Regulation of the Legionella pneumophila Life Cycle

  • Rachel L. Edwards
  • Michele S. Swanson
Part of the Infectious Diseases And Pathogenesis book series (IAPA)


Sigma Factor Bordetella Pertussis Stringent Response Francisella Tularensis Intracellular Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alli OAT, Gao L-Y, Pedersen LL, Zink S, Radulic M, Doric M, and Abu Kwaik Y (2000) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68:6431–6440.PubMedCrossRefGoogle Scholar
  2. Appleby JL, Parkinson JS, and Bourret RB (1996) Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–848.PubMedCrossRefGoogle Scholar
  3. Bachman MA, and Swanson MS (2001) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40:1201–1214.PubMedCrossRefGoogle Scholar
  4. Bachman MA, and Swanson MS (2004a) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential and the stationary phase. Infect Immun 72:2468–2476.CrossRefGoogle Scholar
  5. Bachman MA, and Swanson MS (2004b) The LetE protein enhances expression of multiple LetA/LetS-dependent transmission traits by Legionella pneumophila. Infect Immun 72:3284–3293.CrossRefGoogle Scholar
  6. Bijlsma JJE, and Groisman EA (2003) Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol 11:359–366.PubMedCrossRefGoogle Scholar
  7. Boucher PE, Menozzi FD, and Locht C (1994) The modular architecture of bacterial response regulators: insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis. J Mol Biol 241:363–377.PubMedCrossRefGoogle Scholar
  8. Brassinga AKC, Hiltz MF, Sisson GR, Morash MG, Hill N, Garduño E, Edelstein PH, Garduño RA and Hoffman PS (2003) A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol 185(15):4630–4637.PubMedCrossRefGoogle Scholar
  9. Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette C, Kunst F, Steinert M, Heuner K, Coppée JY, and Buchrieser C (2006) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila Cellular Microbiol 8:1228–1240.Google Scholar
  10. Byrne B, and Swanson MS (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034.PubMedGoogle Scholar
  11. Cazalet C, Rusniok C, Bruggemann H, Zidane N, Magnier A, Ma L,et al. (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173.PubMedCrossRefGoogle Scholar
  12. Chatterji D, and Kumar Ojha A (2001) Revisiting the stringent response,ppGpp and starvation signaling. Curr Opin Microbiol 4:160–165.PubMedCrossRefGoogle Scholar
  13. Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez SM, et al. (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968.PubMedCrossRefGoogle Scholar
  14. Cirillo JD, Cirillo SL, Yan L, Bermudez LE, Falkow S, and Tompkins LS (1999) Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect Immun 67:4427–4434.PubMedGoogle Scholar
  15. Cotter PA, and DiRita VJ (2000) Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54:519–565.PubMedCrossRefGoogle Scholar
  16. Cotter PA, and Miller JF (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol 24:671–685.PubMedCrossRefGoogle Scholar
  17. Faulkner G, and Garduño RA (2002) Ultrastructural analysis of differentiation in Legionella pneumophila. J Bacteriol 184:7025–7041.PubMedCrossRefGoogle Scholar
  18. Fettes PS, Forsbach-Birk V, Lynch D, and Marre R (2001) Overexpresssion of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size,flagellation, and pigmentation. Int J Med Microbiol 291:353–360.PubMedCrossRefGoogle Scholar
  19. Fields BS, Benson RF, and Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526.PubMedCrossRefGoogle Scholar
  20. Forsbach-Birk V, McNealy T, Shi C, Lynch D and Marre R (2004) Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. Int J Med Microbiol 294:15–25.PubMedCrossRefGoogle Scholar
  21. Gal-Mor O, and Segal G (2003a) The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 34:187–194.CrossRefGoogle Scholar
  22. Gal-Mor O, and Segal G (2003b) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–4919.CrossRefGoogle Scholar
  23. Gal-Mor O, Zusman T, and Segal G (2002) Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J Bacteriol 184:3823–3833.PubMedCrossRefGoogle Scholar
  24. Garduño RA, Garduño E, Hiltz M, and Hoffman PS (2002) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 70:6273–6283.PubMedCrossRefGoogle Scholar
  25. Godfrey HP, Bugrysheva JV, and Cabello FC (2002) The role of the stringent response in the pathogenesis of bacterial infections. Trends Microbiol 10:349–351.PubMedCrossRefGoogle Scholar
  26. Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328.PubMedCrossRefGoogle Scholar
  27. Greub G, and Raoult D (2003) Morphology of Legionella pneumophila according to their location in Hartmanella veriformis. Res Microbiol 154:619–621.PubMedCrossRefGoogle Scholar
  28. Hales LM, and Shuman HA (1999) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181:4879–4889.PubMedGoogle Scholar
  29. Hammer BK, and Swanson MS (1999) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33:721–731.PubMedCrossRefGoogle Scholar
  30. Hammer BK, Tateda E, and Swanson M (2002) A two-component regulator induces the transmission phenotype of stationary phase Legionella pneumophila. Mol Microbiol 44:107–118.PubMedCrossRefGoogle Scholar
  31. Harb OS, and Abu Kwaik Y (2000) Characterization of a macrophage-specific infectivity locus (milA) of Legionella pneumophila. Infect Immun 68:368–376.PubMedCrossRefGoogle Scholar
