Advertisement

Legionella pneumophila:Innate and Adaptive Immunity

  • Paul Hoffman
  • Herman Friedman
  • Mauro Bendinelli
Part of the Infectious Diseases And Pathogenesis book series (IAPA)

Keywords

Adaptive Immunity Cell Mediate Immune Helper Cell Notch Receptor Major Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Zant, A., M. Santic, M. Molmeret, S. Jones, J. Helbig, and Y. Abu Kwaik. 2005.Incomplete activation of macrophage apoptosis during intracellular replication of Legionella pneumophila. Infect Immun 73:5339–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Akamine, M., F. Higa, N. Arakaki, K. Kawakami, K. Takeda, S. Akira, and A. Saito. 2005. Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect Immun 73:352–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews, H. L., J. P. Vogel, and R. R. Isberg. 1998. Identification of linked Legionella pneumophilagenes essential for intracellular growth and evasion of the endocytic pathway. Infect Immun 66:950–8.PubMedGoogle Scholar
  4. 4.
    Arata, S., C. Newton, T. W. Klein, Y. Yamamoto, and H. Friedman. 1993. Legionella pneumophilainduced tumor necrosis factor production in permissive versus nonpermissive macrophages. Proc Soc Exp Biol Med 203:26–9.PubMedGoogle Scholar
  5. 5.
    Archer, K. A., and C. R. Roy. 2006. MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophilain a mouse model of Legionnaires’ disease. Infect Immun 74:3325–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanchard, D. K., J. Y. Djeu, T. W. Klein, H. Friedman, and W. E. Stewart. 1987. Induction of tumor necrosis factor by Legionella pneumophila. Infect Immun 55:433–7.PubMedGoogle Scholar
  7. 7.
    Braedel-Ruoff, S., M. Faigle, N. Hilf, B. Neumeister, and H. Schild. 2005. Legionella pneumophilamediated activation of dendritic cells involves CD14 and TLR2. J Endotoxin Res 11:89–96.PubMedGoogle Scholar
  8. 8.
    Byrd, T. F., and M. A. Horwitz. 1991. Chloroquine inhibits the intracellular multiplication of Legionella pneumophilaby limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin Invest 88:351–7.PubMedGoogle Scholar
  9. 9.
    Derre, I., and R. R. Isberg. 2004. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infect Immun 72:6221–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Dietrich, C., K. Heuner, B. C. Brand, J. Hacker, and M. Steinert. 2001. Flagellum of Legionella pneumophilapositively affects the early phase of infection of eukaryotic host cells. Infect Immun 69:2116–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Diez, E., S. H. Lee, S. Gauthier, Z. Yaraghi, M. Tremblay, S. Vidal, and P. Gros. 2003. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Edson, D. C., H. E. Stiefel, B. B. Wentworth, and D. L. Wilson. 1979. Prevalence of antibodies to Legionnaires’ disease. A seroepidemiologic survey of Michigan residents using the hemagglutination test. Ann Intern Med 90:691–3.PubMedGoogle Scholar
  13. 13.
    Egawa, K., T. W. Klein, Y. Yamamoto, C. A. Newton, and H. Friedman. 1992. Enhanced growth restriction of Legionella pneumophilain endotoxin- treated macrophages. Proc Soc Exp Biol Med 200:338–42.PubMedGoogle Scholar
  14. 14.
    Fields, B. S. 1996. The molecular ecology of legionellae. Trends Microbiol 4:286–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Finegold, S. M. 1988. Legionnaires’ disease—still with us [editorial]. N Engl J Med 318:571–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer, S. F., J. Vier, C. Muller-Thomas, and G. Hacker. 2006. Induction of apoptosis by Legionella pneumophilain mammalian cells requires the mitochondrial pathway for caspase activation. Microbes Infect 8:662–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Fortier, A., E. Diez, and P. Gros. 2005. Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol 13:328–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Fraser, D. W., T. R. Tsai, W. Orenstein, W. E. Parkin, H. J. Beecham, R. G. Sharrar, J. Harris, G. F. Mallison, S. M. Martin, J. E. McDade, C. C. Shepard, and P. S. Brachman. 1977. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 297:1189–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Freedman, A. P., and S. M. Katz. 1981. The prevalence of serum antibodies to Legionella pneumophilain patients with chronic pulmonary disease. Am Rev Respir Dis 123:238–9.PubMedGoogle Scholar
  20. 20.
