Advertisement

The Neuronal Ceroid Lipofuscinoses: Clinical Features and Molecular Basis of Disease

  • Beverly L. Davidson
  • Mario A. Cabrera-Salazar
  • David A. Pearce

The neuronal ceroid lipofuscinoses (NCLs) are among the most common groups of fatal neurodegenerative diseases affecting children, being estimated at 1 in 12,000 live births. To date, all NCLs, collectively known as Batten disease, have recessive modes of inheritance. The original classification of the NCLs relied on a combination of histological qualities of tissues harvested from patients, and symptoms of disease. More recently, classical genetics and biochemical approaches have revealed the molecular basis of six of the seven loci causative of the NCLs. In this chapter we describe the genetic and biochemical distinctions among the NCLs and representative animal models, and review what is known currently about the proteins encoded.

Keywords

Neuronal Ceroid Lipofuscinosis Lafora Disease Batten Disease Progressive Retinal Atrophy Infantile Neuronal Ceroid Lipofuscinosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberg LE, Backman M, Kirveskari E, Santavuori P, (2000). Epilepsy and antiepileptic drug therapy in juvenile neuronal ceroid lipofuscinosis. Epilepsia 41(10): 1296-1302.CrossRefPubMedGoogle Scholar
  2. Bellizzi JJ 3rd, Widom J, Kemp C, Lu JY, Das AK, Hofmann SL, Clardy J, (2000). The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis. Proc Natl Acad Sci USA 97: 4573-4578.CrossRefPubMedGoogle Scholar
  3. Bolivar VJ, Scott Ganus J, Messer A, (2002). The development of behavioral abnor-malities in the motor neuron degeneration (mnd) mouse. Brain Res 937: 74-82.CrossRefPubMedGoogle Scholar
  4. Boustany RM, Alroy J, Kolodny EH, (1988). Clinical classification of neuronal ceroid-lipofuscinosis subtypes. Am J Med Genet Suppl. 5:47-58.CrossRefPubMedGoogle Scholar
  5. Bronson RT, Donahue LR, Johnson KR, Tanner A, Lane PW, Faust JR, (1998). Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9. Am J Med Genet 77: 289-297.CrossRefPubMedGoogle Scholar
  6. Broom MF, Zhou C, (2001). Fine mapping of ovine ceroid lipofuscinosis confirms orthology with CLN6. Eur J Paediatr Neurol 5 Suppl A: 33-35.Google Scholar
  7. Calero G, Gupta P, Nonato MC, Tandel S, Biehl ER, Hofmann SL, Clardy J, (2003). The crystal structure of palmitoyl protein thioesterase-2 (PPT2) reveals the basis for divergent substrate specificities of the two lysosomal thioesterases, PPT1 and PPT2. J Biol Chem 278: 37957-37964.CrossRefPubMedGoogle Scholar
  8. Chattopadhyay S and Pearce DA, (2000). Neural and extraneural expression of the neuronal ceroid lipofuscinoses genes CLN1, CLN2, and CLN3: functional implica-tions for CLN3. Mol Genet Metab 71: 207-211.CrossRefPubMedGoogle Scholar
  9. Cotman SL, Vrbanac V, Lebel LA, Lee RL, Johnson KA, Donahue LR, Teed AM, Antonellis K, Bronson RT, Lerner TJ, MacDonald ME, (2002). Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth. Hum Mol Genet 11: 2709-2721.CrossRefPubMedGoogle Scholar
  10. Crystal RG, Sondhi D, Hackett NR, Kaminsky SM, Worgall S, Stieg P, Souweidane M, Hosain S, Heier L, Ballon D, Dinner M, Wisniewski K, Kaplitt M, Greenwald BM, Howell JD, Strybing K, Dyke J, Voss H, (2004). Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther 15: 1131-1154.PubMedGoogle Scholar
  11. Das AK, Becerra CH, Yi W, Lu JY, Siakotos AN, Wisniewski KE, Hofmann SL, (1998). Molecular genetics of palmitoyl-protein thioesterase deficiency in the U.S. J Clin Invest 102(2): 361-370.CrossRefPubMedGoogle Scholar
