Gene Therapy of Lysosomal Storage Disorders by Lentiviral Vectors

  • Alessandra Biffi
  • Luigi Naldini

Lysosomal storage disorders (LSDs) comprise a class of inherited diseases characterized by disruption of normal lysosomal function and the consequent accumulation of incompletely degraded substrates. Most LSDs are caused by loss of function of specific lysosomal acid hydrolases, which act to degrade complex substrates that have been targeted for degradation after endocytosis or autophagy. The degradation occurs by a stepwise pathway, and if one step in the process fails, further degradation often ceases and the partially degraded substrate accumulates. The ensuing substrate accumulation in lysosomes affects the architecture and function of cells, tissues, and organs. In some cases, the accumulated substrate itself (as in Galactocerebrosidosis) or the product of an alternative metabolic route, which is upregulated by the accumulated primary substrate (as in the case of psycosine in Globoid Cell Leukodystrophy), is cytotoxic and leads to cell dysfunction or death. In other cases, the actual molecular mechanism triggered by the accumulated metabolite and leading to cellular toxicity and tissue pathology remains elusive.


Gene Therapy Hematopoietic Stem Cell Transplantation Neural Stem Cell Enzyme Replacement Therapy Fabry Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ailles L., Schmidt M., Santoni de Sio F.R., Glimm H., Cavalieri S., Bruno S., Piacibello W., Von Kalle C., and Naldini L. (2002). Molecular evidence of lentiviral vectormediated gene transfer into human self-renewing, multi-potent, long-term NOD/ SCID repopulating hematopoietic cell. Mol. Ther. 6, 615-626.PubMedGoogle Scholar
  2. Asheuer M., Pflumio F., Benhamida S., Dubart-Kupperschmitt A., Fouquet F., Imai Y., Aubourg P., and Cartier N. (2004). Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc. Natl. Acad. Sci. U.S.A. 101(10), 3557-3562.PubMedGoogle Scholar
  3. Baekelandt V., Claeys A., Eggermont K., Lauwers E., De Strooper B., Nuttin B., and Debyser Z. (2002). Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum. Gene Ther. 13, 841-853.PubMedGoogle Scholar
  4. Barranger J.A. and O’Rourke E. (2001). Lessons learned from the development of enzyme therapy for Gaucher disease. J. Inherit. Metab. Dis. 24 Suppl 2, 89-96.PubMedGoogle Scholar
  5. Barsoum S.C., Milgram W., Mackay W., Coblentz C., Delaney K.H., Kwiecien J.M., Kruth S.A., and Chang P.L. (2003). Delivery of recombinant gene product to canine brain with the use of microencapsulation. J. Lab. Clin. Med. 142(6), 399-413.PubMedGoogle Scholar
  6. Biffi A., De Palma M., Quattrini A., Del Carro U., Amadio S., Visigalli I., Sessa M., Fasano S., Brambilla R., Marchesini S., Bordignon C., and Naldini L. (2004). Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest. 113(8), 1118-1129.PubMedGoogle Scholar
  7. Birkenmeier E.H., Davisson M.T., Beamer W.G., Ganschow R.E., Vogler C.A., Gwynn B., Lyford K.A., Maltais L.M., and Wawrzyniak C.J. (1989). Murine mucopolysacc-haridosis type VII. Characterization of a mouse with beta-glucuronidase deficiency. J. Clin. Invest. 83(4), 1258-1266.PubMedGoogle Scholar
  8. Blakemore W.F., Gilson J.M., and Crang A.J. (2003). The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligoden-drocyte progenitors. Exp. Neurol. 184(2), 955-963.PubMedGoogle Scholar
  9. Blomer U., Naldini L., Kafri T., Trono D., Verma I.M., and Gage F.H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71 (9), 6641-6649.PubMedGoogle Scholar
  10. Bosch A., Perret E., Desmaris N., Trono D., and Heard J.M. (2000). Reversal of patho-logy in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther. 11, 1139-1150.PubMedGoogle Scholar
  11. Brooks A.I., Stein C.S., Hughes S.M., Heth J., McCray P.M., Sauter S.L., Johnston J.C., Selechta D.A., Federoff H.J., and Davidson B.L. (2002). Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. 99, 6216-6221.PubMedGoogle Scholar
  12. Buchet D., Serguera C., Zennou V., Charneau P., and Mallet J. (2002). Long-term expression of beta-glucuronidase by genetically modified human neural progenitor cells grafted into the mouse central nervous system. Mol. Cell. Neurosci. 19(3), 389-401.PubMedGoogle Scholar
  13. Chao H. and Walsh C.E. (2001). Induction of tolerance to human factor VII in mice. Blood 97, 3311-3312.PubMedGoogle Scholar
  14. Consiglio A., Gritti A., Dolcetta D., Follenzi A., Bordignon C., Gage F.H., Vescovi A.L., and Naldini L. (2004). Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl. Acad. Sci. U.S.A. 101(41), 14835-14840.PubMedGoogle Scholar
  15. Consiglio A., Quattrini A., Martino S., Bensadoun J.C., Dolcetta D., Trojani A., Benaglia G., Marchesini S., Cestari V., Oliverio A., Bordignon C., and Naldini L. (2001). In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: Correction of neuropathology and protection against learning impairments in affected mice. Nat. Med. 7, 310-316.PubMedGoogle Scholar
  16. Cosma M.P., Pepe S., Annunziata I., Newbold R.F., Grompe M., Parenti G., and Ballabio A. (2003). The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113(4), 445-456.PubMedGoogle Scholar
  17. Daly T.M. (2004). AAV-mediated gene transfer to the liver. Methods Mol. Biol. 246, 195-199.Google Scholar
  18. Daly T.M., Lorenz R., and Sands M.S. (2000). Abnormal immune function in vivo in a murine model of lysosomal storage disease. Pediatr. Res. 47, 757-762.PubMedGoogle Scholar
  19. De Palma M., Montini E., Santoni de Sio F.R., Benedicenti F., Gentile A., Medico E., and Naldini L. (2004). Promoter trapping reveals significant differences in integra-tion site selection between MLV and HIV vectors in primary hematopoietic cells. Blood, 105(6), 2307-2315.PubMedGoogle Scholar
  20. Desmaris N., Verot L., Puech J.P., Caillaud C., Vanier M.T., and Heardt J.M. (2004). Prevention of neuropathology in the mouse model of Hurler syndrome. Ann. Neurol. 56, 68-76.PubMedGoogle Scholar
  21. Desnick R.J., Ioannou Y.A., and Eng C.M. (2001). Metabolic and Molecular Bases of Inherited Diseases. Scriver C.R., Beaudet A.L., Sly W.S., Valle D. (Eds.) (New York: McGraw-Hill) pp. 3733-3774.Google Scholar
  22. Di Domenico C., Villani G.R., Di Napoli D., Reyero E.G., Lombardo A., Naldini L., and Di Natale P. (2005). Gene therapy for a mucopolysaccharidosis type I murine model with lentiviral-IDUA vector. Hum Gene Ther. 16(1), 81-90.PubMedGoogle Scholar
  23. Eglitis M.A. and Mezey E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. U.S.A. 94, 4080-4085.PubMedGoogle Scholar
  24. Eng C.M., Guffon N., Wilcox W.R., Germain D.P., Lee P., Waldek S., Caplan L., Linthorst G.E., and Desnick R.J. (2001). Safety and efficacy of recombinant human alpha-galactosidase A-replacement therapy in Fabry’s disease. N. Engl. J. Med. 345, 9-16.PubMedGoogle Scholar
  25. Englund U., Bjorklund A., and Wictorin K. (2002). Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after trans-plantation into the adult rat brain. Brain Res. Dev. Brain Res. 134(1-2), 123-141.Google Scholar
  26. Espinosa de los Monteros A., Baba H., Zhao P.M., Pan T., Chang R., de Vellis J., and Ikenaka K. (2001). Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors and the effect of B-104 cografts. Neurochem. Res. 26 (6), 673-682.PubMedGoogle Scholar
  27. Fischer A., Abina S.H., Thrasher A., von Kalle C., and Cavazzana-Calvo M. (2004). LMO2 and gene therapy for severe combined immunodeficiency. N. Engl. J. Med. 350, 2526-2527.PubMedGoogle Scholar
  28. Flax J.D., Aurora S., Yang C., Simonin C., Wills A.M., Billinghurst L.L., Jendoubi M., Sidman R.L., Wolfe J.H., Kim S.U., and Snyder E.Y. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16(11), 1033-1039.PubMedGoogle Scholar
  29. Follenzi A. and Naldini L. (2002a). HIV-based vectors. Preparation and use. Methods Mol. Med. 69, 259-274.Google Scholar
  30. Follenzi A. and Naldini L. (2002b). Generation of HIV-1 derived lentiviral vectors. Methods Enzymol. 346, 454-465.Google Scholar
  31. Follenzi A., Battaglia M., Lombardo A., Annoni A., Roncarolo M.G., and Naldini L. (2004). Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103(10), 3700-3709.PubMedGoogle Scholar
  32. Follenzi A., Sabatino G., Lombardo A., Boccaccio C., and Naldini L. (2002). Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum. Gene Ther. 13(2), 243-260.PubMedGoogle Scholar
  33. Fricker R.A., Carpenter M.K., Winkler C., Greco C., Gates M.A., and Bjorklund A. (1999). Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19(14), 5990-6005.PubMedGoogle Scholar
  34. Gage F.H., Ray J., and Fisher L.J. (1995). Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci. 18, 159-192.PubMedGoogle Scholar
  35. Gao C., Sands M.S., Haskins M.E., and Parker Ponder K. (2000). Delivery of retroviral vector expressing human beta-glucuronidase to the liver and spleen decreases lyso-somal storage in mucopolysaccharidosis VII mice. Mol. Ther. 2, 233-244.PubMedGoogle Scholar
  36. Georgievska B., Kirik D., Rosenblad C., Lundberg C., and Bjorklund A. (2002). Neuro-protection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13, 75-82.PubMedGoogle Scholar
  37. German D.C., Liang C.L., Song T., Yazdani U., Xie C., and Dietschy J.M. (2002). Neurode-generation in the Niemann-Pick C mouse: Glial involvement. Neuroscience 109(3), 437-450.PubMedGoogle Scholar
  38. Glorioso J.C., Mata M., and Fink D.J. (2003). Therapeutic gene transfer to the nervous system using viral vectors. J. Neurovirol. 9, 165-172.PubMedGoogle Scholar
  39. Griffey M., Bible E., Vogler C., Levy B., Gupta P., Cooper J., and Sands M. (2004). Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantiole neuronal ceroid lipofuscinosis. Neurobiol. Dis. 16(2), 360-369.PubMedGoogle Scholar
  40. Guenechea G., Gan O.I., Dorrell C., and Dick J.E. (2001). Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2, 75-82.PubMedGoogle Scholar
  41. Hartung S.D., Frandsen J.L., Pan D., Koniar B.L., Graupman P., Gunther R., Low W.C., Whitley C.B., and McIvor R.S. (2004). Correction of metabolic, craniofacial, and neurologic abnormalities in MPSI mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol. Ther. 9(6), 866-875.PubMedGoogle Scholar
  42. Haskell R.E., Hughes S.M., Chiorini J.A., Alisky J.M., and Davidson B.L. (2003). Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, TPP-I to the mouse central nervous system. Gene Ther. 10(1), 34-42.PubMedGoogle Scholar
  43. Hess B., Saftig P., Hartmann D., Coenen R., Lullmann-Rauch R., Goebel H.H., Evers M., von Figura K., D’Hooge R., Nagels G., De Deyn P., Peters C., and Gieselmann V. (1996). Phenotype of arylsulfatase A-deficient mice: Relationships to human metachromatic leukodystrophy. Proc. Natl. Acad. Sci. U.S.A. 93, 14821-14826.PubMedGoogle Scholar
  44. Hofling A.A., Devine S., Vogler C., and Sands M.S. (2004). Human CD34+ hematopoietic progenitor cell-directed lentiviral-mediated gene therapy in a xenotransplantation model of lysosomal storage disease. Mol. Ther. 9(6), 856-865.PubMedGoogle Scholar
  45. Kakkis E., Lester T., Yang R., Tanaka C., Anand V., Lemontt J., Peinovich M., and Passage M. (2004). Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. Proc. Natl. Acad. Sci. U.S.A. 101(3), 829-834.PubMedGoogle Scholar
  46. Kakkis E.D., Muenzer J., Tiller G.E., Waber L., Belmont J., Passage M., Izykowski B., Phillips J., Doroshow R., Walot I., Hoft R., and Neufeld E.F. (2001). Enzyme-replace-ment therapy in mucopolysaccharidosis I. N. Engl. J. Med. 344, 182-188.PubMedGoogle Scholar
  47. Kay M.A., Glorioso J.C., and Naldini L. (2001). Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33-40.PubMedGoogle Scholar
  48. Kennedy D.W. and Abkowitz J.L. (1997). Kinetics of central nervous system microglial and macrophage engraftment. Analysis using a transgenic bone marrow transplant-tation model. Blood 90, 986-993.PubMedGoogle Scholar
  49. Kim J.H., Auerbach J.M., Rodriguez-Gomez J.A., Velasco I., Gavin D., Lumelsky N., Lee S.H., Nguyen J., Sanchez-Pernaute R., Bankiewicz K., and McKay R. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50-56.PubMedGoogle Scholar
  50. Kordower J.H., Bloch J., Ma S.Y., Chu Y., Palfi S., Roitberg B.Z., Emborg M., Hantraye P., Deglon N., and Aebischer P. (1999). Lentiviral gene transfer to the nonhuman primate brain. Exp. Neurol. 160, 1-16.PubMedGoogle Scholar
  51. Kosuga M., Takahashi S., Tanabe A., Fujino M., Li X.K., Suzuki S., Yamada M., Kakishita K., Ono F., Sakuragawa N., and Okuyama T. (2001). Widespread distribu-tion of adenovirus-transduced monkey amniotic epithelial cells after local intracerebral injection: Implication for cell-mediated therapy for lysosome storage disorders. Cell Transplant. 10(4-5), 435-439.PubMedGoogle Scholar
  52. Krivit W., Aubourg P., Shapiro E., and Peters C. (1999). Bone marrow transplantation for globoid cell leukodystrophy, adrenoleukodystrophy, metachromatic leukodystrophy, and Hurler syndrome. Curr. Opin. Hematol. 6, 377-382.PubMedGoogle Scholar
  53. Krouwer H.G. and Wijdicks E.F. (2003). Neurologic complications of bone marrow transplantation. Neurol. Clin. 21(1), 319-352.PubMedGoogle Scholar
  54. Leiming T., Mann L., del Pilar Martin M., Bonten E., Persons D., Knowles J., Allay J.A., Cunningham J., Nienhuis A.W., Smeyne R., and d’Azzo A. (2002). Functional amelio-ration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood 99(9), 3169-3178.Google Scholar
  55. Luca T., Givogri M.I., Perani L., Galbiati F., Follenzi A., Naldini L., and Bongarzone E.R. (2005). Axons mediate the distribution of arylsulfatase A within the mouse hippocampus upon gene delivery. Mol. Ther. 12(4), 669-679.PubMedGoogle Scholar
  56. Mango R.L., Xu L., Sands M.S., Vogler C., Seiler G., Schwarz T., Haskins M.E., and Parker Ponder K. (2004). Neonatal retroviral vector-mediated hepatic gene therapy reduces bone, joint, and cartilage disease in mucopolysaccharidosis VII mice and dogs, Mol. Genetics and Metab. 82, 4-19.Google Scholar
  57. Matzner U., Harzer K., Learish R.D., Barranger J.A., and Gieselmann V. (2000). Long-term expression and transfer of arylsulfatase A into brain of arylsulfatase A-deficient mice transplanted with bone marrow expressing the arylsulfatase A cDNA from a retroviral vector. Gene Ther. 7, 1250-1257.PubMedGoogle Scholar