    Friedman, H., Y. Yamamoto, and T. W. Klein. 2002. Legionella pneumophilapathogenesis and immunity. Semin Pediatr Infect Dis 13:273–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedman, H., Y. Yamamoto, C. Newton, and T. Klein. 1998. Immunologic response and pathophysiology of Legionella infection. Semin Respir Infect 13:100–8.PubMedGoogle Scholar
  22. 22.
    Gebran, S. J., Y. Yamamoto, C. Newton, T. W. Klein, and H. Friedman. 1994. Inhibition of Legionella pneumophilagrowth by gamma interferon in permissive A/J mouse macrophages: role of reactive oxygen species, nitric oxide, tryptophan, and iron(III). Infect Immun 62:3197–205.PubMedGoogle Scholar
  23. 23.
    Girard, R., T. Pedron, S. Uematsu, V. Balloy, M. Chignard, S. Akira, and R. Chaby. 2003. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116:293–302.PubMedCrossRefGoogle Scholar
  24. 24.
    Hawn, T. R., K. D. Smith, A. Aderem, and S. J. Skerrett. 2006. Myeloid Differentiation Primary Response Gene (88)- and Toll-Like Receptor 2-Deficient Mice Are Susceptible to Infection with Aerosolized Legionella pneumophila. J Infect Dis 193:1693–702.PubMedCrossRefGoogle Scholar
  25. 25.
    Hawn, T. R., A. Verbon, K. D. Lettinga, L. P. Zhao, S. S. Li, R. J. Laws, S. J. Skerrett, B. Beutler, L. Schroeder, A. Nachman, A. Ozinsky, K. D. Smith, and A. Aderem. 2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Heath, L., C. Chrisp, G. Huffnagle, M. LeGendre, Y. Osawa, M. Hurley, C. Engleberg, J. Fantone, and J. Brieland. 1996. Effector mechanisms responsible for gamma interferon-mediated host resistance to Legionella pneumophilalung infection: the role of endogenous nitric oxide differs in susceptible and resistant murine hosts. Infect Immun 64:5151–60.PubMedGoogle Scholar
  27. 27.
    Hoffman, P. S., L. Houston, and C. A. Butler. 1990. Legionella pneumophilahtpAB heat shock operon: nucleotide sequence and expression of the 60-kilodalton antigen in L. pneumophila-infected HeLa cells. Infect Immun 58:3380–7.PubMedGoogle Scholar
  28. 28.
    Horwitz, M. A., and S. C. Silverstein. 1980. Legionnaires’ disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest 66:441–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang, L. Y., K. J. Ishii, S. Akira, J. Aliberti, and B. Golding. 2005. Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J Immunol 175:3964–70.PubMedGoogle Scholar
  30. 30.
    Kikuchi, T., T. Kobayashi, K. Gomi, T. Suzuki, Y. Tokue, A. Watanabe, and T. Nukiwa. 2004. Dendritic cells pulsed with live and dead Legionella pneumophilaelicit distinct immune responses. J Immunol 172:1727–34.PubMedGoogle Scholar
  31. 31.
    Klein, T. W., H. Friedman, and S. Specter. 1998. Marijuana, immunity and infection. J Neuroimmunol 83:102–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Klein, T. W., Y. Kawakami, C. Newton, and H. Friedman. 1991. Marijuana components suppress induction and cytolytic function of murine cytotoxic T cells in vitro and in vivo. J Toxicol Environ Health 32:465–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Klein, T. W., C. Newton, R. Widen, and H. Friedman. 1993. Delta 9-tetrahydrocannabinol injection induces cytokine-mediated mortality of mice infected with Legionella pneumophila. J Pharmacol Exp Ther 267:635–40.PubMedGoogle Scholar
  34. 34.
    Klein, T. W., C. A. Newton, N. Nakachi, and H. Friedman. 2000. Delta 9-tetrahydrocannabinol treatment suppresses immunity and early IFN-gamma, IL-12, and IL-12 receptor beta 2 responses to Legionella pneumophilainfection. J Immunol 164:6461–6.PubMedGoogle Scholar
  35. 35.
    Lu, T., C. Newton, I. Perkins, H. Friedman, and T. W. Klein. 2006. Cannabinoid treatment suppresses the T helper cell polarizing function of mouse dendritic cells stimulated with Legionella pneumophilainfection. J Pharmacol Exp Ther 319:269–276.PubMedCrossRefGoogle Scholar
  36. 36.
    Lu, T., C. Newton, I. Perkins, H. Friedman, and T. W. Klein. 2006. Role of cannabinoid receptors in Delta-9-tetrahydrocannabinol suppression of IL-12p40 in mouse bone marrow-derived dendritic cells infected with Legionella pneumophila. Eur J Pharmacol 532:170–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Matsunaga, K., T. W. Klein, C. Newton, H. Friedman, and Y. Yamamoto. 2001. Legionella pneumophilasuppresses interleukin-12 production by macrophages. Infect Immun 69:1929–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsunaga, K., H. Yamaguchi, T. W. Klein, H. Friedman, and Y. Yamamoto. 2003. Legionella pneumophilasuppresses macrophage interleukin-12 production by activating the p42/44 mitogen-activated protein kinase cascade. Infect Immun 71:6672–5.PubMedCrossRefGoogle Scholar
  39. 39.
    McDade, J. E., C. C. Shepard, D. W. Fraser, T. R. Tsai, M. A. Redus, and W. R. Dowdle. 1977. Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297:1197–203.PubMedCrossRefGoogle Scholar
  40. 40.
    McHugh, S. L., C. A. Newton, Y. Yamamoto, T. W. Klein, and H. Friedman. 2000. Tumor necrosis factor induces resistance of macrophages to Legionella pneumophilainfection. Proc Soc Exp Biol Med 224:191–6.PubMedCrossRefGoogle Scholar
  41. 41.
    McHugh, S. L., Y. Yamamoto, T. W. Klein, and H. Friedman. 2000. Murine macrophages differentially produce proinflammatory cytokines after infection with virulent vs. avirulent Legionella pneumophila. J Leukoc Biol 67:863–8.PubMedGoogle Scholar
  42. 42.
    Molofsky, A. B., B. G. Byrne, N. N. Whitfield, C. A. Madigan, E. T. Fuse, K. Tateda, and M. S. Swanson. 2006. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophilainfection. J Exp Med 203:1093–104.PubMedCrossRefGoogle Scholar
  43. 43.
    Nakachi, N., K. Matsunaga, T. W. Klein, H. Friedman, and Y. Yamamoto. 2000. Differential effects of virulent versus avirulent Legionella pneumophilaon chemokine gene expression in murine alveolar macrophages determined by cDNA expression array technique. Infect Immun 68:6069–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Newton, C., S. McHugh, R. Widen, N. Nakachi, T. Klein, and H. Friedman. 2000. Induction of interleukin-4 (IL-4) by Legionella pneumophilainfection in BALB/c mice and regulation of tumor necrosis factor alpha, IL-6, and IL-1beta. Infect Immun 68:5234–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Newton, C. A., T. W. Klein, and H. Friedman. 1994. Secondary immunity to Legionella pneumophilaand Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection. Infect Immun 62:4015–20.PubMedGoogle Scholar
  46. 46.
    Newton, C. A., I. Perkins, R. H. Widen, H. Friedman, and T. W. Klein. 2006. Role of TLR9 in Legionella pneumophila-induced IL-12p40 production in bone marrow-derived dendritic cells and macrophages from permissive and non-permissive mice. Infect Immun.Google Scholar
  47. 47.
    Newton, C. A., R. Widen, H. Friedman, and T. W. Klein. 1994. Lymphocyte subset changes following primary and secondary infection of mice with Legionella pneumophila. Immunology & Infectious Diseases 5:18–26.Google Scholar
  48. 48.
