Advertisement

Pompe Disease-Glycogenosis Type II: Acid Maltase Deficiency

  • Arnold Reuser
  • Marian Kroos

Pompe disease (OMIM #232300) is caused by acid α-glucosidase deficiency leading to lysosomal glycogen storage in numerous tissues but primarily affecting skeletal muscle function. Several findings related to Pompe disease have contributed to the understanding of lysosomal storage disorders in general. It concerns: the detection of storage ‘vacuoles’, the definition of a lysosomal enzyme deficiency, and the subsequent definition of a lyso somal storage disorder, the correlation between residual activity and clinical phenotype, the occurrence of posttranslational modification of lysosomal proteins and mannose 6-phosphorylation, as well as the concept of enzyme replacement therapy

Keywords

Enzyme Replacement Therapy Pompe Disease Glycogen Storage Disease Type Glycogenosis Type Acid Maltase Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amalfitano A, Bengur AR, Morse RP, Majure JM, Case LE, Veerling DL, Mackey J, Kishnani P, Smith W, McVie-Wylie A, Sullivan JA, Hoganson GE, Phillips JA, 3rd, Schaefer GB, Charrow J, Ware RE, Bossen EH and Chen YT (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genet Med, 3, 132-138.PubMedGoogle Scholar
  2. Amalfitano A, McVie-Wylie AJ, Hu H, Dawson TL, Raben N, Plotz P and Chen YT (1999) Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proceedings of the National Academy of Sciences of the United States of America, 96, 8861-8866.PubMedGoogle Scholar
  3. Anneser JM, Pongratz DE, Podskarbi T, Shin YS and Schoser BG (2005) Mutations in the acid alpha-glucosidase gene (M. Pompe) in a patient with an unusual phenotype. Neurology, 64, 368-70.PubMedGoogle Scholar
  4. Ausems MG, ten Berg K, Sandkuijl LA, Kroos MA, Bardoel AF, Roumelioti KN, Reuser AJ, Sinke R and Wijmenga C (2001) Dutch patients with glycogen storage disease type II show common ancestry for the 525delT and del exon 18 mutations. J Med Genet, 38, 527-9.PubMedGoogle Scholar
  5. Ausems MG, Verbiest J, Hermans MP, Kroos MA, Beemer FA, Wokke JH, Sandkuijl LA, Reuser AJ and van der Ploeg AT (1999) Frequency of glycogen storage disease type II in The Netherlands: Implications for diagnosis and genetic counselling. Euro J Hum Gen, 7, 713-6.Google Scholar
  6. Ausems MG, Wokke JH, Reuser AJ and van Diggelen OP (2001) Juvenile and adult-onset acid maltase deficiency in France: genotype-phenotype correlation. Neurology, 57, 1938.PubMedGoogle Scholar
  7. Barton NW, Furbish FS, Murray GJ, Garfield M and Brady RO (1990) Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci U S A, 87, 1913-6.PubMedGoogle Scholar
  8. Baudhuin P, Hers HG and Loeb H (1964) An electron microscopic and biochemical study of type II glycogenosis. Lab Invest, 13, 1139-1152.PubMedGoogle Scholar
  9. Becker JA, Vlach J, Raben N, Nagaraju K, Adams EM, Hermans MM, Reuser AJ, Brooks SS, Tifft CJ, Hirschhorn R, Huie ML, Nicolino M and Plotz PH (1998) The African origin of the common mutation in African American patients with glycogen-storage disease type II [letter]. Am J Hum Genet, 62, 991-4.PubMedGoogle Scholar
  10. Beratis NG, LaBadie GU and Hirschhorn K (1978) Characterization of the molecular defect in infantile and adult acid alpha-glucosidase deficiency fibroblasts. Journal of Clinical Investigation, 62, 1264-74.PubMedGoogle Scholar
  11. Bijvoet AG, Kroos MA, Pieper FR, de Boer HA, Reuser AJ, van der Ploeg AT and Verbeet MP (1996) Expression of cDNA-encoded human acid alpha-glucosidase in milk of transgenic mice. Biochimica et Biophysica Acta, 1308, 93-6.PubMedGoogle Scholar
  12. Bijvoet AG, Kroos MA, Pieper FR, Van der Vliet M, De Boer HA, Van der Ploeg AT, Verbeet MP and Reuser AJ (1998) Recombinant human acid alpha-glucosidase: High level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Human Molecular Genetics, 7, 1815-24.PubMedGoogle Scholar
  13. Bijvoet AG, van de Kamp EH, Kroos MA, Ding JH, Yang BZ, Visser P, Bakker CE, Verbeet MP, Oostra BA, Reuser AJ and van der Ploeg AT (1998) Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Human Molecular Genetics, 7, 53-62.PubMedGoogle Scholar
  14. Bijvoet AG, Van Hirtum H, Kroos MA, Van de Kamp EH, Schoneveld O, Visser P, Brakenhoff JP, Weggeman M, van Corven EJ, Van der Ploeg AT and Reuser AJ (1999) Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Human Molecular Genetics, 8, 2145-53.PubMedGoogle Scholar
  15. Bijvoet AG, Van Hirtum H, Vermey M, Van Leenen D, Van Der Ploeg AT, Mooi WJ and Reuser AJ (1999) Pathological features of glycogen storage disease type II highlighted in the knockout mouse model. J Pathol, 189, 416-424.PubMedGoogle Scholar
  16. Boerkoel CF, Exelbert R, Nicastri C, Nichols RC, Miller FW, Plotz PH and Raben N (1995) Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. American Journal of Human Genetics, 56, 887-97.PubMedGoogle Scholar