  58. Matzner U., Schestag F., Hartmann D., Lullmann-Rauch R., D’Hooge R., De Deyn P.P., and Gieselmann V. (2001). Bone marrow stem cell gene therapy of arylsulfatase A-deficient mice, using an arylsulfatase A mutant that is hypersecreted from retrovirally transduced donor-type cells. Hum. Gene Ther. 12, 1021-1033.PubMedGoogle Scholar
  59. McCormack J.E., Edwards W., Sensintaffer J., Lillegren L., Kozloski M., Brumm D., Karavodin L., Jolly D.J., and Greengard J. (2001). Factors affecting long-term expre-ssion of a secreted transgene product after intravenous administration of a retroviral vector. Mol. Ther. 3(4), 516-525.PubMedGoogle Scholar
  60. McKay R. (1997). Stem cells in the central nervous system. Science 276(5309), 66-71.PubMedGoogle Scholar
  61. Meng X.L., Shen J.S., Ohashi T., Maeda H., Kim S.U., and Eto Y. (2003). Brain transplan-tation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J. Neurosi. Res. 74(2), 266-277.Google Scholar
  62. Mezey E., Key S., Vogelsang G., Szalayova I., Lange G.D., and Crain B. (2003). Trans-planted bone marrow generates new neurons in human brains. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1364-1369.PubMedGoogle Scholar
  63. Mingozzi F., Liu Y.L., Dobrzynski E., Kaufhold A., Liu J.H., Wang Y., Arruda V.R., High K.A., and Herzog R.W. (2003). Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J. Clin. Invest. 111, 1347-1356.PubMedGoogle Scholar
  64. Miyoshi H., Blomer U., Takahashi M., Gage F.H., and Verma I.M. (1998). Development of a self-inactivating lentivirus vector. J. Virol. 72(10), 8150-8157.PubMedGoogle Scholar
  65. Miyoshi H., Smith K.A., Mosier D.E., Verma I.M., and Torbett B.E. (1999). Trans-duction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682-686.PubMedGoogle Scholar
  66. Mount J.D., Herzog R.W., Tillson D.M., Goodman S.A., Robinson N., McCleland M.L., Bellinger D., Nichols T.C., Arruda V.R., Lothrop C.D. Jr., and High K.A. (2002). Sustained phenotypic correction of hemophilia B dogs with factor IX null mutation by liver-directed gene therapy. Blood 99, 2670-2676.PubMedGoogle Scholar
  67. Naldini L. (1998). Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 9(5), 457-463.PubMedGoogle Scholar
  68. Naldini L., Blomer U., Gage F.H., Trono D., and Verma I.M. (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 93, 11382-11388.Google Scholar
  69. Neufeld E.F. (1991). Lysosomal disease. Annu. Rev. Biochem. 60, 257-280.PubMedGoogle Scholar
  70. Nguyen T.H., Oberholzer J., Birraux J., Majno P., Morel P., and Trono D. (2002). Highly efficient lentiviral vector-mediated transduction of nondividing, fully reimplantable primary hepatocytes. Mol. Ther. 6(2), 199-209.PubMedGoogle Scholar
  71. Ohmi K., Greenberg D.S., Rajavel K.S., Ryazantsev S., Li H.H., and Neufeld E.F. (2003). Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc. Natl. Acad. Sci. U.S.A. 100, 1902-1907.PubMedGoogle Scholar
  72. Ourednik V., Ourednik J., Flax J.D., Zawada W.M., Hutt C., Yang C., Park K.I., Kim S.U., Sidman R.L., Freed C.R., and Snyder E.Y. (2001). Segregation of human neural stem cells in the developing primate forebrain. Science 293(5536), 1820-1824.PubMedGoogle Scholar
  73. Parker Ponder K., Melniczek J.R., Xu L., Weil M.A., O’Malley T.M., O’Donnel P.A., Knox V.W., Aguirre G.D., Mazrier H., Ellinwood N.M., Sleeper M., Maguire A.M., Volk S.W., Mango R.L., Zweigle J., Wolfe J.H., and Haskins M.E. (2002). Therapeutical neonatal hepatic gene therapy in mucopolisaccharidosis VII dogs. Proc. Natl. Acad. Sci. U.S.A. 99(20), 13102-13107.Google Scholar
  74. Peters C. and Steward C.G. (2003). Hematopoietic cell transplantation for inherited metabolic diseases: An overview of outcomes and practice guidelines. Bone Marrow Transplant. 31, 229-239.PubMedGoogle Scholar
  75. Pluchino S., Quattrini A., Brambilla E., Gritti A., Salani G., Dina G., Galli R., Del Carro U., Amadio S., Bergami A., Furlan R., Comi G., Vescovi A.L., and Martino G. (2003). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933), 688-694.PubMedGoogle Scholar
  76. Priller J., Flugel A., Wehner T., Boentert M., Haas C.A., Prinz M., Fernandez-Klett F., Prass K., Bechmann I., de Boer B.A., Frotscher M., Kreutzberg G.W., Persons D.A., and Dirnagl U. (2001). Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356-1361.PubMedGoogle Scholar
  77. Reddy P.S., Sakhuja K., Ganesh S., Yang L., Kayda D., Brann T., Pattison S., Golightly D., Idamakanti N., Pinkstaff A., Kaloss M., Barjot C., Chamberlain J.S., Kaleko M., and Connelly S. (2002). Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a gutless adenoviral vector. Mol. Ther. 5(1), 63-73.PubMedGoogle Scholar
  78. Ross C.J., Ralph M., and Chang P.L. (2000). Somatic gene therapy for a neurodegenera-tive disease using microencapsulated recombinant cells. Exp. Neurol. 166(2), 276-286.PubMedGoogle Scholar
  79. Rubio F.J., Bueno C., Villa A., Navarro B., and Martinez-Serrano A. (2000). Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol. Cell. Neurosci. 16(1), 1-13.PubMedGoogle Scholar
  80. Schiffmann R., Kopp J.B., Austin H.A., Sabnis S., Moore D.F., Weibel T., Balow J.E., and Brady R.O. (2001). Enzyme replacement therapy in Fabry disease: A randomized controlled trial. J. Am. Med. Assoc. 285, 2743-2749.Google Scholar
  81. Schroder A., Shinn P., Chen H., Berry C., Ecker J., and Bushman F. (2002). HIV-1 inte-gration in the human genome favors active genes and local hotspots. Cell. 110, 521.PubMedGoogle Scholar
  82. Sferra T.J., Backstrom K., Chuansong W., Rennard R., Miller M., and Hu Y. (2004). Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse. Mol. Ther. 10(3), 478-491.PubMedGoogle Scholar
  83. Skorupa A.F., Fisher K.J., Wilson J.M., Parente M.K., and Wolfe J.H. (1999). Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp. Neurol. 160 (1), 17-27.PubMedGoogle Scholar
  84. Sly W.S. (1993). Gene therapy on the Sly. Nat Genet. 4(2),105-106.PubMedGoogle Scholar
  85. Sly W.S., Vogler C., Grubb J.H., Zhou M., Jiang J., Zhou X.Y., Tomatsu S., Bi Y., and Snella E.M. (2001). Active site mutant transgene confers tolerance to human beta-glucuronidase without affecting the phenotype of MPSVII mice. Proc. Natl. Acad. Sci. U.S.A. 98, 3311-3312.Google Scholar
  86. Snyder E.Y. (1995). Immortalized neural stem cells: insights into development; prospects for gene therapy and repair. Proc. Natl. Acad. Sci. U.S.A. 107(2), 195-204.Google Scholar
  87. Solaro C., Nurialdo A., Giunti D., Mancardi G., and Uccelli A. (2001). Central and peripheral nervous system complications following allogeneic bone marrow trans-plantation. Europ. J. Neurol. 8, 77-80.Google Scholar
  88. Stein C.S., Ghodsi A., Dersen T., and Davidson B.L. (1999). Systemic and central nervous system correction of lysosomal storage in mucopolysaccharidosis type VII mice. J. Virol. 73, 3424-3429.PubMedGoogle Scholar
  89. Stein C.S., Kang Y., Sauter S.L., Townsend K., Staber P., Derksen T.A., Martins I., Qian J., Davidson B.L., and McCray P.B. Jr. (2001). In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther. 3 (6), 850-856.PubMedGoogle Scholar
  90. Tamaki S., Eckert K., He D., Sutton R., Doshe M., Jain G., Tushinski R., Reitsma M., Harris B., Tsukamoto A., Gage F., Weissman I., and Uchida N. (2002). Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res. 69(6), 976-986.PubMedGoogle Scholar