    Plouffe, J. F., and I. M. Baird. 1982. Lymphocyte blastogenic responses to L. pneumophilain acute Legionellosis. J Clin Lab Immunol 7:43–4.PubMedGoogle Scholar
  49. 49.
    Ren, T., D. S. Zamboni, C. R. Roy, W. F. Dietrich, and R. E. Vance. 2006. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18.PubMedCrossRefGoogle Scholar
  50. 50.
    Salins, S., C. Newton, R. Widen, T. W. Klein, and H. Friedman. 2001. Differential Induction of Gamma Interferon in Legionella pneumophila- Infected Macrophages from BALB/c and A/J Mice. Infect Immun 69:3605–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Sampson, J. S., B. B. Plikaytis, and H. W. Wilkinson. 1986. Immunologic response of patients with legionellosis against major protein-containing antigens of Legionella pneumophilaserogroup 1 as shown by immunoblot analysis. J Clin Microbiol 23:92–9.PubMedGoogle Scholar
  52. 52.
    Sonesson, A., E. Jantzen, K. Bryn, L. Larsson, and J. Eng. 1989. Chemical composition of a lipopolysaccharide from Legionella pneumophila. Arch Microbiol 153:72–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Tateda, K., T. Matsumoto, Y. Ishii, N. Furuya, A. Ohno, S. Miyazaki, and K. Yamaguchi. 1998. Serum cytokines in patients with Legionella pneumonia: relative predominance of Th1-type cytokines. Clin Diagn Lab Immunol 5:401–3.PubMedGoogle Scholar
  54. 54.
    Weeratna, R., D. A. Stamler, P. H. Edelstein, M. Ripley, T. Marrie, D. Hoskin, and P. S. Hoffman. 1994. Human and guinea pig immune responses to Legionella pneumophilaprotein antigens OmpS and Hsp60. Infect Immun 62:3454–62.PubMedGoogle Scholar
  55. 55.
    Widen, R. H., T. W. Klein, C. A. Newton, and H. Friedman. 1989. Induction of interleukin 1 by Legionella pneumophilain murine peritoneal macrophage cultures. Proc Soc Exp Biol Med 191:304–8.PubMedGoogle Scholar
  56. 56.
    Widen, R. H., C. A. Newton, T. W. Klein, and H. Friedman. 1993. Antibody-mediated enhancement of Legionella pneumophila-induced interleukin 1 activity. Infect Immun 61:4027–32.PubMedGoogle Scholar
  57. 57.
    Winn, W. C., Jr., and R. L. Myerowitz. 1981. The pathology of the Legionella pneumonias. A review of 74 cases and the literature. Hum Pathol 12:401–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Yamamoto, Y., T. W. Klein, C. Newton, and H. Friedman. 1992. Differing macrophage and lymphocyte roles in resistance to Legionella pneumophilainfection. J Immunol 148:584–9.PubMedGoogle Scholar
  59. 59.
    Yamamoto, Y., T. W. Klein, C. A. Newton, and H. Friedman. 1988. Interaction of Legionella pneumophilawith peritoneal macrophages from various mouse strains. Adv Exp Med Biol 239:89–98.PubMedGoogle Scholar
  60. 60.
    Yamamoto, Y., T. W. Klein, C. A. Newton, R. Widen, and H. Friedman. 1987. Differential growth of Legionella pneumophilain guinea pig versus mouse macrophage cultures. Infect Immun 55:1369–74.PubMedGoogle Scholar
  61. 61.
    Yamamoto, Y., T. W. Klein, C. A. Newton, R. Widen, and H. Friedman. 1988. Growth of Legionella pneumophilain thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun 56:370–5.PubMedGoogle Scholar
  62. 62.
    Yoshida, S., and Y. Mizuguchi. 1986. Multiplication of Legionella pneumophilaPhiladelphia-1 in cultured peritoneal macrophages and its correlation to susceptibility of animals. Can J Microbiol 32:438–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul Hoffman
  • Herman Friedman
  • Mauro Bendinelli

There are no affiliations available

Personalised recommendations