  17. Castro-Gago M, Eiris-Punal J, Rodriguez-Nunez A, Pintos-Martinez E, Benlloch-Marin T and Barros-Angueira F (1999) Severe form of juvenile type II glycogenosis in a compound-heterozygous boy (Tyr-292 Cys/Arg-854Stop) [Forma grave de glucogenosis tipo II juvenil en un nino heterocigoto compuesto (Tyr-292Cys/Arg-854Stop)]. Revista de Neurologia, 29, 46-9.PubMedGoogle Scholar
  18. Chamoles NA, Niizawa G, Blanco M, Gaggioli D and Casentini C (2004) Glycogen storage disease type II: Enzymatic screening in dried blood spots on filter paper. Clin Chim Acta, 347, 97-102.PubMedGoogle Scholar
  19. Cheng SH and Smith AE (2003) Gene therapy progress and prospects: Gene therapy of lysosomal storage disorders. Gene Ther, 10, 1275-81.PubMedGoogle Scholar
  20. Cori GT (1954) Glycogen structure and enzyme deficiencies in glycogen storage disease. Harvey Lectures, 8, 145.Google Scholar
  21. Conzelmann E and Sandhoff K (1983) Partial enzyme deficiencies: Residual activities and the development of neurological disorders. Dev Neurosci, 6, 58-71.PubMedGoogle Scholar
  22. Dagnino F, Stroppiano M, Regis S, Bonuccelli G and Filocamo M (2000) Evidence for a founder effect in Sicilian patients with glycogen storage disease type II. Hum Hered, 50, 331-3.PubMedGoogle Scholar
  23. Daly TM, Vogler C, Levy B, Haskins ME and Sands MS (1999) Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci U S A, 96, 2296-300.PubMedGoogle Scholar
  24. De Duve C, Pressman BC, Gianetto R, Wattiaux R and Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J, 60, 604-617.PubMedGoogle Scholar
  25. Delque Bayer P, Vittori C, Sudaka P and Giudicelli J (1989) Purification and properties of neutral maltase from human granulocytes. Biochem J, 263, 647-652.PubMedGoogle Scholar
  26. Ding E, Hu H, Hodges BL, Migone F, Serra D, Xu F, Chen YT and Amalfitano A (2002) Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene, promoter, and the tissues targeted for vector transduction. Mol Ther, 5, 436-46.PubMedGoogle Scholar
  27. Ding EY, Hodges BL, Hu H, McVie-Wylie AJ, Serra D, Migone FK, Pressley D, Chen YT and Amalfitano A (2001) Long-term efficacy after [E1-, polymerase-] adenovirus-mediated transfer of human acid-alpha-glucosidase gene into glycogen storage disease type II knockout mice. Hum Gene Ther, 12, 955-65.PubMedGoogle Scholar
  28. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE and Desnick RJ (2001) Safety and efficacy of recombinant human alpha-galactosidase A--replacement therapy in Fabry's disease. N Engl J Med, 345, 9-16.PubMedGoogle Scholar
  29. Engel AG and Hirschhorn R (Eds.) (2004) Acid maltase deficiency.Google Scholar
  30. Felice KJ, Alessi AG and Grunnet ML (1995) Clinical variability in adult-onset acid maltase deficiency: report of affected sibs and review of the literature. Medicine, 74, 131-5.PubMedGoogle Scholar
  31. Fraites TJ, Jr., Schleissing MR, Shanely RA, Walter GA, Cloutier DA, Zolotukhin I, Pauly DF, Raben N, Plotz PH, Powers SK, Kessler PD and Byrne BJ (2002) Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther, 5, 571-8.PubMedGoogle Scholar
  32. Fuller M, Van der Ploeg A, Reuser AJ, Anson DS and Hopwood JJ (1995) Isolation and characterisation of a recombinant, precursor form of lysosomal acid alpha-glucosidase. Eur J Biochem, 234, 903-9.PubMedGoogle Scholar
  33. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J and Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A, 99, 11854-9.PubMedGoogle Scholar
  34. Hagemans M (2005) Severity in Pompe's disease related to age and disease duration. Neurology, in press.Google Scholar
  35. Hagemans ML, Janssens AC, Winkel LP, Sieradzan KA, Reuser AJ, Van Doorn PA and Van der Ploeg AT (2004) Late-onset Pompe disease primarily affects quality of life in physical health domains. Neurology, 63, 1688-92.PubMedGoogle Scholar
  36. Hagemans ML, Winkel LP, Van Doorn PA, Hop WJ, Loonen MC, Reuser AJ and Van der Ploeg AT (2005) Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch patients. Brain.Google Scholar
  37. Haley SM, Fragala MA and Skrinar AM (2003) Pompe disease and physical disability. Dev Med Child Neurol, 45, 618-23.PubMedGoogle Scholar
  38. Conzelmann E and Sandhoff K (1983) Partial enzyme deficiencies: Residual activities and the development of neurological disorders. Dev Neurosci, 6, 58-71.PubMedGoogle Scholar
  39. Dagnino F, Stroppiano M, Regis S, Bonuccelli G and Filocamo M (2000) Evidence for a founder effect in Sicilian patients with glycogen storage disease type II. Hum Hered, 50, 331-3.PubMedGoogle Scholar
  40. Daly TM, Vogler C, Levy B, Haskins ME and Sands MS (1999) Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci U S A, 96, 2296-300.PubMedGoogle Scholar
  41. De Duve C, Pressman BC, Gianetto R, Wattiaux R and Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J, 60, 604-617.PubMedGoogle Scholar
