Convolution Methods

Part of the Springer Series in Statistics book series (SSS)

Standard Gaussian process models were introduced in Section 2.2. Such models gained popularity originally in geostatistical applications but have become widely used throughout spatial statistics. In this chapter, we will see how one can represent a Gaussian process via convolutions, which can have great computational advantages as well as providing a rather natural mechanism for moving to a multiscale model. Thus the latter section of this chapter will fully explore how to use the convolution representation to build a multiscale model.


Gaussian Process Gaussian Kernel Markov Chain Monte Carlo Method Background Process Bottom Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations