green, A.P., Huang, J.J., Scott, M.O., Kierstead, T.D., Beaupre, I., Gao G.P., and Wilson, J.M. (2002) A new scalable method for the purification of recombinant adenovirus vectors. Hum Gene Ther. 13, 1921-1934.CrossRefPubMedGoogle Scholar
  20. Guidotti, J.E., Mignon, A., Haase, G., Caillaud, C., McDonell, N., Kahn, A., and Poenaru, L. (1999) Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice. Hum Mol Genet. 8, 831-838.CrossRefPubMedGoogle Scholar
  21. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y., and Phipps, M.L. (1997) Construction of adenovirus vectors through Cre-lox recombination. J Virol. 71, 1842-1849.PubMedGoogle Scholar
  22. Harkke, S., Laine, M., and Jalanko, A. (2003) Aspartylglucosaminidase (AGA) is efficiently produced and endocytosed by glial cells: Implication for therapy of a lysosomal storage disorder. J Gene Med. 5, 472-482.CrossRefPubMedGoogle Scholar
  23. Hasenburg, A., Tong, X.W., Fischer, D.C., Rojas-MArtinez, A., Nyberg-Hoffman, C., Kaplan, A.L., Kaufman, R.H., Ramzy, I., Aguilar-Cordova, E., and Kieback, D.G. (2001) Adenovirus-mediated thymidine kinase gene therapy in combination with topotecan for patients with recurrent ovarian cancer: 2.5-Year follow-up. Gynecol Oncol. 83, 549-554CrossRefPubMedGoogle Scholar
  24. Haviernik, P. and Bunting, K.D. (2004) Safety concerns related to hematopoietic stem cell gene transfer using retroviral vectors. Curr Gene Ther. 4, 263-276.PubMedGoogle Scholar
  25. Hemminki, A. and Alvarez, R.D. (2002) Adenoviruses in oncology: A viable option? BioDrugs. 16, 77-87.CrossRefPubMedGoogle Scholar
  26. Hillgenberg, M., Schnieders, F., Loser, P., and Strauss, M. (2001) System for efficient helper-dependent minimal adenovirus construction and rescue. Hum Gene Ther. 12, 643-657.CrossRefPubMedGoogle Scholar
  27. Jewtoukott, V.E. and Perricaudet, M. Recombinant adenoviruses as a vaccine. Biologicals 23, 145-157 (1995).CrossRefGoogle Scholar
  28. Kanerva, A. and Hemminki, A. (2004) Modified adenoviruses for cancer gene therapy. Int J Cancer 11, 475-480.CrossRefGoogle Scholar
  29. Khan, T.A., Sellke F.W. and Laham, R.J. (2003) Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther. 10, 285-291.CrossRefPubMedGoogle Scholar
  30. Kochanek, S. (1999) High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther. 10, 245-249.CrossRefGoogle Scholar
  31. Kochanek, S., Schiedner, G., and Volpers, C. (2002) High-capacity ‘gutless’ adenoviral vectors. Curr Opin Mol Ther. 3, 454-463.Google Scholar
  32. Linsley, P.S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N.K. and Ledbetter, J.A. (1991) Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 173, 721-730.CrossRefPubMedGoogle Scholar
  33. Liu, M., Acres, B., Balloul, J.M., Bizouarne, N., Paul, S., Slos, P., and Squiban, P. (2004) Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA. 101 Suppl 2, 14567-14571.CrossRefPubMedGoogle Scholar
  34. Liu, Q. and Muruve, D.A. (2003) Molecular basis of the inflammatory response to adenoviruses vectors. Gene Ther. 10, 935-940.CrossRefPubMedGoogle Scholar
  35. Maraskovsky, E., Chen, W.F., and Shortman, K. (1989) IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells. J Immunol. 143, 1210-1214.PubMedGoogle Scholar
  36. Marshall, J., McEachern, K.A., Kyros, J.A., Nietupski, J.B., Budzinski, T., Ziegle, R.J., Yew, N.S., Sullivan, J., Scaria, A., van Rooijen, N., Barranger, J.A., and Cheng, S.H. (2002) Demonstration of feasibility of in vivo gene therapy for Gaucher disease using a chemically induced mouse model. Mol Ther. 6, 179-189.CrossRefPubMedGoogle Scholar
  37. Marshall, M.S. (2004) Function of adenovirus E3 proteins and their interactions with immunoregulatory cell proteins. J Gene Med. 6, 172-183.CrossRefGoogle Scholar
  38. Meier, O. and Greber, U.F. (2004) Adenovirus endocytosed. J Gene Med. 6, 152-163.CrossRefGoogle Scholar
  39. Morsy, M.A. and Caskey, C.T. (1999) Expanded-capacity adenoviral vectors—The helper-dependent vectors. Mol Med Today. 5, 18-24.CrossRefPubMedGoogle Scholar