  42. Delque Bayer P, Vittori C, Sudaka P and Giudicelli J (1989) Purification and properties of neutral maltase from human granulocytes. Biochem J, 263, 647-652.PubMedGoogle Scholar
  43. Ding E, Hu H, Hodges BL, Migone F, Serra D, Xu F, Chen YT and Amalfitano A (2002) Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene, promoter, and the tissues targeted for vector transduction. Mol Ther, 5, 436-46.PubMedGoogle Scholar
  44. Ding EY, Hodges BL, Hu H, McVie-Wylie AJ, Serra D, Migone FK, Pressley D, Chen YT and Amalfitano A (2001) Long-term efficacy after [E1-, polymerase-] adenovirus-mediated transfer of human acid-alpha-glucosidase gene into glycogen storage disease type II knockout mice. Hum Gene Ther, 12, 955-65.PubMedGoogle Scholar
  45. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE and Desnick RJ (2001) Safety and efficacy of recombinant human alpha-galactosidase A--replacement therapy in Fabry's disease. N Engl J Med, 345, 9-16.PubMedGoogle Scholar
  46. Engel AG and Hirschhorn R (Eds.) (2004) Acid maltase deficiency.Google Scholar
  47. Felice KJ, Alessi AG and Grunnet ML (1995) Clinical variability in adult-onset acid maltase deficiency: report of affected sibs and review of the literature. Medicine, 74, 131-5.PubMedGoogle Scholar
  48. Fraites TJ, Jr., Schleissing MR, Shanely RA, Walter GA, Cloutier DA, Zolotukhin I, Pauly DF, Raben N, Plotz PH, Powers SK, Kessler PD and Byrne BJ (2002) Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther, 5, 571-8.PubMedGoogle Scholar
  49. Fuller M, Van der Ploeg A, Reuser AJ, Anson DS and Hopwood JJ (1995) Isolation and characterisation of a recombinant, precursor form of lysosomal acid alpha-glucosidase. Eur J Biochem, 234, 903-9.PubMedGoogle Scholar
  50. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J and Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A, 99, 11854-9.PubMedGoogle Scholar
  51. Hagemans M (2005) Severity in Pompe's disease related to age and disease duration. Neurology, in press.Google Scholar
  52. Hagemans ML, Janssens AC, Winkel LP, Sieradzan KA, Reuser AJ, Van Doorn PA and Van der Ploeg AT (2004) Late-onset Pompe disease primarily affects quality of life in physical health domains. Neurology, 63, 1688-92.PubMedGoogle Scholar
  53. Hagemans ML, Winkel LP, Van Doorn PA, Hop WJ, Loonen MC, Reuser AJ and Van der Ploeg AT (2005) Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch patients. Brain.Google Scholar
  54. Haley SM, Fragala MA and Skrinar AM (2003) Pompe disease and physical disability. Dev Med Child Neurol, 45, 618-23.PubMedGoogle Scholar
  55. Haley SM, Fragala-Pinkham MA, Ni PS, Skrinar AM and Kaye EM (2004) Pediatric physical functioning reference curves. Pediatr Neurol, 31, 333-41.PubMedGoogle Scholar
  56. Hasilik A and Neufeld EF (1980a) Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem, 255, 4937-4945.Google Scholar
  57. Hasilik A and Neufeld EF (1980b) Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem, 255, 4946-50.Google Scholar
  58. Hauser F and Hoffmann W (1992) P-domains as shuffled cysteine-rich modules in integumentary mucin C.1 (FIM-C.1) from Xenopus laevis. Polydispersity and genetic polymorphism. J Biol Chem, 267, 24620-4.PubMedGoogle Scholar
  59. Hauser F, Poulsom R, Chinery R, Rogers LA, Hanby AM, Wright NA and Hoffmann W (1993) AhP1.B, a human P-domain peptide homologous with rat intestinal trefoil factor, is expressed also in the ulcer-associated cell lineage and the uterus. Proc Natl Acad Sci U S A, 90, 6961-5.PubMedGoogle Scholar
  60. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 280 ( Pt 2), 309-16.PubMedGoogle Scholar
  61. Hermans MM, De Graaff E, Kroos MA, Mohkamsing S, Eussen BJ, Joosse M, Willemsen R, Kleijer WJ, Oostra BA and Reuser AJ (1994) The effect of a single base pair deletion (delta T525) and a C1634T missense mutation (pro545leu) on the expression of lysosomal alpha-glucosidase in patients with glycogen storage disease type II. Hum Molec Gen, 3, 2213-8.Google Scholar
  62. Hermans MM, de Graaff E, Kroos MA, Wisselaar HA, Willemsen R, Oostra BA and Reuser AJ (1993) The conservative substitution Asp-645Glu in lysosomal alpha-glucosidase affects transport and phosphorylation of the enzyme in an adult patient with glycogen-storage disease type II. Biochem J, 289, 687-93.PubMedGoogle Scholar
  63. Hermans MM, van Leenen D, Kroos MA, Beesley CE, Van Der Ploeg AT, Sakuraba H, Wevers R, Kleijer W, Michelakakis H, Kirk EP, Fletcher J, Bosshard N, Basel-Vanagaite L, Besley G and Reuser AJ (2004) Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum Mutat, 23, 47-56.PubMedGoogle Scholar
  64. Hermans MMP, Wisselaar HA, Kroos MA, Oostra BA and Reuser AJJ (1993) Human lysosomal a-glucosidase: Functional characterization of the glycosylation sites. Biochem J, 289, 681-686.PubMedGoogle Scholar