  12. Das AK, Lu JY, Hoffman SL, (2001). Biochemical analysis of mutations in palmitoyl-protein thioesterase causing infantile and late-onset forms of neuronal ceroid lipo-fuscinosis. Hum Mol Genet 10:1431-1439.CrossRefPubMedGoogle Scholar
  13. Dhar S, Bitting RL, Rylova SN, Jansen PJ, Lockhart E, Koeberl DD, Amalfitano A, Boustany RM, (2002). Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic CLN3- and CLN2-deficient neurons. Ann Neurol 51: 448-466.CrossRefPubMedGoogle Scholar
  14. Ezaki J, and Kominami E, 2004. The intracellular location and function of proteins of neuronal ceroid lipofuscinoses. Brain Pathol 14: 77-85.PubMedGoogle Scholar
  15. Ezaki J, Takeda-Ezaki M, Koike M, Ohsawa Y, Taka H, Mineki R, Murayama K, Uchiyama Y, Ueno T, Kominami E, (2003). Characterization of Cln3p, the gene product responsible for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein. J Neurochem 87: 1296-1308.CrossRefPubMedGoogle Scholar
  16. Ezaki J, Tanida I, Kanehagi N, Kominami E, (1999). A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degra-dation of a hydrophobic protein, the subunit c of ATP synthase. J Neurochem 72: 2573-2582.CrossRefPubMedGoogle Scholar
  17. Ezaki J, Wolfe LS, Kominami E, (1997). Decreased lysosomal subunit c-degrading activity in fibroblasts from patients with late infantile neuronal ceroid lipofuscinosis. Neuropediatrics 28: 53-55.CrossRefPubMedGoogle Scholar
  18. Gao H, Boustany RM, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, Gillis T, Qin X, Liu S, Donahue LR, Bronson RT, Faust JR, Stout D, Haines JL, Lerner TJ, MacDonald ME, (2002). Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet 70: 324-335.CrossRefPubMedGoogle Scholar
  19. Golabek AA, Kida E, Walus M, Wujek P, Mehta P, Wisniewski KE, (2000). CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer’s amyloid-beta protein precursor and cathepsin D in human cells. Mol Genet Metab 70: 203-213.CrossRefPubMedGoogle Scholar
  20. Golabek AA, Kida E, Walus M, Wujek P, Mehta P, Wisniewski KE, (2003) Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I. J Biol Chem 278: 7135-7145.CrossRefPubMedGoogle Scholar
  21. Golabek AA, Walus M, Wisniewski KE, Kida E, (2005). Glycosaminoglycans modulate activation, activity, and stability of tripeptidyl-peptidase I in vitro and in vivo. J Biol Chem 280: 7550-7561.CrossRefPubMedGoogle Scholar
  22. Griffey M, Bible E, Vogler C, Levy B, Gupta P, Cooper J, Sands MS, (2004). Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of Infantile Neuronal Ceroid Lipofus-cinosis (INCL). Neurobiol Dis 16: 360-369.CrossRefPubMedGoogle Scholar
  23. Griffey MA, Wozniak D, Wong M, Bible E, Johnson K, Rothman SM, Wentz AE, Cooper JD, Sands MS, (2006).CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther. 13: 538-547.CrossRefPubMedGoogle Scholar
  24. Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA, Hammer RE, Hofmann SL, (2001). Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. PNAS, USA 98: 13566-13571.CrossRefGoogle Scholar
  25. Haskell RE, Carr CJ, Pearce DA, Bennett MJ, Davidson BL (2000). Batten Disease: Evaluation of CLN3 mutations on protein trafficking and function. Hum Mol Genet 9: 735-744.CrossRefPubMedGoogle Scholar
  26. Haskell RE, Hughes SM, Chiorini JA, Alisky JM, Davidson BL, (2003). Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, TPP I to the mouse central nervous system. Gene Ther 10: 34-42.CrossRefPubMedGoogle Scholar