  40. Nemerrow, G.R. (2000) Cell receptors involved in adenovirus entry. Virology. 274, 1-4.CrossRefGoogle Scholar
  41. Ng, P., Parks, R.J., Cummings, D.T., Evelegh, C.M., Sankar, U., and Graham, F.L. (1999) A high-efficiency Cre/loxP-based system for construction of adenoviral vectors. Hum Gene Ther. 10, 2667-2672.CrossRefPubMedGoogle Scholar
  42. O'Riordan, C.R., Lachapelle, A., Delgado, C., Parkes, V., Wadsworth, S.C., Smith, A.E., and Francis, G.E. (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 10, 1349-1358.CrossRefPubMedGoogle Scholar
  43. Paixao, S., Colaluca, I.N., Cubells, M., Peverali, F.A., Destro, A., Giadrossi, S., Giacca, M., Falaschi, A., Riva, S., and Biamonti, G. (2004) Modular structure of the human lamin B2 replicator. Mol Cell Biol. 24, 2958-2967.CrossRefPubMedGoogle Scholar
  44. Parks, R.J (2000). Improvements in adenoviral vector technology: overcoming barriers for gene therapy. Clin Genet, 58, 1-11.CrossRefPubMedGoogle Scholar
  45. Pfeifer, A. and Verma, I.M. (2001) Gene therapy: Promises and problems. Annu Rev Genomics Hum Genet. 2, 177-211.CrossRefPubMedGoogle Scholar
  46. Philipson, L. and Pettersson, R.F. (2004) The coxsackie-adenovirus receptor: A new receptor in the immunoglobulin family involved in cell adhesion. Curr Top Microbiol Immunol. 273, 87-111.PubMedGoogle Scholar
  47. Ritter, T., Lehmann, M., and Volk, H.-D. (2002) Improvements in gene therapy averting the immune response to adenoviral vectors. Biodrugs 16, 3-10.CrossRefPubMedGoogle Scholar
  48. Roelvink P.W., Lizonova A., Lee J.G., Li Y., Bergelson J.M., Finberg R.W., Brough, D.E., Kovesdi, I., and Wickham, T.J. (1998) The coxsackievirus adenovirus receptor protein can function as a cellular attachment for subgroups C adenoviruses serotype from subgroups A, C, D, E, and F. J Virol. 72, 7909-7915.PubMedGoogle Scholar
  49. Rosengart, T.K., Lee, L., Patel, SR, Sanborn, T.A., Parikh, M., Bergman, G.W., Hachamovitc, R., Szulk, M., Kligfield, P.D., Okin, P.M., Hanh, R.T., Devereux, R.B., Post, M.R., Hackett, N.R., Foster, T., Grasso, T.M., Lessere, M..L., Isom, O.W., and Crystal, R.G. (1999) Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation. 100, 468-474.PubMedGoogle Scholar
  50. Russell, W.C. (2000) Update on adenovirus and its vectors. J Gen Virol. 81, 2573-2604.PubMedGoogle Scholar
  51. Sandig, V., Youil, R., Bett, A.J., Franlin, L.L., Oshima, M., Maione, D., Wang, F., Metzker, M.L., Savino, R., Caskey, C.T. (1999) Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc Natl Acad Sci USA. 97, 1002-1007.CrossRefGoogle Scholar
  52. Schagen, F.H., Ossevoort, M., Toes, R.E., and Hoeben, R.C. (2004) Immune responses against adenoviral vectors and their transgene products: A review of strategies for evasion. Crit Rev Oncol Hematol. 50, 51-70.CrossRefPubMedGoogle Scholar
  53. Schuler, M., Herrmann, R., De Greve, J.L., Stewart, A.K., Gatzemeier, U., Stewart, D.J., Laufman, L., Gralla, R., Kuball, J., Buhl, R., Heussel, C.P., Kommoss, F., Perruchoud, A.P., Shepherd, F.A., Fritz, M.A., Horowitz, J.A., Huber, C., and Rochlitz, C. (2001) Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol. 19, 1750-1758.PubMedGoogle Scholar
  54. Springer, C.J. and Niculescu-Duvaz, I. (2000) Prodrug-activating systems in suicide gene therapy. J Clin Invest. 105, 1161-1167.CrossRefPubMedGoogle Scholar
  55. Tal, J. (2000) Adeno-associated virus-based vectors in gene therapy. J Biomed Sci. 7, 279-91.CrossRefPubMedGoogle Scholar
  56. Tatsis, N. and Ertl, H.C. (2004) Adenoviruses as vaccine vectors. Mol Ther. 10, 616-29.CrossRefPubMedGoogle Scholar
  57. Teh, B.S., Aguilar-Cordova, E., Kernen, K., Chou, C.C., Shalev, M., Vlachaki, M.T., MilesD, B., Kadmon, D., Mai, W.Y., Caillouet, J., Davis, M., Ayala, G., Wheeler, T., Brady, J., Carpenter, L.S., Lu, H.H., Chiu, J.K., Woo, S.Y., Thompson, T., and Butler, E.B. (2001) Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer—A preliminary report. Int J Radiat Oncol Biol Phys. 51, 605-613.PubMedGoogle Scholar
