Neural Stem Cell Therapy in Lysosomal Storage Disorders

  • Jean-Pyo Lee
  • Dan Clark
  • Mylvaganam Jeyakumar
  • Rodolfo Gonzalez
  • Scott Mckercher
  • Franz-Josef Muller
  • Rahul Jandial
  • Rosanne M. Taylor
  • Kook In Park
  • Thomas N. Seyfried
  • Frances M. Platt
  • Evan Y. Snyder

Many lysosomal storage disorders (LSDs) produce neurodegeneration as a prominent feature (Neufeld, 1991). LSDs are autosomal recessive metabolic diseases caused by deficiencies of specific acid hydrolases resulting in accumulation of unmetabolized substrates and macromolecules in lysosomes. There are ~50 diseases that can be classified as LSDs. The precise mechanisms underlying the actual neurodegenerative process remain to be determined, however, it is known that replacement of the absent gene product typically restores normal metabolism to a cell including forestalling neural cell dysfunction, at least in vitro. Nevertheless, there are currently no effective treatments for the neurological manifestations of the infantile-onset forms of the LSDs. The neuropathology of LSDs is characterized not by discrete focal neuropathology, as in Parkinson’s disease, but rather by extensive, multifocal, or even “global” neural degeneration or dysfunction. Therapy may require not only therapeutic molecules, such as enzymes, but also widespread neural cell replacement.


Neural Stem Cell Myelin Basic Protein Inner Cell Mass Ventricular Zone Lysosomal Storage Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, S., Reynolds, B. A., and Weiss, S. (1995). BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci 15, 5765-5778.PubMedGoogle Scholar
  2. Altman, J., and Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124, 319-335.CrossRefPubMedGoogle Scholar
  3. Anderson, D. J. (2001). Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19-35.CrossRefPubMedGoogle Scholar
  4. Auerbach, J. M., Eiden, M. V., and McKay, R. D. (2000). Transplanted CNS stem cells form functional synapses in vivo. Eur J Neurosci 12, 1696-1704.CrossRefPubMedGoogle Scholar
  5. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534-537.CrossRefPubMedGoogle Scholar
  6. Escolar, M. L., Poe, M. D., Provenzale, J. M., Richards, K. C., Allison, J., Wood, S., Wenger, D. A., Pietryga, D., Wall, D., Champagne, M., et al. (2005). Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352, 2069-2081.CrossRefPubMedGoogle Scholar
  7. Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., Jendoubi, M., Sidman, R. L., Wolfe, J. H., Kim, S. U., and Snyder, E. Y. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16, 1033-1039.CrossRefPubMedGoogle Scholar
  8. Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433-1438.CrossRefPubMedGoogle Scholar
  9. Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A., and Ray, J. (1998). Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36, 249-266.CrossRefPubMedGoogle Scholar
  10. Gage, F. H., Ray, J., and Fisher, L. J. (1995). Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18, 159-192.CrossRefPubMedGoogle Scholar
  11. He, W., Ingraham, C., Rising, L., Goderie, S., and Temple, S. (2001). Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligoden-drocytes to the cerebral cortex during embryogenesis. J Neurosci 21, 8854-8862.PubMedGoogle Scholar
  12. Imitola, J., Comabella, M., Chandraker, A. K., Dangond, F., Sayegh, M. H., Snyder, E. Y., and Khoury, S. J. (2004a). Neural stem/progenitor cells express costimulatory mole-cules that are differentially regulated by inflammatory and apoptotic stimuli. Am J Pathol 164, 1615-1625.Google Scholar
  13. Imitola, J., Raddassi, K., Park, K. I., Mueller, F. J., Nieto, M., Teng, Y. D., Frenkel, D., Li, J., Sidman, R. L., Walsh, C. A., et al. (2004b). Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101, 18117-18122.CrossRefGoogle Scholar
  14. Jeyakumar, M., Butters, T. D., Dwek, R. A., and Platt, F. M. (2002). Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28, 343-357.CrossRefPubMedGoogle Scholar
  15. Jeyakumar, M., Thomas, R., Elliot-Smith, E., Smith, D. A., van der Spoel, A. C., d’Azzo, A., Perry, V. H., Butters, T. D., Dwek, R. A., and Platt, F. M. (2003). Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126, 974-987.CrossRefPubMedGoogle Scholar
  16. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., and Gage, F. H. (2003). Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130, 391-399.CrossRefPubMedGoogle Scholar
  17. Kempermann, G., Kuhn, H. G., and Gage, F. H. (1998). Experience-induced neuro-genesis in the senescent dentate gyrus. J Neurosci 18, 3206-3212.PubMedGoogle Scholar
  18. Kilpatrick, T. J., and Bartlett, P. F. (1993). Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10, 255-265.CrossRefPubMedGoogle Scholar
  19. Kuhn, H. G., and Svendsen, C. N. (1999). Origins, functions, and potential of adult neural stem cells. Bioessays 21, 625-630.CrossRefPubMedGoogle Scholar
  20. Lacorazza, H. D., Flax, J. D., Snyder, E. Y., and Jendoubi, M. (1996). Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2, 424-429.CrossRefPubMedGoogle Scholar
  21. Lois, C., and Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90, 2074-2077.CrossRefPubMedGoogle Scholar
  22. Lu, P., Jones, L. L., Snyder, E. Y., and Tuszynski, M. H. (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181, 115-129.CrossRefPubMedGoogle Scholar
  23. Meng, X. L., Shen, J. S., Ohashi, T., Maeda, H., Kim, S. U., and Eto, Y. (2003). Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J Neurosci Res 74, 266-277.CrossRefPubMedGoogle Scholar
  24. Monje, M. L., Mizumatsu, S., Fike, J. R., and Palmer, T. D. (2002). Irradiation induces neural precursor-cell dysfunction. Nat Med 8, 955-962.CrossRefPubMedGoogle Scholar
  25. Myerowitz, R., Lawson, D., Mizukami, H., Mi, Y., Tifft, C. J., and Proia, R. L. (2002). Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet 11, 1343-1350.CrossRefPubMedGoogle Scholar
  26. Neufeld, E. F. (1991). Lysosomal storage diseases. Annu Rev Biochem 60, 257-280.CrossRefPubMedGoogle Scholar
  27. Neufeld, E. F., and Fratantoni, J. C. (1970). Inborn errors of mucopolysaccharide meta-bolism. Science 169, 141-146.CrossRefPubMedGoogle Scholar
  28. Oehlmann, R., Zlotogora, J., Wenger, D. A., and Knowlton, R. G. (1993). Localization of the Krabbe disease gene (GALC) on chromosome 14 by multipoint linkage analysis. Am J Hum Genet 53, 1250-1255.PubMedGoogle Scholar
  29. Park, K. I., Teng, Y. D., and Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Bio-technol 20, 1111-1117.CrossRefGoogle Scholar
  30. Qian, X., Shen, Q., Goderie, S. K., He, W., Capela, A., Davis, A. A., and Temple, S. (2000). Timing of CNS cell generation: A programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69-80.CrossRefPubMedGoogle Scholar
  31. Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., and Ben-Hur, T. (2001). Neural progenitors from human embryonic stem cells. Nat Bio-technol 19, 1134-1140.CrossRefGoogle Scholar
  32. Reynolds, B. A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707-1710.CrossRefPubMedGoogle Scholar
  33. Schiffmann, R., and Brady, R. O. (2002). New prospects for the treatment of lysosomal storage diseases. Drugs 62, 733-742.CrossRefPubMedGoogle Scholar
  34. Shen, Q., Qian, X., Capela, A., and Temple, S. (1998). Stem cells in the embryonic cerebral cortex: Their role in histogenesis and patterning. J Neurobiol 36, 162-174.CrossRefPubMedGoogle Scholar
  35. Shihabuddin, L. S., Numan, S., Huff, M. R., Dodge, J. C., Clarke, J., Macauley, S. L., Yang, W., Taksir, T. V., Parsons, G., Passini, M. A., et al. (2004). Intracerebral transplantation of adult mouse neural progenitor cells into the Niemann-Pick-A mouse leads to a marked decrease in lysosomal storage pathology. J Neurosci 24, 10642-10651.CrossRefPubMedGoogle Scholar
  36. Sidman, R. L., Miale, I. L., and Feder, N. (1959). Cell proliferation and migration in the primitive ependymal zone: An autoradiographic study of histogenesis in the nervous system. Exp Neurol 1, 322-323.CrossRefPubMedGoogle Scholar
  37. Sly, W. S., and Vogler, C. (2002). Brain-directed gene therapy for lysosomal storage disease: going well beyond the blood-brain barrier. Proc Natl Acad Sci USA 99, 5760-5762.CrossRefPubMedGoogle Scholar
  38. Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., and Cepko, C. L. (1992). Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33-51.CrossRefPubMedGoogle Scholar
  39. Snyder, E. Y., Taylor, R. M., and Wolfe, J. H. (1995). Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367-370.CrossRefPubMedGoogle Scholar