  27. Heine C, Koch B, Storch S, Kohlschutter A, Palmer DN, Braulke T, (2004). Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degrada-tion of endocytosed arylsulfatase A. J Biol Chem 279: 22347-22352.CrossRefPubMedGoogle Scholar
  28. Heinonen O, Salonen T, Jalanko A, Peltonen L, Copp A, (2000). CLN-1 and CLN-5, genes for infantile and variant late infantile neuronal ceroid lipofuscinoses, are expressed in the embryonic human brain. J Comp Neurol 426: 406-412.CrossRefPubMedGoogle Scholar
  29. Hellsten E, Vesa J, Olkkonen VM, Jalanko A, Peltonen L, (1996). Human palmitoyl protein thioesterase: Evidence for lysosomal targeting of the enzyme and disturbed cellular routing in infantile neuronal ceroid lipofuscinosis. EMBO J 15: 5240-5245.PubMedGoogle Scholar
  30. Holmberg V, Jalanko A, Isosomppi J, Fabritius AL, Peltonen L, Kopra O, (2004). The mouse ortholog of the neuronal ceroid lipofuscinosis CLN5 gene encodes a soluble lysosomal glycoprotein expressed in the developing brain. Neurobiol Dis 16: 29-40.CrossRefPubMedGoogle Scholar
  31. Holmberg V, Lauronen L, Autti T, Santavuori P, Savukoski M, Uvebrant P, Hofman I, Peltonen L, Jarvela I, (2000). Phenotype-genotype correlation in eight patients with Finnish variant late infantile NCL (CLN5). Neurology 55: 579-581.PubMedGoogle Scholar
  32. Holopainen JM, Saarikoski J, Kinnunen PK, Jarvela I, (2001). Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur J Biochem 268: 5851-5856.CrossRefPubMedGoogle Scholar
  33. Isosomppi J, Heinonen O, Hiltunen JO, Greene ND, Vesa J, Uusitalo A, Mitchison HM, Saarma M, Jalanko A, Peltonen L, (1999). Developmental expression of palmitoyl protein thioesterase in normal mice. Brain Res Dev Brain Res 118: 1-11.CrossRefPubMedGoogle Scholar
  34. Isosomppi J, Vesa J, Jalanko A, Peltonen L, (2002). Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. Hum Mol Genet 11: 885-891.CrossRefPubMedGoogle Scholar
  35. Jalanko A, Vesa J, Manninen T, von Schantz C, Minye H, Fabritius AL, Salonen T, Rapola J, Gentile M, Kopra O, Peltonen L, (2005). Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of inter-neurons. Neurobiol Dis 18: 226-241.CrossRefPubMedGoogle Scholar
  36. Jarvela I, Lehtovirta M, Tikkanen R, Kyttala A, Jalanko A, (1999). Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum Mol Genet 8 (6): 1091-1098.CrossRefPubMedGoogle Scholar
  37. Kaspar BK, Erickson D, Schaffer D, Hinh L, Gage Fh, Peterson DA (2002). Targeted retrograde gene delivery for neuronal protection. Mol Ther 5: 50-56.CrossRefPubMedGoogle Scholar
  38. Katz ML, Shibuya H, Liu PC, Kaur S, Gao CL, Johnson GS, (1999). A mouse gene knockout model for juvenile ceroid-lipofuscinosis (Batten disease). J Neurosci Res 57: 551-556.CrossRefPubMedGoogle Scholar
  39. Kida E, Golabek AA, Walus M, Wujek P, Kaczmarski W, Wisniewski KE, (2001). Distribution of tripeptidyl peptidase I in human tissues under normal and pathological conditions. J Neuropathol Exp Neurol 60: 280-292.PubMedGoogle Scholar
  40. Kim M, Mao Q, Davidson BL, Wiemer DF, (2003). Tripeptide probes for tripeptidyl protease I production via gene transfer. J Med Chem 46: 1603-1608.CrossRefPubMedGoogle Scholar
  41. Kopan S, Sivasubramaniam U, Warburton MJ, (2004). The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis. Biochem Biophys Res Commun 319: 58-65.CrossRefPubMedGoogle Scholar
  42. Kopra O, Vesa J, von Schantz C, Manninen T, Minye H, Fabritius AL, Rapola J, van Diggelen OP, Saarela J, Jalanko A, Peltonen L, (2004). A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging. Hum Mol Genet 13: 2893-2906.CrossRefPubMedGoogle Scholar
  43. Lake BD, Steward CG, Oakhill A, Wilson J, Perham TG, (1997). Bone marrow trans-plantation in late infantile Batten disease and juvenile Batten disease. Neuropediatrics. 28: 80-81.CrossRefPubMedGoogle Scholar
  44. Lerner TJ, Boustany RM, Anderson JW, D'Arigo KL, Schlumpf K, Bucker AJ, Gusella JF, Haines JL, Kremmidiotis G, Lensink IL, Sutherland GR, Callen DF, Taschner PE, De Vos N, Van Ommen GJ, Breuning MH, Doggett NA, Meincke LJ, Liu Z, Goodwin LA, Tesmer JG, Mitchson HM, O’Rawe AM, Munroe PB (1995). Isolation of a novel gene underlying Batten disease, CLN3. Cell 82: 949-957.CrossRefGoogle Scholar
  45. Lin NL, Lobel P (2001) A. Production and characterization of recombinant human CLN2 protein for enzyme-replacement therapy in late infantile neuronal ceroid lipofus. Biochem J 357:49-55.CrossRefPubMedGoogle Scholar
  46. Lin NL, Sohart I, Lackland H, Lobel P (2001) B. The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH. J Biol Chem 276: 2249-2255.PubMedGoogle Scholar
  47. Liu CG, Sleat DE, Donnelly RJ, Lobel P (1998). Structural organization and sequence of CLN2, the defective gene in classical late infantile neuronal ceroid lipofuscinosis. Genomics 50: 206-212.CrossRefPubMedGoogle Scholar
  48. Lonka L, Kyttala A, Ranta S, Jalanko A, Lehesjoki AE (2000). The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum. Hum Mol Genet 9: 1691-1697.CrossRefPubMedGoogle Scholar
  49. Luiro K, Kopra O, Lehtovirta M, Jalanko A (2001). CLN3 protein is targeted to neuronal synapses but excluded from synaptic vesicles: New clues to Batten disease. Hum Mol Genet 10: 2123-2131.CrossRefPubMedGoogle Scholar
  50. Mao Q, Foster BJ, Xia H, Davidson BL, (2003a). Membrane topology of CLN3, the protein underlying Batten disease. FEBS Lett 541: 40-46.CrossRefGoogle Scholar
  51. Mao Q, Xia H, Davidson BL, (2003b). Intracellular trafficking of CLN2, the protein underlying the childhood neurodegenerative disease, Batten disease. FEBS Lett 555: 351-357.CrossRefGoogle Scholar
  52. Margraf LR, Boriack RL, Routheut AA, Cuppen I, Alhilali L, Bennett CJ, Bennett MJ, (1999). Tissue expression and subcellular localion of CLN3, the Batten disease protein. Mol Gen Metab 66: 283-289.CrossRefGoogle Scholar
  53. Marshall FJ, De Blieck EA, Mink JW, Dure L, Adams H, Messin, S, Rothberg PG, Levy E, McDonough T, DeYoung J, Wang M, Ramirez-Montealegre D, Kwon JM, Pearce DA, (2005) A clinical rating scale for Batten disease: Reliable and relevant for clinical trials. Neurology 65(2): 275-279.CrossRefPubMedGoogle Scholar
  54. Mitchison HM, Bernard DJ, Greene ND, Cooper JD, Junaid MA, Pullarkat RK, de Vos N, Breuning MH, Owens JW, Mobley WC, Gardiner RM, Lake BD, Taschner PE, Nussbaum RL (1999). Targeted disruption of the Cln3 gene provides a mouse model for Batten disease. The Batten Mouse Model Consortium (corrected). Neurobiol Dis 6: 321-334.CrossRefPubMedGoogle Scholar
  55. Mitchison HM, Lim MJ, Cooper JD, (2004). Selectivity and types of cell death in the neuronal ceroid lipofuscinoses. Brain Pathol 14: 86-96.PubMedCrossRefGoogle Scholar
  56. Mole SA, Michaux G, Godlin S, Wheeler RB, Sharp JD, Cutler DF, (2004). CLN6, which is associated with a lysosomal storage disease, is an endoplasmic reticulum protein. Exp Cell Res 298: 399-406.CrossRefPubMedGoogle Scholar
  57. Mole SE (2004). The genetic spectrum of human neuronal ceroid-lipofuscinoses. Brain Pathol 14: 70-76.PubMedGoogle Scholar
  58. Padilla-Lopez S, Pearce DA, (2006). Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity in order to regulate pH imbalance in the vacuole. J Biol Chem. 281: 10273-10280CrossRefPubMedGoogle Scholar
  59. Passini MA, Dodge JC, Bu J, Yang W, Zhao Q, Sondhi D, Hackett NR, Kaminsky SM, Mao Q, Shihabuddin LS, Cheng SH, Sleat DE, Stewart GR, Davidson BL, Lobel P, Crystal RG, (2006). Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci. 26: 1334-1342.CrossRefPubMedGoogle Scholar
  60. Pearce DA, Ferea T, Nosel SA, Das B, Sherman F (1999). Action of Btn1p, the yeast ortholog of the human Batten disease gene. Nat Genet 22: 55-58.CrossRefPubMedGoogle Scholar
  61. Persaud-Sawin DA, Vandongen A, Boustany RM, (2002). Motifs within the CLN3 protein: Modulation of cell growth rates and apoptosis. Hum Mol Genet 11: 2129-2142.CrossRefPubMedGoogle Scholar
  62. Pontikis CC, Cella CV, Parihar N, Lim MJ, Chakrabarti S, Mitchison HM, Mobley WC, Rezaie P, Pearce DA, Cooper JD, (2004). Late onset neurodegeneration in the Cln3-/-mouse model of juvenile neuronal ceroid lipofuscinosis is preceded by low level glial activation. Brain Res 1023: 231-242.CrossRefPubMedGoogle Scholar
  63. Puranam KL, Guo WX, Qian WH, Nikbakht K, Boustany RM (1999). CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol Gen Metab 66: 294-308.CrossRefGoogle Scholar
  64. Ranta S, Topcu M, Tegelberg S, Tan H, Ustubutun A, Saatci I, Dufke A, Enders H, Pohl K, Alembik Y, Mitchell WA, Mole SE, Lehesjoki AE, (2004). Variant late infantile neuronal ceroid lipofuscinosis in a subset of Turkish patients is allelic to Northern epilepsy. Hum Mutat 23: 300-305.CrossRefPubMedGoogle Scholar
  65. Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, Sharp J, Wheeler R, Kusumi K, Mole S, Liu W, Soares MB, Bonaldo MF, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE, (1999). The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet 23: 233-236.CrossRefPubMedGoogle Scholar
  66. Salonen T, Heinonen-Kopra O, Vesa J, Jalanko A, (2001). Neuronal trafficking of palmi-toyl protein thioesterase provides an excellent model to study the effects of different mutations which cause infantile neuronal ceroid lipofuscinocis. Mol Cell Neurosci 18: 131-140.CrossRefPubMedGoogle Scholar
  67. Santavuori P, Rapola J, Nuutila A, Raininko R, Lappi M, Launes J, Herva R, Sainio K, (1991). The spectrum of Jansky-Bielschowsky disease. Neuropediatrics 22: 92-96.CrossRefPubMedGoogle Scholar
  68. Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L, (1998). CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet 19: 286-288.CrossRefPubMedGoogle Scholar
  69. Shahwan A, Farrell M, Delanty N, (2005). Progressive myoclonic epilepsies: A review of genetic and therapeutic aspects. Lancet Neurol. 4: 239-248.CrossRefPubMedGoogle Scholar
  70. Sinha S, Satishchandra P, Santosh V, Gayatri N, Shankar SK (2004). Neuronal ceroid lipofuscinosis: a clinicopathological study. Seizure 13: 235-240.CrossRefPubMedGoogle Scholar
  71. Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, Lobel P, (1997). Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science 277: 1802-1805.CrossRefPubMedGoogle Scholar
  72. Sleat DE, Gin RM, Sohar I, Wisniewski K, Sklower-Brooks S, Pullarkat RK, Palmer DN, Lerner TJ, Boustany RM, Uldall P, Siakotos AN, Donnelly RJ, Lobel P, (1999). Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. Am J Hum Genet 64: 1511-1523.CrossRefPubMedGoogle Scholar
  73. Sleat DE, Wiseman JA, El-Banna M, Kim KH, Mao Q, Price S, Macauley SL, Sidman RL, Shen MM, Zhao Q, Passini MA, Davidson BL, Stewart GR, Lobel P, (2004). A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of tripeptidyl-peptidase I activity and progressive neurodegeneration. J Neurosci 24: 9117-9126.CrossRefPubMedGoogle Scholar
  74. Sohar I, Sleat DE, Jadot M, Lobel P, (1999). Biochemical characterization of a lysosomal protease deficient in classical late infantile neuronal ceroid lipofuscinosis (LINCL) and development of an enzyme-based assay for diagnosis and exclusion of LINCL in human specimens and animal models. J Neurochem. 73: 700-711.CrossRefPubMedGoogle Scholar
  75. Suopanki J, Tynela J, Baumann M, Haltia M, (1999). Palmitoyl-protein thioesterase, an enzyme implicated in neurodegeneration, is localized in neurons and is develop-mentally regulated in rat brain. Neurosci Lett 265: 53-56.CrossRefPubMedGoogle Scholar
  76. Tammen I, Cook RW, Nicholas FW, Raadsma HW, (2001). Neuronal ceroid lipofus-cinosis in Australian Merino sheep: a new animal model. Eur J Paediatr Neurol 5 Suppl A: 37-41.Google Scholar
  77. Tian Y, Sohar I, Taylor JW, Lobel P, (2006). Determination of the substrate specificity of tripeptidyl-peptidase I using combinatorial peptide libraries and development of improved fluorogenic substrates. J Biol Chem. 281: 6559-6572.CrossRefPubMedGoogle Scholar
  78. Tomkinson B, (1999). Tripeptidyl peptidases: enzymes that count. Trends Biochem Sci 24: 355-359.CrossRefPubMedGoogle Scholar
  79. Tyynela J, Palmer DN, Baumann M, Haltia M Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett. (1993) 330: 8-12.CrossRefPubMedGoogle Scholar
  80. Vanhanen SL, Puranen J, Autti T, Raininko R, Liewendahl K, Nikkinen P, Santavuori P, Suominen P, Vuori K, Hakkinen AM, (2004). Neuroradiological findings (MRS, MRI, SPECT) in infantile neuronal ceroid-lipofuscinosis (infantile CLN1) at different stages of the disease. Neuropediatrics 35: 27-35.CrossRefPubMedGoogle Scholar
  81. Verkruyse LA and Hoffman SL, (1996). Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271: 15831-15836.CrossRefPubMedGoogle Scholar
  82. Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L, (1995). Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376: 584-587.CrossRefPubMedGoogle Scholar
  83. Walus M, Kida E, Wisniewski KE, Golabek AA, (2005). Ser475, Glu272, Asp276, Asp327, and Asp360 are involved in catalytic activity of human tripeptidyl-peptidase I. FEBS Lett 579: 1383-1388.CrossRefPubMedGoogle Scholar
  84. Wheeler RB, Sharp JD, Schultz RA, Joslin JM, Williams RE, Mole SE, (2002). The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am J Hum Genet 70: 537-542.CrossRefPubMedGoogle Scholar
  85. Wisniewski KE, Zhong N, Philippart M, (2001).Pheno/genotypic correlations of neuronal ceroid lipofuscinoses. Neurology. 57: 576-581.PubMedGoogle Scholar
  86. Wujek P, Kida E, Walus M, Wisniewski KE, Golabek AA, (2004). N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I. J Biol Chem 279: 12827-12839.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Beverly L. Davidson
    • 1
  • Mario A. Cabrera-Salazar
    • 2
  • David A. Pearce
    • 3
  1. 1.Departments of Internal Medicine, Neurology, Physiology & BiophysicsUniversity of IowaIowaUSA
  2. 2.Genetic Diseases ScienceGenzyme CorporationFraminghamUSA
  3. 3.Department of Biochemistry and BiophysicsUniversity of Rochester School of MedicineRochesterUSA

Personalised recommendations