  65. Hers HG (1963) alpha-Glucosidase deficiency in generalized glycogen storage disease (Pompe's disease). Biochem J, 86, 11-16.PubMedGoogle Scholar
  66. Hers HG and Van Hoof F (1973) Lysosomes and Storage Diseases. Academic Press, New York.Google Scholar
  67. Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA, Burton M, Bellinger DA, Read MS, Brinkhous KM, Podsakoff GM, Nichols TC, Kurtzman GJ and High KA (1999) Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med, 5, 56-63.PubMedGoogle Scholar
  68. Hesselink RP, Gorselink M, Schaart G, Wagenmakers AJ, Kamphoven J, Reuser AJ, Van Der Vusse GJ and Drost MR (2002) Impaired performance of skeletal muscle in alpha-glucosidase knockout mice. Muscle Nerve, 25, 873-83.PubMedGoogle Scholar
  69. Hesselink RP, Wagenmakers AJ, Drost MR and Van der Vusse GJ (2003) Lysosomal dysfunction in muscle with special reference to glycogen storage disease type II. Biochim Biophys Acta, 1637, 164-70.PubMedGoogle Scholar
  70. High KA (2004) Clinical gene transfer studies for hemophilia B. Semin Thromb Hemost, 30, 257-67.PubMedGoogle Scholar
  71. Hirschhorn R and Huie ML (1999) Frequency of mutations for glycogen storage disease type II in different populations: the delta525T and deltaexon 18 mutations are not generally "common" in white populations [letter; comment]. J Med Gen, 36, 85-6.Google Scholar
  72. Hirschhorn R and Reuser AJJ (2001) Glycogen storage disease type II (GSDII). In Scriver, C.R., Beaudet, A.L., Sly, W.S. and Valle, D. (Eds.), The Metabolic and Molecular Bases of Inherited Disease. 8 ed. McGraw-Hill, NY, pp. 3389-3420.Google Scholar
  73. Hoefsloot LH, Hoogeveen-Westerveld M, Kroos MA, van Beeumen J, Reuser AJ and Oostra BA (1988) Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J, 7, 1697-704.PubMedGoogle Scholar
  74. Hoefsloot LH, Hoogeveen-Westerveld M, Reuser AJJ and Oostra BA (1990) Chara-cterization of the human lysosomal alpha-glucosidase gene. Biochem J, 272, 493-497.PubMedGoogle Scholar
  75. Hug G, Chuck G, Chen YT, Kay HH and Bossen EH (1991) Chorionic villus ultra-structure in type II glycogen storage disease (Pompe’s disease) [letter]. New England Journal of Medicine, 324, 342-3.PubMedGoogle Scholar
  76. Hug G, Soukup S, Ryan M and Chuck G (1984) Rapid prenatal diagnosis of glycogen-storage disease type II by electron microscopy of uncultured amniotic-fluid cells. N Engl J Med, 310, 1018-22.PubMedGoogle Scholar
  77. Huie ML, Chen AS, Brooks SS, Grix A and Hirschhorn R (1994) A de novo 13 nt deletion, a newly identified C647W missense mutation and a deletion of exon 18 in infantile onset glycogen storage disease type II (GSDII). Hum Mol Gen, 3, 1081-7.PubMedGoogle Scholar
  78. Huie ML, Chen AS, Tsujino S, Shanske S, DiMauro S, Engel AG and Hirschhorn R (1994) Aberrant splicing in adult onset glycogen storage disease type II (GSDII): molecular identification of an IVS1 (-13TG) mutation in a majority of patients and a novel IVS10 (+1GTCT) mutation. Hum Mol Gens, 3, 2231-6.Google Scholar
  79. Hunley TE, Corzo D, Dudek M, Kishnani P, Amalfitano A, Chen YT, Richards SM, Phillips JA, 3rd, Fogo AB and Tiller GE (2004) Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease. Pediatrics, 114, e532-5.PubMedGoogle Scholar
  80. Iranzo A (2002) Article reviewed: Sleep-disordered breathing and respiratory failure in acid maltase deficiency. Sleep Med, 3, 179-80.PubMedGoogle Scholar
  81. Jung SC, Han IP, Limaye A, Xu R, Gelderman MP, Zerfas P, Tirumalai K, Murray GJ, During MJ, Brady RO and Qasba P (2001) Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci U S A, 98, 2676-81.PubMedGoogle Scholar
  82. Kakkis ED, Muenzer J, Tiller GE, Waber L, Belmont J, Passage M, Izykowski B, Phillips J, Doroshow R, Walot I, Hoft R and Neufeld EF (2001) Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med, 344, 182-8.PubMedGoogle Scholar
  83. Kamphoven JH, de Ruiter MM, Winkel LP, Van den Hout HM, Bijman J, De Zeeuw CI, Hoeve HL, Van Zanten BA, Van der Ploeg AT and Reuser AJ (2004) Hearing loss in infantile Pompe's disease and determination of underlying pathology in the knockout mouse. Neurobiol Dis, 16, 14-20.PubMedGoogle Scholar
  84. Kaplan A, Achord DT and Sly WS (1977) Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci USA, 74, 2026-2030.PubMedGoogle Scholar
  85. Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, Kurtzman GJ and Byrne BJ (1996) Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A, 93, 14082-7.PubMedGoogle Scholar
  86. Kikuchi T, Yang HW, Pennybacker M, Ichihara N, Mizutani M, Van Hove JLK and Chen YT (1998) Clinical and metabolic correction of Pompe disease by enzyme therapy in acid maltase-deficient quail. J Clin Invest, 101, 827-33.PubMedGoogle Scholar
  87. Kishnani P, Byrne, B., Vanderploeg A., Mueller-Felber, W. (2005) The Pompe Registry: Centralized data collection to outline the natural course of Pompe disease. Gen Medicine.Google Scholar
  88. Kishnani PS and Howell RR (2004) Pompe disease in infants and children. J Pediatr, 144, S35-43.PubMedGoogle Scholar
  89. Kleijer WJ, van der Kraan M, Kroos MA, Groener JE, van Diggelen OP, Reuser AJ and van der Ploeg AT (1995) Prenatal diagnosis of glycogen storage disease type II: Enzyme assay or mutation analysis? Pediatr Res, 38, 103-6.PubMedGoogle Scholar
  90. Klinge L, Straub V, Neudorf U, Schaper J, Bosbach T, Gorlinger K, Wallot M, Richards S and Voit T (2005) Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: Results of a phase II clinical trial. Neuromuscul Disord, 15, 24-31.PubMedGoogle Scholar
  91. Kohn DB, Sadelain M and Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer, 3, 477-88.PubMedGoogle Scholar
  92. Kroos MA, Kirschner J, Gellerich FN, Hermans MM, Van Der Ploeg AT, Reuser AJ and Korinthenberg R (2004) A case of childhood Pompe disease demonstrating phenotypic variability of p.Asp645Asn. Neuromuscul Disord, 14, 371-4.PubMedGoogle Scholar
  93. Kroos MA, Van der Kraan M, Van Diggelen OP, Kleijer WJ and Reuser AJ (1997) Two extremes of the clinical spectrum of glycogen storage disease type II in one family: A matter of genotype. Hum Mutat, 9, 17-22.PubMedGoogle Scholar
  94. Kroos MA, Van der Kraan M, Van Diggelen OP, Kleijer WJ, Reuser AJJ, Van den Boogaard MJ, Ausems MGEM, Ploos van Amstel HK, Poenaru L, Nicolino M and Wevers R (1995) Glycogen storage disease type II: Frequency of three common mutant alleles and their associated clinical phenotypes studied in 121 patients. J Med Genet, 32, 836-7.PubMedGoogle Scholar
  95. LaBarge MA and Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111, 589-601.PubMedGoogle Scholar
  96. Laforet P, Nicolino M, Eymard PB, Puech JP, Caillaud C, Poenaru L and Fardeau M (2000) Juvenile and adult-onset acid maltase deficiency in France: Genotype-pheno-type correlation. Neurology, 55, 1122-8.PubMedGoogle Scholar
  97. Lejeune N, Thinès-Sempoux D and Hers HG (1963) Tissue fractionation studies: Intracellular distribution and properties of a-glucosidases in rat liver. Biochem J, 86, 16-21.PubMedGoogle Scholar
  98. Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F and Gelb MH (2004) Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem.Google Scholar
  99. Lin CY and Shieh JJ (1996) Molecular study on the infantile form of Pompe disease in Chinese in Taiwan. Chung-Hua Min Kuo Hsiao Erh Ko i Hsueh Hui Tsa Chih, 37, 115-21.PubMedGoogle Scholar
  100. Lin CY, Ho CH, Hsieh YH, and Kikuchi T (2002) Adeno-associated virus-mediated transfer of human acid maltase gene results in a transient reduction of glycogen accumulation in muscle of Japanese quail with acid maltase deficiency. Gene Ther, 9, 554-63.PubMedGoogle Scholar
  101. Lu IL, Lin CY, Lin SB, Chen ST, Yeh LY, Yang FY and Au LC (2003) Correction/ mutation of acid alpha-D-glucosidase gene by modified single-stranded oligonucleo-tides: In vitro and in vivo studies. Gene Ther, 10, 1910-6.PubMedGoogle Scholar
  102. Lynch CM, Johnson J, Vaccaro C and Thurberg BL (2005) High-resolution light microscopy (HRLM) and digital analysis of Pompe disease pathology. J Histochem Cytochem, 53, 63-73.PubMedGoogle Scholar
  103. Margolis ML, Howlett P, Goldberg R, Eftychiadis A, and Levine S (1994) Obstructive sleep apnea syndrome in acid maltase deficiency. Chest, 105, 947-9.PubMedGoogle Scholar
  104. Martiniuk F and Hirschhorn R (1981) Characterization of neutral isozymes of human alpha-glucosidase: Differences in substrate specificity, molecular weight and electro-phoretic mobility. Biochim Biophys Acta, 658, 248-61.PubMedGoogle Scholar
  105. Martiniuk F, Bodkin M, Tzall S and Hirschhorn R (1990) Identification of the base-pair substitution responsible for a human acid a-glucosidase allele with lower "affinity" for glycogen (GAA 2) and transient gene expression in deficient cells. Am J Hum Genet, 47, 440-445.PubMedGoogle Scholar
  106. Martiniuk F, Mehler M, Bodkin M, Tzall S, Hirschhorn K, Zhong N and Hirschhorn R (1991) Identification of a missense mutation in an adult-onset patient with glyco-genosis type II expressing only one allele. DNA Cell Biol, 10, 681-7.PubMedGoogle Scholar
  107. Martiniuk F, Mehler M, Pellicer A, Tzall S, La Badie G, Hobart C, Ellenbogen A and Hirschhorn R (1986) Isolation of a cDNA for human acid alpha-glucosidase and detection of genetic heterogeneity for mRNA in three alpha-glucosidase-deficient patients. Proc Natl Acad Sci U S A, 83, 9641-4.PubMedGoogle Scholar
  108. Martiniuk F, Mehler M, Tzall S, Meredith G and Hirschhorn R (1990) Sequence of the cDNA and 5'-flanking region for human acid alpha-glucosidase, detection of an intron in the 5' untranslated leader sequence, definition of 18-bp polymorphisms, and differences with previous cDNA and amino acid sequences. Dna Cell Biol, 9, 85-94.PubMedGoogle Scholar