  58. Todorovic, V., Falaschi, A., and Giacca, M. (1999) Replication origins of mammalian chromosomes: The happy few. Front Biosci. 4, D859-868.CrossRefPubMedGoogle Scholar
  59. Verdugo, M.E., Scarpino, V., Moullier, P., Haskins, M.E., Aguirre G.D., and Ray, J. (2001) Adenoviral vector-mediated beta-glucuronidase cDNA transfer to treat MPS VII RPE in vitro. Curr Eye Res. 23, 357-367.CrossRefPubMedGoogle Scholar
  60. Volpers, C. and Kochanek, S. (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med. 6, S164-S171.CrossRefPubMedGoogle Scholar
  61. Vorburger, S.A. and Hunt, K.K. (2002) Adenoviral gene therapy. Oncologist. 7, 46-59.CrossRefPubMedGoogle Scholar
  62. Wadhwa, P.D., Zielske, S.P., Roth, J.C., Ballas, C.B., Bowman, J.E., and Gerson, S.L. (2002) Cancer gene therapy: scientific basis. Annu Rev Med. 53, 437-52.CrossRefPubMedGoogle Scholar
  63. Wickham, T.J., Mathias, P., Cheresh, D.A., and Nemerow, G.R. (1993) Integrins alphavbeta3 and alphavbeta 5 promote adenovirus internalization but not virus attachment. Cells 73, 309-319.CrossRefGoogle Scholar
  64. Wille, A., Gessner, A., Lother, H. and Lehmann-Grube, F. (1989) Mechanism of recovery from acute virus infection. VIII. Treatment of lymphocytic choriomeningitis virus-infected mice with anti-interferon-gamma monoclonal antibody blocks generation of virus-specific cytotoxic T lymphocytes and virus elimination. Eur J Immunol. 19, 1283-1288.CrossRefPubMedGoogle Scholar
  65. Xu, F., Ding, E., Migone, F., Serra, D., Schneider, A., Chen, Y.T., and Amalfitano, A. (2005) Glycogen storage in multiple muscles of old GSD-II mice can be rapidly cleared after a single intravenous injection with a modified adenoviral vector expressing hGAA. J Gene Med. 7, 171-178.CrossRefPubMedGoogle Scholar
  66. Yang, Y. and Wilson J.M. (1995) Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol. 155, 2564-2570.PubMedGoogle Scholar
  67. Yang, Y., Haecker, S.E., Su, Q., and Wilson J.M. (1996) Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet. 5, 1703-1712.CrossRefPubMedGoogle Scholar
  68. Yang, Y., Li, Q., Ertl, H.C., and Wilson J.M. (1995a) Cellular and humoral immune responses to viral antigens create barriers to luna-directed gene therapy with recombinant adenoviruses. J Virol. 69, 2004-2015.Google Scholar
  69. Yang, Y., Nunes, F.A., Berencsi, K., Furth, E.E., Gonczol, E., and Wilson J.M. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA. 91, 4407-4411.CrossRefPubMedGoogle Scholar
  70. Yang, Y., Xiang, Z., Ertl H.C., and Wilson J.M. (1995b) Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo. Proc Natl Acad Sci USA. 92, 7257-7261.CrossRefGoogle Scholar
  71. Yotnda, P., Chen, D.H., Chiu, W., Piedra, P.A., Davis, A., Templeton, N.S., and Brenner, M.K. (2002) Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther. 5, 233-241.CrossRefPubMedGoogle Scholar
  72. Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., and Welsh, M.J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 270, 8997-9007.Google Scholar
  73. Ziegler, R.J., Li, C., Cherry, M., Zhu, Y., Hempel, D., van Rooijen, N., Ioannou, Y.A., Desnick, R.J., Goldberg, M.A., Yew, N.S., and Cheng, S.H. (2002) Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of Fabry disease. Hum Gene Ther. 13, 935-945.CrossRefPubMedGoogle Scholar
  74. Zsengeller, Z., Otake, K., Hossain, S.A., Berclaz, P.Y., and Trapnell, B.C. (2000) Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol. 4, 9655-9667.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Angela Montecalvo
    • 1
  • Andrea Gambotto
    • 2
  • Leonardo D’Aiuto
    • 3
  1. 1.Department of Surgery and Medicine, Starlz Transplantation InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Surgery, Division of infectious DiseasesUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations