Advertisement

Lysosomal Biogenesis and Disease

  • Doug Brooks
  • Emma Parkinson-Lawrence

This chapter introduces key concepts in the area of lysosomal biogenesis, which were initially derived from the study of lysosomal storage disorders, but more recently developed from molecular studies on vesicular traffic and the cell biology of specific endosomal–lysosomal proteins. The dynamics of the endomembrane system is discussed and includes the concepts of biosynthesis, vesicular traffic, protein processing, secretion, enzyme uptake, and the degradation of macromolecular substrates to their constituents in the endosome–lysosome network. Each section highlights potential areas of dysfunction in endosome–lysosome proteins or their processing/transport machinery, and relates this to known disease states, to both enhance discussion of key areas of lysosomal biogenesis and introduce the other chapters of this book. We hypothesise that a defect at any point in the processes of endosome–lysosome biogenesis and function is susceptible to the effects of mutation and can therefore result in a genetic disease. Even for defects in the same gene, different mutations may have dramatically different effects based on how the message and gene product interact with the processing machinery and organelle milieu. In most cases mutations will have direct and obvious functional and clinical significance, but for other defects the effects may be more subtle with either only long-term significance or obvious effects at particular stages of development. Thus, an error in protein processing or vesicular traffic may be just as important to lysosomal function as a mutation in the coding sequence of a degradive lysosomal hydrolase, as iterated in this book.

Keywords

Fabry Disease Late Endosome Lysosomal Storage Disorder Endomembrane System Lysosome Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aula, N., Jalanko, A., Aula, P., and Peltonen, L., 2002, Unraveling the molecular pathogenesis of free sialic acid storage disorders: Altered targeting of mutant sialin, Mol Genet Metab. 77: 99.PubMedGoogle Scholar
  2. Baenziger, J.U., 1994, Protein-specific glycosyltransferases: How and why they do it!, FASEB J. 8: 1019.PubMedGoogle Scholar
  3. Bargal, R. and Bach, G., 1997, Mucolipidosis type IV: Abnormal transport of lipids to lysosomes, J Inher Metab Dis. 20: 625.PubMedGoogle Scholar
  4. Bargal, R., Avidan, N., Asher, B., Olender, Z., Zeigler, M., Frumkin, A., Raas-Rothschild, A., Glusman, G., Lancet, D., and Bach, G., 2000, Identification of the gene causing mucolipidosis type IV, Nature Genet. 26: 118.PubMedGoogle Scholar
  5. Barral, J.M., Broadley, S.A., Schaffar, G., and Hartl, F.U., 2004, Roles of molecular chaperones in protein misfolding diseases, Semin Cell Dev Biol. 15: 17.PubMedGoogle Scholar
  6. Bassi, M.T., Manzoni, M., Monti, E., Pizzo, M.T., Ballabio, A., and Borsani, G., 2000, Cloning of the gene encoding a novel integral membrane protein, mucolipin, and identification of the two major founder mutations causing mucolipidosis type IV, Am J Hum Genet. 67: 1110.PubMedGoogle Scholar
  7. Bergmann, J.E. and Grabowski, G.A., 1989, Posttranslational processing of human lysosomal acid beta-glucosidase: A continuum of defects in Gaucher disease type 1 and type 2 fibroblasts, Am J Hum Genet. 44: 741.PubMedGoogle Scholar
  8. Berman, E.R., Livni, N., Shapira, E., Merin, S., and Levij, I.S., 1974, Congenital corneal clouding with abnormal systemic storage bodies: A new variant of mucolipidosis, J Pediatr. 84: 519.PubMedGoogle Scholar
  9. Boles, D.J. and Proia, R.L., 1995, The molecular basis of HEXA mRNA deficiency caused by the most common Tay-Sachs disease mutation, Am J Hum Genet. 56: 716-724.PubMedGoogle Scholar
  10. Boman, A.L., 2001, GGA proteins: new players in the sorting game, J Cell Sci. 114: 3413.PubMedGoogle Scholar
  11. Bond, C.S., Clements, P.R., Ashby, S.J., Collyer, C.A., Harrop, S.J., Hopwood, J.J., and Guss, J.M., 1997, Structure of a human lysosomal sulfatase, Struct. 5: 277.Google Scholar
  12. Bonifacino, J.S. and Traub, L.M., 2003, Signals for sorting of transmembrane proteins to endosomes and lysosomes, Annu Rev Biochem. 72: 395.PubMedGoogle Scholar
  13. Bright, N.A., Reaves, B.J., Mullock, B.M., and Luzio, J.P., 1997, Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles, J Cell Sci. 110: 2027.PubMedGoogle Scholar
  14. Brooks, D.A., 1993, Immunochemical analysis of lysosomal enzymes in mucopoly-saccharidosis type I and type VI patients, J Inher Metab Dis. 16: 3.PubMedGoogle Scholar
  15. Brooks, D.A., 1997, Protein processing: a role in the pathophysiology of genetic disease, FEBS Lett. 409: 115.PubMedGoogle Scholar
  16. Brooks, D.A., McCourt, P.A.G., Gibson, G.J., Ashton, L.J., Shutter, M., and Hopwood, J.J., 1991, Analysis of N-acetylgalactosamine-4-sulfatase protein and kinetics in mucopolysaccharidosis type VI patients, Am J Hum Genet. 48: 710.PubMedGoogle Scholar
  17. Brooks, D.A., Robertson, D.A., Bindloss, C., Litjens, T., Anson, D., Peters, C., Morris, C.P., and Hopwood, J.J., 1995, Two site directed mutations abrogate enzyme activity but have different effects on conformation and cellular content of N-acetylgalactosamine 4-sulfatase protein, Biochem J. 307: 457.PubMedGoogle Scholar
  18. Bunge, S., Clements, P.R., Byers, S., Kleijer, W.J., Brooks, D.A., and Hopwood J.J., 1998, Genotype-phenotype correlations in mucopolysaccharidosis type I using enzyme kinetics immunoquantification and in vitro turnover studies, Biochim Biophys Acta. 1407: 249.PubMedGoogle Scholar
  19. Bunge, S., Kleijer, W.J., Steglich, C., Beck, M., Schwinger, E., and Gal, A., 1995, Mucopolysaccharidosis type I: identification of 13 novel mutations of the α-L-iduronidase gene, Hum Mutat. 6: 9-1.Google Scholar
  20. Chen, C-S., Bach, G., and Pagano, R.E., 1998, Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease, Proc Natl Acad Sci. 95: 6373.PubMedGoogle Scholar
  21. Cohen, F.E. and Kelly, J.W., 2003, Therapeutic approaches to protein-misfolding diseases, Nature. 426: 905.PubMedGoogle Scholar
  22. Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S.Q., Trowbridge, I.S., and Tainer, J.A., 1990, Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis, Cell. 63: 1061.PubMedGoogle Scholar
  23. Cosma, M.P., Pepe, S., Annunziata, I., Newbold, R.F., Grompe, M., Parenti, G., and Ballabio, A., 2003, The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases, Cell. 113: 445.PubMedGoogle Scholar
  24. Creek, K.E. and Sly, W.S., 1984, Lysosomes in Biology and Pathology, Amsterdam: Elsevier/North-Holland, p. 63.Google Scholar
  25. Dahms, N.M., Lobel, P., and Kornfeld, S., 1989, Mannose-6-phosphate receptors and lysosomal targeting, J Biol Chem. 264: 12115.PubMedGoogle Scholar
  26. Dahms, N.M., Lobel, P., Breitmeyer, J., Chirgwin, J.M. and Kornfeld, S., 1987, 46 kd Mannose-6-phosphate receptor: cloning, expression, and homology to the 215 kd mannose-6-phosphate receptor, Cell. 50: 181.PubMedGoogle Scholar
  27. de Duve, C., Pressman, B.C., Gianetto, R., Wattiaux, R., and Appelmans, F., 1955, Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue, Biochem J. 60: 604.PubMedGoogle Scholar
  28. Dell’Angelica, E.C., Shotelersuk, V., Aguilar, R.C., Gahl, W.A., and Bonifacino, J.S., 1999, Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor, Mol Cell. 3: 11.PubMedGoogle Scholar
  29. Dierks, T., Schmidt, B., Borissenko, L.V., Peng, J., Preusser, A., Mariappan, M., and von Figura, K., 2003, Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme, Cell. 113: 435.PubMedGoogle Scholar
  30. Dlott, B., d’Azzo, A., Quon, D.V., and Neufeld, E.F., 1990, Two mutations produce intron insertion in mRNA and elongated beta-subunit of human beta-hexosaminidase, J Biol Chem. 265: 17921.PubMedGoogle Scholar
  31. Folkerth, R.D., Alroy, J., Lomakina, I., Skutelsky, E., Raghavan, S.S., and Kolodny, E.H., 1995, Mucolipidosis IV: Morphology and histochemistry of an autopsy case, J Neuropathol Exp Neurol. 54: 154.PubMedGoogle Scholar
  32. Frischmeyer, P.A., van Hoof, A., O’Donnell, K., Guerrerio, A.L., Parker, R., and Dietz, H.C., 2002, An mRNA surveillance mechanism that eliminates transcripts lacking termination codons, Science. 295: 2258.PubMedGoogle Scholar
  33. Fukuda, M., 1991, Lysosomal membrane glycoproteins. structure, biosynthesis, and intracellular trafficking, J Biol Chem. 266: 21327.PubMedGoogle Scholar
  34. Gieselmann, V., 1995, Lysosomal storage diseases, Biochim et Biophys Acta. 1270: 103.Google Scholar
  35. Glickman, J.N. and Kornfeld, S., 1993, Mannose-6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts, J Cell Biol. 123: 99.PubMedGoogle Scholar
  36. Goebel, H.H., Kohischutter, A., and Lenard, H.G., 1982, Morphological and chemical biopsy findings in mucolipidosis IV, Clin Neuropathol. 1: 73.PubMedGoogle Scholar
  37. Goldberg, D., Gabel, C., and Kornfeld, S., 1984, Lysosomes in Biology and Pathology 7. Amsterdam: North Holland, p. 45.Google Scholar
  38. Gorlich, D. and Rapoport, T.A., 1993, Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane, Cell. 75: 615.PubMedGoogle Scholar
  39. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., 1988, The mannose-6-phosphate receptor and the biogenesis of lysosomes, Cell. 52: 329.PubMedGoogle Scholar
  40. Griffiths, G.M., 1996, Secretory lysosomes - A special mechanism of regulated secretion in haemopoietic cells, Trends Cell Biol. 6: 329.PubMedGoogle Scholar
  41. Hansen, G., Berg, T., Riise Stensland, H.M., Heikinheimo, P., Klenow, H., Evjen, G., Nilssen, O., and Tollersrud, O.K., 2004, Intracellular transport of human lysosomal alpha-mannosidase and alpha-mannosidosis-related mutants, Biochem J. 381: 537.PubMedGoogle Scholar
  42. Haslik, A., Waheed, A., and von Figura, K., 1981, Enzymatic phosphorylation of lysosomal enzymes in the presence of UDP-N-acetylglucosamine. Absence of the activity in I-cell fibroblasts, Biochem Biophys Res Commun. 98: 761.Google Scholar
  43. Hechtman, P., Boulay, B., Bayerlan, J., and Andermann, E., 1989, The mutation mechanism causing juvenile-onset Tay Sachs disease among Lebanese, Clin Genet. 35: 364.PubMedCrossRefGoogle Scholar
  44. Heikinheimo, P., Helland, R., Leiros, H.-K., Karlsen, S., Evjen, G., Ravelli, R., Schoen, G., Ruigrok, R., Tollersrud, O.K., and McSweeney, S., 2003, The structure of bovine lysosomal α-mannosidase suggests a novel mechanism for low pH activation, J Mol Biol. 327: 631.PubMedGoogle Scholar
  45. Hein, L.K., Bawden, M., Muller, V.J., Sillence, D., Hopwood, J.J., and Brooks, D.A., 2004, α-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis I patients, J Mol Biol. 338: 4-53.Google Scholar
  46. Helenius, A., Marquardt, T., and Braakman, I., 1992, The endoplasmic reticulum as a protein folding compartment, Trends Cell Biol. 2: 227.PubMedGoogle Scholar
  47. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem Sci. July: 245.Google Scholar
  48. Henseler, M., Klein, A., Reber, M., Vanier, M.T., Landrieu, P., and Sandhoff, K., 1996, Analysis of splice-site mutation in the sap-precursor gene of a patient with metachromatic leukodystrophy, Am J Hum Genet 58: 65.PubMedGoogle Scholar
  49. Hille-Rehfeld, A., 1995, Mannose-6-phosphate receptors in sorting and transport of lysosomal enzymes, Biochim Biophys Acta. 1241: 177.PubMedGoogle Scholar
  50. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R., and Jensen, T.H., 2001, Quality control of mRNA 3’-end processing is linked to the nuclear exosome, Nature. 413: 538.PubMedGoogle Scholar
  51. Hirschberg, C.B. and Snider, M.D., 1987, Topography of glycosylation in the rough endoplasmic reticulum and golgi apparatus, Ann Rev Biochem. 56: 63.PubMedGoogle Scholar
  52. Huizing, M., Sarangarajan, R., Strovel, E., Zhao, Y., Gahl, W.A., and Boissy, R.E., 2001, AP-3 mediates tyrosinase but not TRP-1 trafficking in human melanocytes, Mol Biol Cell. 12: 2075.PubMedGoogle Scholar
  53. Hurtley, S.M. and Helenius, A.,1989, Protein oligomerization in the endoplasmic reticulum, Ann Rev Cell Biol. 5: 277.PubMedGoogle Scholar
  54. Ihrke, G., Kyttälä, A., Russell, M.R., Rous, B.A., and Luzio, J.P., 2004, Differential use of two AP-3-mediated pathways by lysosomal membrane proteins, Traffic 5: 946.PubMedGoogle Scholar
  55. Itoh, K., Naganawa, Y., Matsuzawa, F., Aikawaw, S., Doi, H., Sasagasako, N., Yamada, T., Kira, J., Kobayashi, T., Pshezhetsky, A.V., and Sakuraba, H., 2002, Novel missense mutations in human lysosomal silaidase gene in sialidosis patients and prediction of structural alterations of mutant enzymes, J Hum Genet. 47: 29.PubMedGoogle Scholar
  56. Jing, S.Q., Spencer, T., Miller, K., Hopkins, C., and Trowbridge, I.S., 1990, Role of the human transferrin receptor cytoplasmic domain in endocytosis: Localization of a specific signal sequence for internalization, J Cell Biol. 110: 283.PubMedGoogle Scholar
  57. Karlsson, K. and Carlsson, S.R., 1998, Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose-6-phosphate receptor/ gamma-adaptin vesicles at the trans-golgi network, J Biol Chem. 273: 18966.PubMedGoogle Scholar
  58. Kolodny, E.H. and Fluharty, A.L., 1995, In Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D. (Eds.), The Metabolic and Molecular Bases of Inherited Disease, New York: McGraw-Hill, p. 2693.Google Scholar
  59. Kornfeld, R. and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann Rev Biochem. 54: 631.PubMedGoogle Scholar
  60. Kornfeld, S., 1986, Trafficking of lysosomal enzymes in normal and disease states, J Clin Invest. 77: 1.PubMedGoogle Scholar
  61. Kornfeld, S., 1992, Structure and function of the mannose-6-phosphate/insulinlike growth factor II receptors, Ann Rev Biochem. 61: 307.PubMedGoogle Scholar
  62. Kornfeld, S. and Mellman, I., 1989, The biogenesis of lysosomes, Ann Rev Cell Biol. 5: 483.PubMedGoogle Scholar
  63. Kyttälä, A., Yliannala, K., Schu, P., Jalanko, A., and Luzio, J.P., 2005, AP-1 and AP-3 facilitate lysosomal targeting of batten disease protein CLN3 via its dileucine motif, J Biol Chem. 280: 10277.PubMedGoogle Scholar