  40. Snyder, E. Y., and Wolfe, J. H. (1996). Central nervous system cell transplantation: A novel therapy for storage diseases? Curr Opin Neurol 9, 126-136.CrossRefPubMedGoogle Scholar
  41. Tabar, V., Panagiotakos, G., Greenberg, E. D., Chan, B. K., Sadelain, M., Gutin, P. H., and Studer, L. (2005). Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23, 601-606.CrossRefPubMedGoogle Scholar
  42. Takaura, N., Yagi, T., Maeda, M., Nanba, E., Oshima, A., Suzuki, Y., Yamano, T., and Tanaka, A. (2003). Attenuation of ganglioside GM1 accumulation in the brain of GM1 gangliosidosis mice by neonatal intravenous gene transfer. Gene Ther 10, 1487-1493.CrossRefPubMedGoogle Scholar
  43. Temple, S. (2001). The development of neural stem cells. Nature 414, 112-117.CrossRefPubMedGoogle Scholar
  44. Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99, 3024-3029.CrossRefPubMedGoogle Scholar
  45. Vescovi, A. L., Gritti, A., Galli, R., and Parati, E. A. (1999). Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neuro-trauma 16, 689-693.Google Scholar
  46. Wada, R., Tifft, C. J., and Proia, R. L. (2000). Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow trans-plantation. Proc Natl Acad Sci USA 97, 10954-10959.CrossRefPubMedGoogle Scholar
  47. Wenger, D. A., Rafi, M. A., Luzi, P., Datto, J., and Costantino-Ceccarini, E. (2000). Krabbe disease: Genetic aspects and progress toward therapy. Mol Genet M1-9.Google Scholar
  48. Wenger, D. A., Sattler, M., and Hiatt, W. (1974). Globoid cell leukodystrophy: defici-ency of lactosyl ceramide beta-galactosidase. Proc Natl Acad Sci USA 71, 854-857.CrossRefPubMedGoogle Scholar
  49. White, P. M., Morrison, S. J., Orimoto, K., Kubu, C. J., Verdi, J. M., and Anderson, D. J. (2001). Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29, 57-71.CrossRefPubMedGoogle Scholar
  50. Windrem, M. S., Nunes, M. C., Rashbaum, W. K., Schwartz, T. H., Goodman, R. A., McKhann, G., 2nd, Roy, N. S., and Goldman, S. A. (2004). Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 10, 93-97.CrossRefPubMedGoogle Scholar
  51. Wurmser, A. E., Nakashima, K., Summers, R. G., Toni, N., D’Amour, K. A., Lie, D. C., and Gage, F. H. (2004). Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350-356.CrossRefPubMedGoogle Scholar
  52. Yamanaka, S., Johnson, M. D., Grinberg, A., Westphal, H., Crawley, J. N., Taniike, M., Suzuki, K., and Proia, R. L. (1994). Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc Natl Acad Sci USA 91, 9975-9979.CrossRefPubMedGoogle Scholar
  53. Yandava, B. D., Billinghurst, L. L., and Snyder, E. Y. (1999). “Global” cell replacement is feasible via neural stem cell transplantation: Evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96, 7029-7034.CrossRefPubMedGoogle Scholar
  54. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., and Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19, 1129-1133.CrossRefPubMedGoogle Scholar
  55. Zlomanczuk, P., Mrugala, M., de la Iglesia, H. O., Ourednik, V., Quesenberry, P. J., Snyder, E. Y., and Schwartz, W. J. (2002). Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachias-matic nucleus. Exp Neurol 174, 162-168.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jean-Pyo Lee
    • 1
  • Dan Clark
    • 2
  • Mylvaganam Jeyakumar
    • 3
  • Rodolfo Gonzalez
    • 4
  • Scott Mckercher
    • 5
  • Franz-Josef Muller
    • 5
  • Rahul Jandial
    • 6
  • Rosanne M. Taylor
    • 7
  • Kook In Park
    • 8
  • Thomas N. Seyfried
    • 9
  • Frances M. Platt
    • 3
  • Evan Y. Snyder
    • 1
  1. 1.The Burnham Institute for Medical Research, and Department of PediatricsUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Medical GeneticsUniversity of British Columbia, Child and Family Research InstituteVancouverCanada
  3. 3.Department of Biochemistry, Glycobiology InstituteUniversity of OxfordUK
  4. 4.Center for Neuroscience and Aging ResearchBurnham Institute for Medical ResearchLa JollaUSA
  5. 5.Burnham Institute for Medical ResearchLa JollaUSA
  6. 6.Department of NeurosurgeryUCSD School of MedicineLa JollaUSA
  7. 7.Department of Animal Science, Faculty of Veterinary ScienceUniversity of SydneyAustralia
  8. 8.Department of PediatricsYonsei University College of MedicineKorea
  9. 9.Department of BiologyBoston CollegeChestnut HillUSA

Personalised recommendations