  109. McVie-Wylie AJ, Ding EY, Lawson T, Serra D, Migone FK, Pressley D, Mizutani M, Kikuchi T, Chen YT and Amalfitano A (2003) Multiple muscles in the AMD quail can be "cross-corrected" of pathologic glycogen accumulation after intravenous injection of an [E1-, polymerase-] adenovirus vector encoding human acid-alpha-glucosidase. J Gene Med, 5, 399-406.PubMedGoogle Scholar
  110. Mehler M and DiMauro S (1977) Residual acid maltase activity in late-onset acid maltase deficiency. Neurology, 27, 178-84.PubMedGoogle Scholar
  111. Mellies U, Ragette R, Schwake C, Baethmann M, Voit T and Teschler H (2001) Sleep-disordered breathing and respiratory failure in acid maltase deficiency. Neurology, 57, 1290-5.PubMedGoogle Scholar
  112. Moreland RJ, Jin X, Zhang XK, Decker RW, Albee KL, Lee KL, Cauthron RD, Brewer K, Edmunds T and Canfield WM (2004) Lysosomal acid a-glucosidase consists of four different peptides processed from a single-chain precursor. J Biol Chem. Moufarrej NA and Bertorini TE (1993) Respiratory insufficiency in adult-type acid maltase deficiency. South Med J, 86, 560-7.Google Scholar
  113. Nichols BL, Avery S, Sen P, Swallow DM, Hahn D and Sterchi E (2003) The maltase-glucoamylase gene: Common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci U S A, 100, 1432-7.PubMedGoogle Scholar
  114. Nichols BL, Eldering J, Avery S, Hahn D, Quaroni A and Sterchi E (1998) Human small intestinal maltase-glucoamylase cDNA cloning. Homology to sucrase-isomaltase. J Biol Chem, 273, 3076-81.PubMedGoogle Scholar
  115. Nicolino MP, Puech JP, Kremer EJ, Reuser AJ, Mbebi C, Verdiere-Sahuque M, Kahn A and Poenaru L (1998) Adenovirus-mediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation. Hum Molec Gen, 7, 1695-702.Google Scholar
  116. Oude Elferink RPJ, Van Doorn-Van Wakeren J, Strijland A, Reuser AJJ and Tager JM (1985) Biosynthesis and intracellular transport of a-glucosidase and cathepsin D in normal and mutant human fibroblasts. Eur J Biochem, 153, 55-63.PubMedGoogle Scholar
  117. Park HK, Kay HH, McConkie-Rosell A, Lanman J and Chen YT (1992) Prenatal diagnosis of Pompe's disease (type II glycogenosis) in chorionic villus biopsy using maltose as a substrate. Prenatal Diagnosis, 12, 169-73.PubMedGoogle Scholar
  118. Pauly DF, Fraites TJ, Toma C, Bayes HS, Huie ML, Hirschhorn R, Plotz PH, Raben N, Kessler PD and Byrne BJ (2001) Intercellular transfer of the virally derived precursor form of acid alpha-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy Pompe disease. Hum Gene Ther, 12, 527-38.PubMedGoogle Scholar
  119. Pauly DF, Johns DC, Matelis LA, Lawrence JH, Byrne BJ and Kessler PD (1998) Complete correction of acid alpha-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle. Gene Ther, 5, 473-80.PubMedGoogle Scholar
  120. Pompe JC (1932) Over idiopathische hypertrofie van het hart. Ned Tijdsch Geneesk, 76, 304-311.Google Scholar
  121. Putschar W (1932) Uber angeborne Glycogenspeicherkrankheit des herzens: Thesauris-mosis glycogenica (v.Gierke). Beitr Pathol Anat, 90, 222.Google Scholar
  122. Raben N, Fukuda T, Gilbert AL, de Jong D, Thurberg BL, Mattaliano RJ, Meikle P, Hopwood JJ, Nagashima K, Nagaraju K and Plotz PH (2005) Replacing acid alpha-glucosidase in Pompe disease: Recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers. Mol Ther, 11, 48-56.PubMedGoogle Scholar
  123. Raben N, Lu N, Nagaraju K, Rivera Y, Lee A, Yan B, Byrne B, Meikle PJ, Umapathysivam K, Hopwood JJ and Plotz PH (2001) Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: Implications for therapy. Hum Mol Genet, 10, 2039-2047.PubMedGoogle Scholar
  124. Raben N, Nagaralu K, Lee E, Kessler P, Byrne B, Lee L, LaMarca M, King C, Ward J, Sauer B and Plotz P (1998) Targeted disruption of the acid a-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J Biol Chem, 273, 19086-19092.PubMedGoogle Scholar
  125. Raben N, Plotz P and Byrne BJ (2002) Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med, 2, 145-66.PubMedGoogle Scholar
  126. Reuser AJ, Kroos M, Oude Elferink RP and Tager JM (1985) Defects in synthesis, phosphorylation, and maturation of acid alpha-glucosidase in glycogenosis type II. J Biol Chem, 260, 8336-41.PubMedGoogle Scholar
  127. Reuser AJ, Kroos MA, Ponne NJ, Wolterman RA, Loonen MC, Busch HF, Visser WJ and Bolhuis PA (1984) Uptake and stability of human and bovine acid alpha-glucosidase in cultured fibroblasts and skeletal muscle cells from glycogenosis type II patients. Experimental Cell Research, 155, 178-89.PubMedGoogle Scholar
  128. Reuser AJ, Kroos M, Willemsen R, Swallow D, Tager JM and Galjaard H (1987) Clinical diversity in glycogenosis type II. Biosynthesis and in situ localization of acid alpha-glucosidase in mutant fibroblasts. J Clin Invest, 79, 1689-99.PubMedGoogle Scholar
  129. Reuser AJJ, Koster JF, Hoogeveen A and Galjaard H (1978) Biochemical, immuno-logical, and cell genetic studies in glycogenosis type II. Am J Hum Genet, 30, 132-143.PubMedGoogle Scholar
  130. Reuser AJJ, Kroos MA, Hermans MMP, Bijvoet AGA, Verbeet MP, Van Diggelen OP, Kleijer WJ and Van der Ploeg AT (1995) Glycogenosis type II (acid maltase deficiency). Muscle Nerve, 3, S61-S69.PubMedGoogle Scholar
  131. Rinaldo P, Tortorelli S and Matern D (2004) Recent developments and new applications of tandem mass spectrometry in newborn screening. Curr Opin Pediatr, 16, 427-33.PubMedGoogle Scholar
  132. Rucker M, Fraites TJ, Jr., Porvasnik SL, Lewis MA, Zolotukhin I, Cloutier DA and Byrne BJ (2004) Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Development, 131, 3007-19.PubMedGoogle Scholar
  133. Sarkar R, Tetreault R, Gao G, Wang L, Bell P, Chandler R, Wilson JM and Kazazian HH, Jr. (2004) Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood, 103, 1253-60.PubMedGoogle Scholar
  134. Shieh JJ and Lin CY (1998) Frequent mutation in Chinese patients with infantile type of GSD II in Taiwan: Evidence for a founder effect. Hum Mutation, 11, 306-12.Google Scholar
  135. Shieh JJ, Wang LY and Lin CY (1994) Point mutation in Pompe disease in Chinese. J Inherited Metab Disease, 17, 145-8.Google Scholar
  136. Sleeper MM, Fornasari B, Ellinwood NM, Weil MA, Melniczek J, O'Malley TM, Sammarco CD, Xu L, Ponder KP and Haskins ME (2004) Gene therapy ameliorates cardiovascular disease in dogs with mucopolysaccharidosis VII. Circulation, 110, 815-20.PubMedGoogle Scholar
  137. Slonim AE, Bulone L, Ritz S, Goldberg T, Chen A and Martiniuk F (2000) Identification of two subtypes of infantile acid maltase deficiency. J Pediatr, 137, 283-5.PubMedGoogle Scholar
  138. Snyder RO, Miao C, Meuse L, Tubb J, Donahue BA, Lin HF, Stafford DW, Patel S, Thompson AR, Nichols T, Read MS, Bellinger DA, Brinkhous KM and Kay MA (1999) Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med, 5, 64-70.PubMedGoogle Scholar
  139. Su H, Arakawa-Hoyt J and Kan YW (2002) Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci U S A, 99, 9480-5.PubMedGoogle Scholar
  140. Sun B, Chen YT, Bird A, Amalfitano A and Koeberl DD (2003) Long-term correction of glycogen storage disease type II with a hybrid Ad-AAV vector. Mol Ther, 7, 193-201.PubMedGoogle Scholar
  141. Sun B, Chen YT, Bird A, Xu F, Hou YX, Amalfitano A and Koeberl DD (2003) Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector. Mol Ther, 7, 467-77.PubMedGoogle Scholar
  142. Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A, Amalfitano A, Chen YT and Koeberl DD (2005) Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther, 11, 57-65.PubMedGoogle Scholar
  143. Swallow DM, Corney G, Harris H and Hirschhorn R (1975) Acid a-glucosidase: a new polymorphism in man demonstrable by 'affinity' electrophoresis. Ann Hum Genet, 1975, 391-406.Google Scholar
  144. Swallow DM, Kroos M, Van der Ploeg AT, Griffiths B, Islam I, Marenah CB and Reuser AJ (1989) An investigation of the properties and possible clinical significance of the lysosomal a-glucosidase GAA*2 allele. Ann Hum Genet, 53, 177-84.PubMedGoogle Scholar
  145. Tsujino S, Kinoshita N, Tashiro T, Ikeda K, Ichihara N, Kikuchi H, Hagiwara Y, Mizutani M, Kikuchi T and Sakuragawa N (1998) Adenovirus-mediated transfer of human acid maltase gene reduces glycogen accumulation in skeletal muscle of Japanese quail with acid maltase deficiency. Hum Gene Ther, 9, 1609-16.PubMedGoogle Scholar
  146. Umapathysivam K, Whittle AM, Ranieri E, Bindloss C, Ravenscroft EM, van Diggelen OP, Hopwood JJ and Meikle PJ (2000) Determination of acid alpha-glucosidase protein: Evaluation as a screening marker for Pompe disease and other lysosomal storage disorders. Clin Chem, 46, 1318-1325.PubMedGoogle Scholar
  147. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A and Van der Ploeg AT (2000) Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet, 356, 397-8.PubMedGoogle Scholar
  148. Van den Hout HM, Hop W, Van Diggelen OP, Smeitink JA, Smit GP, Poll-The BT, Bakker HD, Loonen MC, de Klerk JB, Reuser AJJ and Van der Ploeg AT (2003) The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics, 112, 332-340.PubMedGoogle Scholar
  149. Van den Hout JM, Kamphoven JH, Winkel LP, Arts WF, De Klerk JB, Loonen MC, Vulto AG, Cromme-Dijkhuis A, Weisglas-Kuperus N, Hop W, Van Hirtum H, Van Diggelen OP, Boer M, Kroos MA, Van Doorn PA, Van der Voort E, Sibbles B, Van Corven EJ, Brakenhoff JP, Van Hove J, Smeitink JA, de Jong G, Reuser AJ and Van der Ploeg AT (2004) Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics, 113, e448-57.PubMedGoogle Scholar
  150. Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA and Van der Ploeg AT (2001) Enzyme therapy for Pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis, 24, 266-74.PubMedGoogle Scholar
  151. Van der Kraan M, Kroos MA, Joosse M, Bijvoet AG, Verbeet MP, Kleijer WJ and Reuser AJ (1994) Deletion of exon 18 is a frequent mutation in glycogen storage disease type II. Biochem Biophys Res Commun, 203, 1535-41.PubMedGoogle Scholar
  152. van der Ploeg AT, Kroos M, van Dongen JM, Visser WJ, Bolhuis PA, Loonen MC and Reuser AJ (1987) Breakdown of lysosomal glycogen in cultured fibroblasts from glycogenosis type II patients after uptake of acid alpha-glucosidase. J Neurol Sci, 79, 327-36.PubMedGoogle Scholar
  153. Van der Ploeg AT, Bolhuis PA, Wolterman RA, Visser JW, Loonen MC, Busch HF and Reuser AJ (1988) Prospect for enzyme therapy in glycogenosis II variants: A study on cultured muscle cells. J Neurol, 235, 392-6.PubMedGoogle Scholar
  154. Van der Ploeg AT, Kroos MA, Willemsen R, Brons NH and Reuser AJ (1991) Intravenous administration of phosphorylated acid alpha-glucosidase leads to uptake of enzyme in heart and skeletal muscle of mice. J Clin Invest, 87, 513-8.PubMedGoogle Scholar
  155. Van der Ploeg AT, Loonen MC, Bolhuis PA, Busch HM, Reuser AJ and Galjaard H (1988) Receptor-mediated uptake of acid alpha-glucosidase corrects lysosomal glycogen storage in cultured skeletal muscle. Pediatr Res, 24, 90-4.PubMedGoogle Scholar
  156. Van der Ploeg AT, Van der Kraaij AM, Willemsen R, Kroos MA, Loonen MC, Koster JF and Reuser AJ (1990) Rat heart perfusion as model system for enzyme replacement therapy in glycogenosis type II. Pediatr Res, 28, 344-7.PubMedGoogle Scholar
  157. Van Hove JL, Yang HW, Wu JY, Brady RO and Chen YT (1996) High-level production of recombinant human lysosomal acid alpha-glucosidase in Chinese hamster ovary cells which targets to heart muscle and corrects glycogen accumulation in fibroblasts from patients with Pompe disease. Proc Nat Acad Sci USA, 93, 65-70.PubMedGoogle Scholar
  158. Vorgerd M, Burwinkel B, Reichmann H, Malin JP and Kilimann MW (1998) Adult-onset glycogen storage disease type II: Phenotypic and allelic heterogeneity in German patients. Neurogenetics, 1, 205-211.PubMedGoogle Scholar
  159. Whitaker CH, Felice KJ and Natowicz M (2004) Biopsy-proven alpha-glucosidase deficiency with normal lymphocyte enzyme activity. Muscle Nerve, 29, 440-2.PubMedGoogle Scholar
  160. Willemsen R, van der Ploeg AT, Busch HF, Zondervan PE, Van Noorden CJ and Reuser AJ (1993) Synthesis and in situ localization of lysosomal alpha-glucosidase in muscle of an unusual variant of glycogen storage disease type II. Ultrastruct Pathol, 17, 515-27.PubMedGoogle Scholar
  161. Winkel LP (2005) The natural course of non classic Pompe disease; review of 225 published cases. in press.Google Scholar
  162. Winkel LP, Kamphoven JH, Van Den Hout HJ, Severijnen LA, Van Doorn PA, Reuser AJ and Van Der Ploeg AT (2003) Morphological changes in muscle tissue of patients with infantile Pompe's disease receiving enzyme replacement therapy. Muscle Nerve, 27, 743-51.PubMedGoogle Scholar
  163. Winkel LP, Van den Hout JM, Kamphoven JH, Disseldorp JA, Remmerswaal M, Arts WF, Loonen MC, Vulto AG, Van Doorn PA, De Jong G, Hop W, Smit GP, Shapira SK, Boer MA, van Diggelen OP, Reuser AJ and Van der Ploeg AT (2004) Enzyme replacement therapy in late-onset Pompe's disease: A three-year follow-up. Ann Neurol, 55, 495-502.PubMedGoogle Scholar
  164. Wisselaar HA, Kroos MA, Hermans MM, van Beeumen J and Reuser AJ (1993) Structural and functional changes of lysosomal acid alpha-glucosidase during intra-cellular transport and maturation. J Biol Chem, 268, 2223-31.PubMedGoogle Scholar
  165. Wokke JH, Ausems MG, van den Boogaard MJ, Ippel EF, van Diggelene O, Kroos MA, Boer M, Jennekens FG, Reuser AJ and Ploos van Amstel HK (1995) Genotype-phenotype correlation in adult-onset acid maltase deficiency. Ann Neurol, 38, 450-454.PubMedGoogle Scholar
  166. Zaretsky JZ, Candotti F, Boerkoel C, Adams EM, Yewdell JW, Blaese RM and Plotz PH (1997) Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts results in phenotypic spread of the genotypic correction by both secretion and fusion [published erratum appears in Hum Gene Ther 1998 Apr 10;9(6):930]. Hum Gene Ther, 8, 1555-63.PubMedGoogle Scholar
  167. Zellweger H, Illingworth Brown B, McCormick WF and Tu JB (1965) A mild from of muscular glycogenosis in two brothers with a-1,4-glucosidase deficiency. Ann Paediat, 205, 412-437.Google Scholar
  168. Zhu Y, Li X, Kyazike J, Zhou Q, Thurberg BL, Raben N, Mattaliano RJ and Cheng SH (2004) Conjugation of mannose 6-phosphate-containing oligosaccharides to acid alpha -glucosidase improves the clearance of glycogen in Pompe mice. J Biol Chem. 279: 50336-41.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Arnold Reuser
    • 1
  • Marian Kroos
    • 1
  1. 1.Department of Clinical GeneticsErasmus MCNetherlands

Personalised recommendations