  91. Taylor R.M. and Wolfe J.H. (1997). Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase. Nat. Med. 3(7), 771-774.PubMedGoogle Scholar
  92. Unger, E.R., Sung J.H., Manivel J.C., Chenggis M.L., Blazar B.R., and Krivit W. (1993). Male donor-derived cells in the brains of female sex-mismatched bone marrow trans-plant recipients: a Y-chromosome specific in situ hybridization study. J. Neuropathol. Exp. Neurol. 52(5), 460-470.PubMedGoogle Scholar
  93. Van den Hout J.M., Kamphoven J.H., Winkel L.P., Arts W.F., De Klerk J.B., Loonen M.C., Vulto A.G., Cromme-Dijkhuis A., Weisglas-Kuperus N., Hop W., Van Hirtum H., Van Diggelen O.P., Boer M., Kroos M.A., Van Doorn P.A., Van der Voort E., Sibbles B., Van Corven E.J., Brakenhof J.P., Van Hove J., Smeitink J.A., de Jong G., Reuser A.J., and Van der Ploeg A.T. (2004). Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113 (5), 448-457.Google Scholar
  94. Wada R., Tifft C.J., and Proia R.L. (2000). Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl. Acad. Sci. U.S.A. 97(20), 10954-10959.PubMedGoogle Scholar
  95. Walkley S.U., Thrall M.A., Dobreins K., Huang M., March P.A., Siegel D.A., and Wurzelmann S. (1994). Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease. Proc. Natl. Acad. Sci. U.S.A. 91, 2970-2974.PubMedGoogle Scholar
  96. Watson G.L., Sayles J.N., Chen C., Elliger S.S., Elliger C.A., Raju N.R., Kurtzman G.J., and Podsakoff G.M. (1998). Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Ther. 5(12), 1642-1649.PubMedGoogle Scholar
  97. Weimann J.M., Charlton C.A., Brazelton T.R., Hackman R.C., and Blau H.M. (2003). Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. U.S.A. 100(4), 2088-2093.PubMedGoogle Scholar
  98. Wichterle H., Lieberam I., Porter J.A., and Jessell T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397.PubMedGoogle Scholar
  99. Wu P., Tarasenko Y.I., Gu Y., Huang L.Y., Coggeshall R.E., and Yu Y. (2002). Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat. Neurosci. 5(12), 1271-1278.PubMedGoogle Scholar
  100. Wu X., Li Y., Crise B., and Burgess S.M. (2003). Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749-1751.PubMedGoogle Scholar
  101. Yeager A.M., Shinn C., Shinohara M., and Pardoll D.M. (1993). Hematopoietic cell transplantation in the twitcher mouse. The effects of pretransplant conditioning with graded doses of busulfan. Transplantation 56(1), 185-189.PubMedGoogle Scholar
  102. Yeager A.M., Shinohara M., and Shinn C. (1991). Hematopoietic cell transplantation after administration of high-dose busulfan in murine globoid cell leukodystrophy (the twitcher mouse). Pediatr. Res. 29(3), 302-305.PubMedGoogle Scholar
  103. Zheng Y., Rozengurt N., Ryazantsev S., Kohn D.B., Satyake N., and Neufeld E.F. (2003). Treatment of the mouse model of mucopolysaccharidosis I with retrovirally tyransduced bone marrow. Mol. Genetics and Metab. 79, 233-244.Google Scholar
  104. Zufferey R., Dull T., Mandel R.J., Bukovsky A., Quiroz D., Naldini L., and Trono D. (1998). Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 72(12), 9873-9880.PubMedGoogle Scholar
  105. Zufferey R., Nagy D., Mandel R.J., Naldini L., and Trono D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15(9), 871-875.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alessandra Biffi
    • 1
  • Luigi Naldini
    • 1
  1. 1.San Raffaele Telethon Institute for Gene Therapy and Vita Salute UniversityH. San Raffaele Scientific InstituteItaly

Personalised recommendations