  32. Heeb S, and Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363.PubMedCrossRefGoogle Scholar
  33. Heuner K, Hacker J, and Brand BC (1997) The alternative sigma factor sigma28 of Legionella pneumophila restores flagellation and motility to an Escherichia coli fliA mutant. J Bacteriol 179:17–23.PubMedGoogle Scholar
  34. Heuner K, Dietrich C, Skriwan C, Steinert M, and Hacker J (2002) Influence of the alternative σ28 factor on virulence and flagellum expression of Legionella pneumophila. Infect Immun 70:1604–1608.PubMedCrossRefGoogle Scholar
  35. Jacobi S, Schade R, and Heuner K (2004) Characterization of the alternative sigma factor σ54 and the transcriptional regulator FleQ of Legionella pneumophila, which are both involved in the regulation cascade of flagellar gene expression. J Bacteriol 186:2540–2547.PubMedCrossRefGoogle Scholar
  36. Lawhon SD, Maurer R, Suyemoto M, and Altier C (2002) Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46:1451–1464PubMedCrossRefGoogle Scholar
  37. Lebeau I, Lammertyn E,De Buck E, Maes L, Geukens N, Van Mellaert L, et al. (2005) First proteomic analysis of Legionella pneumophila based on its developing genome sequence. Res Microbiol 156:119–129PubMedCrossRefGoogle Scholar
  38. Lynch D, Fieser N, Gloggler K, Forsbach-Birk V, and Marre R (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–248PubMedCrossRefGoogle Scholar
  39. Magnusson LU, Farewell A, and Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242PubMedCrossRefGoogle Scholar
  40. Majdalani N, Vanderpool CK, and Gottesman S (2005) Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40:93–113PubMedCrossRefGoogle Scholar
  41. McCleary WR, Stock JB, and Ninfa AJ (1993) Is acetyl phosphate a global signal in Escherichia coli? J Bacteriol 175:2793–2798PubMedGoogle Scholar
  42. McNealy TL, Forsbach-Birk V, Shi C, and Marre R (2005) The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J Bacteriol 187:1527–1532PubMedCrossRefGoogle Scholar
  43. Molofsky AB, and Swanson MS (2003) Legionella pneumphila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461PubMedCrossRefGoogle Scholar
  44. Molofsky AB, Shetron-Rama LM, and Swanson MS (2005) Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits,including lysosome avoidance and macrophage death. Infect Immun 73:5720–5734PubMedCrossRefGoogle Scholar
  45. Nystrom T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54:855–862PubMedCrossRefGoogle Scholar
  46. Oyston PCF, Sjostedt A, and Titball RW (2004) Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol 2:967–978PubMedCrossRefGoogle Scholar
  47. Pao SS, Paulsen IT, and Saier MH,Jr. (1998) Major Facilitator Superfamily. Micro Mol Biol Rev 62:1–34Google Scholar
  48. Perraud A, Weiss V, and Gross R (1999) Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7:115–120PubMedCrossRefGoogle Scholar
  49. Rankin S, Li Z, and Isberg R (2002) Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect Immun 70:3637–3648PubMedCrossRefGoogle Scholar
  50. Ristroph JD, Hedlund KW, and Gowda S (1981) Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol 13:115–119PubMedGoogle Scholar
  51. Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330PubMedCrossRefGoogle Scholar
  52. Rowbotham TJ (1986) Current views on the relationships between amoebae,Legionellae and man. Isr J Med Sci 22:678–689PubMedGoogle Scholar
  53. Sauer JD, Bachman MA, and Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci USA 102:9924–9929PubMedCrossRefGoogle Scholar
  54. Sexton JA, and Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3:178–185PubMedCrossRefGoogle Scholar
  55. Sturgill-Koszycki S, and Swanson MS (2000) Legionella pneumophila replication vacuoles mature into acidic,endocytic organelles. J Exp Med 192:1261–1272PubMedCrossRefGoogle Scholar
  56. Suzuki K, Wang X, Weilbacher T, Pernestig A-K, Melefors O, Georgellis D,et al. (2002) Regulatory circuitry of the CsrA/CsrB and BarA/Uvry systems of Escherichia coli. J Bacteriol 184:5130–5140PubMedCrossRefGoogle Scholar
  57. Tesh MJ, Morse SA, and Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109PubMedGoogle Scholar
  58. Uhl MA and Miller JF (1996) Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J 15(5):1028–1036PubMedGoogle Scholar
  59. Watarai M, Andrews HL, and Isberg RR (2001) Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol Microbiol 39:313–329PubMedCrossRefGoogle Scholar
  60. Wieland H, Faiglea M, Lang F, Northoffa H, and Neumeister B (2002) Regulation of the Legionella mip-promotor during infection of human monocytes. FEMS Microbiol Letters 212:127–132CrossRefGoogle Scholar
  61. Wieland H, Ullrich S, Lang F, and Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–1537PubMedCrossRefGoogle Scholar
  62. Wolfe AJ (2005) The acetate switch. Micro Mol Biol Rev 69:12–50CrossRefGoogle Scholar
  63. Zusman T, Gal-Mor O, and Segal G (2002) Characterization of a Legionella pneumophila relA insertion mutant and roles of RelA and RpoS in virulence gene expression. J Bacteriol 184:67–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rachel L. Edwards
  • Michele S. Swanson

There are no affiliations available

Personalised recommendations