  64. LaPlante, J.M., Falardeau, J., Sun, M., Kanazirska, M., Brown, E.M., Slaugenhaupt, S.A., and Vassilev, P.M., 2002, Identification and characterisation of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway, FEBS Lett. 532: 183.PubMedGoogle Scholar
  65. Leblond, C.P. and Bennett, G., 1977, Role of the Golgi apparatus in terminal glycosylation. In Brinkley, B.R. and Porter, K.R. (Eds.), International Cell Biology. International congress on Cell Biology, 1976-1977, New York: Rockefeller University Press, pp. 326.Google Scholar
  66. Lee, M.C., Miller, E.A., Goldberg, J., Orci, L., and Schekman, R., 2004, Bi-directional protein transport between the ER and Golgi, Annu Rev Cell Dev Biol. 20: 87.PubMedGoogle Scholar
  67. Lee-Chen, G.J., Lin, S.P., Tang, Y.F., and Chin, Y.W., 1999, Mucopolysaccharisosis type I: characterization of novel mutations affecting α-L-iduronidase activity, Clin Genet. 56: 66.PubMedGoogle Scholar
  68. Lippincott-Schwartz, J., Bonifacio, J.S., Yuan, L.C., and Klausner, R.D., 1988, Degradation from the endoplasmic reticulum: Disposing of newly synthesized proteins, Cell. 54: 209.PubMedGoogle Scholar
  69. Lis, H. and Sharon, N., 1993, Protein glycosylation: structural and functional aspects, Eur J Biochem. 218: 1.PubMedGoogle Scholar
  70. Lobel, P., Fujimoto, K., Ye, R.D., Griffiths, G., and Kornfeld, S., 1989, Mutations in the cytoplasmic domain of the 275 kD mannose-6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis, Cell. 57: 787.PubMedGoogle Scholar
  71. Lodish, H.F., 1988, Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. A rate limiting step in protein maturation and secretion, J Biol Chem. 263: 2107.Google Scholar
  72. Lukatela, G., Krauss, N., Theis, K., Selmer, T., Gieselmann, V., von Figura, K., and Saenger, W., 1998, Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis, Biochem. 37: 3654.Google Scholar
  73. Luzio, J.P., Poupon, V., Lindsay, M.R., Mullock, B.M., Piper, R.C., and Pryor, P.R., 2003, Membrane dynamics and the biogenesis of lysosomes, Mol Membr Biol. 20: 141.PubMedGoogle Scholar
  74. Luzio, J.P., Rous, B.A., Bright, N.A., Pryor, P.R., Mullock, B.M., and Piper, R.C., 2000, Lysosome-endosome fusion and lysosome biogenesis, J Cell Sci. 113: 1515.PubMedGoogle Scholar
  75. McCracken, A.A. and Brodsky, J.L., 2003, Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD), Bioessays. 25: 868.PubMedGoogle Scholar
  76. Meacock, S.L., Greenfield, J.J., and High, S., 2000, Protein targeting and translocation at the endoplasmic reticulum membrane-through the eye of a needle?, Essays Biochem. 36: 1.PubMedGoogle Scholar
  77. Meikle, P.J., Hopwood, J.J., Clague, A.E., and Carey W.F., 1999, Prevalence of lysosomal storage disorders, JAMA. 281: 249.PubMedGoogle Scholar
  78. Menetret, J.F., Neuhof, A., Morgan, D.G., Plath, K., Radermacher, M., Rapoport, T.A., and Akey, C.W., 2000, The structure of ribosome-channel complexes engaged in protein translocation, Mol Cell. 6: 1219.PubMedGoogle Scholar
  79. Menon, K.P. and Neufeld, E.F., 1994, Evidence for degradation of mRNA encoding alpha-L-iduronidase in Hurler fibroblasts with premature termination alleles, Cell Mol Biol. 40: 999.PubMedGoogle Scholar
  80. Meresse, S. and Hoflack, B., 1993, Phosphorylation of the cation-independent mannose-6-phosphate receptor is closely associated with its exit from the trans-Golgi network, J Cell Biol. 120: 67.PubMedGoogle Scholar
  81. Meresse, S., Ludwig, T., Frank, R., and Hoflack, B., 1990, Phosphorylation of the cytoplasmic domain of the bovine cation-independent mannose-6-phosphate receptor. Serines 2421 and 2492 are the targets of a casein kinase II associated to the Golgi-derived HAI adaptor complex, J Biol Chem. 265: 18833.Google Scholar
  82. Merin, S., Livni, N., Berman, E.R., and Yatziv, S., 1975, Mucolipidosis IV: ocular systemic and ultrastructural findings, Invest Ophthal. 14: 437.PubMedGoogle Scholar
  83. Montalvo, A.L.E., Cariati, R., Deganuto, M., Guerci, V., Garcia, R., Ciana, G., Bembi, B., and Pittis, M.G., 2004, Glycogenosis type II: Identification and expression of three novel mutations in the acid α-glucosidase gene causing the infantile form of the disease, Mol Genet Metab. 81: 203.PubMedGoogle Scholar
  84. Muschol, N., Storch, S., Ballhausen, D., Beesley, C., Westermann, J.-C., Gal, A., Ullrich, K., Hopwood, J.J., Winchester, B., and Braulke, T., 2004, Transport, enzymatic activity, and stability of mutant sulfamidase (SGSH) identified in patients with mucopolysaccharidosis type IIIA, Hum Mutat. 23: 559.PubMedGoogle Scholar
  85. Myerowitz, R., and Costigan, F.C., 1988, The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase, J Biol Chem. 263: 18587.PubMedGoogle Scholar
  86. Naganawa, Y., Itoh, K., Shimmoto, M., Takiguchi, K., Doi, H., Nishizawa, Y., Kobayashi, T., Kamei, S., Lukong, K.E., Pshezhetsky, A.V., and Sakuraba, H., 2000, Molecular and structural studies of japanese patients with sialidosis type 1, J Hum Genet. 45: 241.PubMedGoogle Scholar
  87. Neuhof, A., Rolls, M.M., Jungnickel, B., Kalies, K.U., and Rapoport, T.A., 1998, Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction, Mol Biol Cell. 9: 103.PubMedGoogle Scholar
  88. Newell, F.W., Matalon, R., and Meyers, S.,1975, A new mucolipidosis with psychomotor retardation corneal clouding and retina degeneration, Am J Opyhal. 80: 440.Google Scholar
  89. Nichols, B.J., and Lippincott-Schwartz, J., 2001, Endocytosis without clathrin coats, Trends Cell Biol. 11: 406.PubMedGoogle Scholar
  90. Ogata, S. and Fukuda, M., 1994, Lysosomal targeting of limp II membrane glycoprotein requires a novel leu-ile motif at a particular position in its cytoplasmic tail, J Biol Chem. 269: 5210.PubMedGoogle Scholar
  91. Paw, B.H. and Neufeld, E.F., 1988, Normal transcription of the beta-hexosaminidase alpha-chain gene in the Ashkenazi Tay-Sachs mutation, J Biol Chem. 263: 3012.PubMedGoogle Scholar
  92. Paw, B.H., Moskowitz, S.M., Uhrhammer, N., Wright, N., Kaback, M.M., and Neufeld, E.F., 1990, Juvenile GM2 gangliosidosis caused by substitution of histidine for  arginine at position 499 or 504 of the alpha-subunit of beta-hexosaminidase, J Biol Chem. 265: 9452.PubMedGoogle Scholar
  93. Peden, A.A., Oorschot, V., Hesser, B.A., Austin, C.D., Scheller, R.H., and Klumperman, J., 2004, Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins, J Cell Biol. 164: 1065.PubMedGoogle Scholar
  94. Peltola, M., Tikkanen, R., Peltonen, L., and Jalanko, A., 1996, Ser72Pro active-site disease mutation in human lysosomal aspartylglucosaminidase: Abnormal intracellular processing and evidence for extracellular activation, Hum Mol Genet. 5: 737.PubMedGoogle Scholar
  95. Peters, C., Braun, M., Weber, B., Wendland, M., Schmidt, B., Pohlmann, R., Waheed, A., and von Figura, K., 1990, Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes, EMBO J. 9: 3497.PubMedGoogle Scholar
  96. Piper, R.C. and Luzio, J.P., 2004, CUPpling calcium to lysosomal biogenesis, Trends Cell Biol. 14: 471.PubMedGoogle Scholar
  97. Poeppel, P., Habetha, M., Marcão, A., Büssow, H., Berna, L., and Gieselmann, V., 2005, Missense mutations as a cause of metachromatic leukodystrophy. Degradation of arylsulfatse A in the endoplasmic reticulum, FEBS J. 272: 1179.Google Scholar
  98. Preiss, T. and Hentze, M.W., 1998, Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast, Nature. 392: 516.PubMedGoogle Scholar
  99. Pryor, P.R., Mullock, B.M., Bright, N., Gray, S.R., and Luzio, J.P., 2000, The role of intraorgenellar Ca2+ in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles, J Cell Biol. 149: 1053.PubMedGoogle Scholar
  100. Raden, D. and Gilmore, R., 1998, Signal recognition particle-dependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex, Mol Biol Cell. 9: 117.PubMedGoogle Scholar
  101. Raychowdhury, M.K., Gonzalez-Perrett, S., Montalbetti, N., Timpanaro, G.A., Chasan, B., Goldmann, W.H., Stahl, S., Cooney, A., Goldin, E., and Cantiello, H.F., 2004, Molecular pathophysiology of mucolipidosis type IV: pH Dysregulation of the mucolipin-1 cation channel, Hum Mol Genet. 13: 617.PubMedGoogle Scholar
  102. Reitman, M.L., Varki, A., and Kornfeld, S., 1981, Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5’-diphosphate-N-acetylglucosamine: Glycoprotein N-acetylglucosaminylphosphotransferase activity, J Clin Invest. 67: 1574.PubMedGoogle Scholar
  103. Reuser, A.J.J., Kroos, M., Oude Elferink, R.P.J., and Tager, J.M., 1985, Defects in synthesis, phosphorylation, and maturation of acid α-glucosidase in glycogenosis type II, J Biol Chem. 260: 8336.PubMedGoogle Scholar
  104. Reuser, A.J.J., Kroos, M., Willemsen, R., Swallow, D., Tager, J.M., and Galjaard, H., 1987, Clinical diversity in glycogenesis type II Biosynthesis and in situ localization of acid α-glucosidase in mutant fibroblasts, J Clin Invest. 79: 1689.PubMedGoogle Scholar
  105. Robinson, M.S. and Bonifacino, J.S., 2001, Adaptor-related proteins, Curr Opin Cell Biol. 13: 444.PubMedGoogle Scholar
  106. Rothman, J.E., 1994, Mechanisms of intracellular protein transport, Nature. 372: 55.PubMedGoogle Scholar
  107. Rous, B.A., Reaves, B.J., Ihrke, G., Briggs, J.A., Gray, S.R., Stephens, D.J., Banting, G., and Luzio, J.P., 2002, Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes, Mol Biol Cell. 13: 1071.PubMedGoogle Scholar
  108. Saarela, J., Minna, L., Oinonen, C., von Schantz, C., Jalanko, A., Rouvinen, J., and Peltonen, L., 2001, Molecular pathogenesis of a disease: structural consequences of aspartylglucosaminuria mutations, Hum Mol Genet. 10: 983.PubMedGoogle Scholar
  109. Sachs, A.B., Sarnow, P., and Hentze, M.W., 1997, Starting at the beginning, middle, and end: translation initiation in eukaryotes, Cell 89: 831.PubMedGoogle Scholar
  110. Sandoval, I.V., Arredondo, J.J., Alcalde, J., Gonzalez, N.A., Vandekerckhove, J., Jimenez, M.A., and Rico, M., 1994, The residues Leu(Ile)475-Ile(Leu, Val, Ala)476, contained in the extended carboxyl cytoplasmic tail, are critical for targeting of the resident lysosomal membrane protein LIMP II to lysosomes, J Biol Chem. 269: 6622.PubMedGoogle Scholar
  111. Scott, H.S., Litjens, T., Hopwood, J.J., and Morris, C.P., 1992a, A common mutation for mucopolysaccharidosis type I associated with a severe Hurler syndrome phenotype, Hum Mutat. 1: 103.Google Scholar
  112. Scott, H.S., Litjens, T., Nelson, P.V., Brooks, D.A., Hopwood, J.J., and Morris, C.P., 1992b, α-L-iduronidase mutations (Q70X and P533R) associate with severe Hurler syndrome phenotype, Hum Mutat. 1: 3-33.Google Scholar
  113. Selmer, T., Hallmann, A., Schmidt, B., Sumper, M., and von Figura, K., 1996, The evolutionary conservation of a novel protein modification, the conversion of cysteine to serine semialdehyde in arylsulfatase from Volvox carteri, Eur J Biochem 238: 341.PubMedGoogle Scholar
  114. Starcevic, M., Nazarian, R., and Dell’Angelica, E.C., 2002, The molecular machinery for the biogenesis of lysosome-related organelles: lessons from hermansky-pudlak syndrome, Sem Cell and Dev Biol. 13: 271.Google Scholar
  115. Storrie, B., 1988, Assembly of lysosomes: Perspectives from comparative molecular cell biology, Int Rev Cytol. 111: 53.PubMedGoogle Scholar
  116. Straus, W., 1964, Cytochemical observations on the relationship between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase and intravenously injected horseradish peroxidase, J Cell Biol. 20: 497.PubMedGoogle Scholar
  117. Sun, M., Goldin, E., Stahl, S., Falardeau, J.L., Kennedy, J.C., Acierno, J.S., Bove, C., Kaneski, C.R., Nagle, J., Bromely, M.C., Colman, M., Schiffmann, R., and Slaugenhaupt, S.A., 2000, Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel, Hum Mol Genet. 9: 2471.PubMedGoogle Scholar
  118. Tellez-Nagel, I., Rapin, I., Iwamoto, T., Johnson, A.A., Norton, W.T., and Nitowsky, H., 1976, Mucolipidosis IV: Clinical ultrastructural, histochemical and chemical studies of a case, including a brain biopsy, Arch Neurol. 33: 828.PubMedGoogle Scholar
  119. Van Hoof, A., Frischmeyer, P.A., Dietz, H.C., and Parker, R., 2002, Exosome-mediated recognition and degradation of mRNAs lacking a termination codon, Science. 295: 2262.PubMedGoogle Scholar
  120. von Figura, K., 1991, Molecular recognition and targeting of lysosomal proteins, Curr Opinion Cell Biol. 3: 642.PubMedGoogle Scholar
  121. von Figura, K., and Hasilik, A., 1986, Lysosomal enzymes and their receptors, Ann Rev Biochem. 55: 167.PubMedGoogle Scholar
  122. Wiesman, U., Vassella, F., and Herschkowitz, N., 1971,“ I-cell” disease: Leakage of lysosomal enzymes into extracellular fluids, N Engl J Med. 285: 1090.Google Scholar
  123. Williams, M.A., and Fukuda, M., 1990, Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail, J Cell Biol. 111: 955.PubMedGoogle Scholar
  124. Wreden, C.C., Wlizla, M., and Reimer, R.J., 2005, Varied mechanisms underlie the free sialic acid storage disorders, J Biol Chem. 280: 1408.PubMedGoogle Scholar
  125. Yasuda, M., Shabbeer, J., Benson, S.D., Maire, I., Burnett, R.M., and Desnick, R.J., 2003, Fabry disease: characterization of alpha-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele, Hum Mutat. 22: 486.PubMedGoogle Scholar
  126. Yasuda, M., Shabbeer, J., Osawa, M., and Desnick, R.J., 2003, Fabry disease: novel α-Galactosidase A 3’-terminal mutations result in multiple transcripts due to aberrant 3’-end formation, Am J Hum Genet. 73: 162.PubMedGoogle Scholar
  127. Zimmer, K.P., le Coutre, P., Aerts, H.M., Harzer, K., Fukuda, M., O’Brien, J.S., and Naim, H.Y., 1999, Intracellular transport of acid beta-glucosidase and lysosome-associated membrane proteins is affected in Gaucher’s disease (G202R mutation), J Pathol. 188: 407.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Doug Brooks
    • 1
    • 2
  • Emma Parkinson-Lawrence
    • 1
    • 2
  1. 1.Lysosomal Diseases Research Unit, Department of Genetic MedicineChildren Youth and Women’s Health ServiceAustralia
  2. 2.Department of PaediatricsUniversity of AdelaideAdelaideAustralia

Personalised recommendations