The Dot/Icm Type IVB Secretion System

  • Jason J. LeBlanc
  • Joseph P. Vogel
Part of the Infectious Diseases And Pathogenesis book series (IAPA)


Secretion System Endocytic Pathway Guanine Nucleotide Exchange Factor Coxiella Burnetii Intracellular Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amor, J. C., J. Swails, X. Zhu, C. R. Roy, H. Nagai, A. Ingmundson, X. Cheng, and R. A. Kahn. 2005. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem 280:1392–400.PubMedCrossRefGoogle Scholar
  2. Backert, S. and T. F. Meyer. 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–17.PubMedCrossRefGoogle Scholar
  3. Bar-Nun, S. 2005. The role of p97/Cdc48p in endoplasmic reticulum-associated degrada tion: from the immune system to yeast. Curr Top Microbiol Immunol 300:95–125.PubMedCrossRefGoogle Scholar
  4. Bardill, J. P., J. L. Miller, and J. P. Vogel. 2005. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 56:90–103.PubMedCrossRefGoogle Scholar
  5. Berger, K. H. and R. R. Isberg. 1993. Two distinct defects in intracellular growth comple mented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19.PubMedCrossRefGoogle Scholar
  6. Berk, S. G., R. S. Ting, G. W. Turner, and R. J. Ashburn. 1998. Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl Environ Microbiol 64:279–86.PubMedGoogle Scholar
  7. Boschiroli, M. L., Ouahrani-Bettache, S., Foulongne, V., Michaux-Charachon, S., Bourg, G., Allardet-Servent, A., Cazevieille, C., Lavigne, J. P., Liautard, J. P., Ramuz, M., and D. O’Callaghan. 2002. Type IV secretion and Brucella virulence. Vet Microbiol 90:341–8.PubMedCrossRefGoogle Scholar
  8. Bruggemann, H., A. Hagman, M. Jules, O. Sismeiro, M. A. Dillies, C. Gouyette, F. Kunst, M. Steinert, K. Heuner, J. Y. Coppee, and C. Buchrieser. 2006. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8:1228–40.PubMedCrossRefGoogle Scholar
  9. Buscher, B. A., G. M. Conover, J. L. Miller, S. A. Vogel, S. N. Meyers, R. R. Isberg, and J. P. Vogel. 2005. The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J Bacteriol 187:2927–38.PubMedCrossRefGoogle Scholar
  10. Campodonico, E. M., L. Chesnel, and C. R. Roy. 2005. A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol 56:918–33.PubMedCrossRefGoogle Scholar
  11. Celli, J. and J. P. Gorvel. 2004. Organelle robbery: Brucella interactions with the endoplasmic reticulum. Curr Opin Microbiol 7:93–7.PubMedCrossRefGoogle Scholar
  12. Chen, J., K. S. de Felipe, M. Clarke, H. Lu, O. R. Anderson, G. Segal, and H. A. Shuman. 2004. Legionella effectors that promote nonlytic release from protozoa. Science 303:1358–61.PubMedCrossRefGoogle Scholar
  13. Christie, P. J. and J. P. Vogel. 2000. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–60.PubMedCrossRefGoogle Scholar
  14. Christie, P. J., K. Atmakuri, V. Krishnamoorthy, S. Jakubowski, and E. Cascales. 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–85.PubMedCrossRefGoogle Scholar
  15. Coers, J., C. Monahan, and C. R. Roy. 1999. Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nat Cell Biol 1:451–3.PubMedCrossRefGoogle Scholar
  16. Coers, J., J. C. Kagan, M. Matthews, H. Nagai, D. M. Zuckman, and C. R. Roy. 2000. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol 38:719–36.PubMedCrossRefGoogle Scholar
  17. Conover, G. M., I. Derré, J. P. Vogel, and R. R. Isberg. 2003. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48:305–21.PubMedCrossRefGoogle Scholar
  18. Derré, I. and R. R. Isberg. 2004. Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72:3048–53.PubMedCrossRefGoogle Scholar
  19. Derré, I. and R. R. Isberg. 2005. LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun 73:4370–80.PubMedCrossRefGoogle Scholar
  20. Dorer, M. S., D. Kirton, J. S. Bader, and R. R. Isberg. 2006. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2:e34.PubMedCrossRefGoogle Scholar
  21. Duménil, G. and R. R. Isberg. 2001. The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol Microbiol 40:1113–27.PubMedCrossRefGoogle Scholar
  22. Duménil, G., T. P. Montminy, M. Tang, and R. R. Isberg. 2004. IcmR-regulated membrane insertion and efflux by the Legionella pneumophila IcmQ protein. J Biol Chem 279:4686–95.PubMedCrossRefGoogle Scholar
  23. Gal-Mor, O. and G. Segal. 2003a. Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–19.CrossRefGoogle Scholar
  24. Gal-Mor, O. and G. Segal. 2003b. The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 34:187–94.CrossRefGoogle Scholar
  25. Gal-Mor, O., T. Zusman, and G. Segal. 2002. Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J Bacteriol 184:3823–33.PubMedCrossRefGoogle Scholar
  26. Horwitz, M. A. and F. R. Maxfield. 1984. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 99:1936–43.PubMedCrossRefGoogle Scholar
  27. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433.PubMedGoogle Scholar
  28. Kagan, J. C. and C. R. Roy. 2002. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–54.PubMedCrossRefGoogle Scholar
  29. Kagan, J. C., M. P. Stein, M. Pypaert, and C. R. Roy. 2004. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–11.PubMedCrossRefGoogle Scholar
  30. Kirby, J. E., J. P. Vogel, H. L. Andrews, and R. R. Isberg. 1998. Evidence for pore-forming ability by Legionella pneumophila. Mol Microbiol 27:323–36.PubMedCrossRefGoogle Scholar
  31. Lu, H. and M. Clarke. 2005. Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007.PubMedCrossRefGoogle Scholar
  32. Luo, Z. Q. and R. R. Isberg. 2004. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA 101:841–6.PubMedCrossRefGoogle Scholar
  33. Machner, M. P. and R. R. Isberg. 2006. Targeting of host rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11:47–56.PubMedCrossRefGoogle Scholar
  34. Marra, A., S. J. Blander, M. A. Horwitz, and H. A. Shuman. 1992. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci USA 89:9607–11.PubMedCrossRefGoogle Scholar
  35. Matthews, M. and C. R. Roy. (2000). Identification and subcellular localization of the Legionella pneumophila IcmX Protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect Immun 68:3971–3982.PubMedCrossRefGoogle Scholar
  36. Molofsky, A. B. and M. S. Swanson. (2004). Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol. 53:29–40.PubMedCrossRefGoogle Scholar
  37. Nagai, H. and C. R. Roy. 2003. Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol 5:373–83.PubMedCrossRefGoogle Scholar
  38. Nagai, H., J. C. Kagan, X. Zhu, R. A. Kahn, and C. R. Roy. 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–82.PubMedCrossRefGoogle Scholar
  39. Ninio, S., D. M. Zuckman-Cholon, E. D. Cambronne, and C. R. Roy. 2005. The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol Microbiol 55:912–26.PubMedCrossRefGoogle Scholar
  40. Rabin, S. D., J. L. Veesenmeyer, K. T. Bieging, and A. R. Hauser. 2006. A C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infect Immun 74:2552–61.PubMedCrossRefGoogle Scholar
  41. Rowbotham, T. J. 1986. Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci 22:678–89.PubMedGoogle Scholar
  42. Roy, C. R. and R. R. Isberg. 1997. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages. Infect Immun 65:571–8.PubMedGoogle Scholar
  43. Roy, C. R., K. H. Berger, and R. R. Isberg. 1998. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28:663–74.PubMedCrossRefGoogle Scholar
  44. Sauer, J. D., J. G. Shannon, D. Howe, S. F. Hayes, M. S. Swanson, and R. A. Heinzen. 2005. Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 73:4494–504.PubMedCrossRefGoogle Scholar
  45. Segal, G. and H. A. Shuman. 1998. Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30:197–208.PubMedCrossRefGoogle Scholar
  46. Segal, G., J. J. Russo, and H. A. Shuman. 1999. Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34:799–809.PubMedCrossRefGoogle Scholar
  47. Segal, G., M. Feldman, and T. Zusman. 2005. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 29:65–81.PubMedCrossRefGoogle Scholar
  48. Sexton, J. A. and J. P. Vogel. 2002. Type IVB secretion by intracellular pathogens. Traffic 3:178–85.PubMedCrossRefGoogle Scholar
  49. Sexton, J. A., J. L. Miller, A. Yoneda, T. E. Kehl-Fie, and J. P. Vogel. 2004a. Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72:5983–92.CrossRefGoogle Scholar
  50. Sexton, J. A., J. S. Pinkner, R. Roth, J. E. Heuser, S. J. Hultgren, and J. P. Vogel. 2004b. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–66.CrossRefGoogle Scholar
  51. Sexton, J. A., H. J. Yeo, and J. P. Vogel. 2005. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol Microbiol 57:70–84.PubMedCrossRefGoogle Scholar
  52. Shi, C., V. Forsbach-Birk, R. Marre, and T. L. McNealy. 2006. The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol 296:15–24.PubMedCrossRefGoogle Scholar
  53. Shohdy, N., J. A. Efe, S. D. Emr, and H. A. Shuman. 2005. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. jt>Proc Natl Acad Sci USA 102:4866–71.Google Scholar
  54. Swanson MS and B.K. Hammer. 2000 Legionella Pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613.PubMedCrossRefGoogle Scholar
  55. Uchiya, K., M. A. Barbieri, K. Funato, A. H. Shah, P. D. Stahl, and E. A. Groisman. 1999. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–33.PubMedCrossRefGoogle Scholar
  56. VanRheenen, S. M., G. Duménil, and R. R. Isberg. 2004. IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun 72:5972–82.PubMedCrossRefGoogle Scholar
  57. VanRheenen, S. M., Z. Q. Luo, T. O’Connor, and R. R. Isberg. 2006. Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun 74:3597–606.PubMedCrossRefGoogle Scholar
  58. Vincent, C. D. and J. P. Vogel. 2006. The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol 61:596–613.PubMedCrossRefGoogle Scholar
  59. Vincent, C. D., Friedman, J. R., Jeong, K. C., Buford, E. C., Miller, J. L., and J. P. Vogel. 2006. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol [Epub ahead of print].Google Scholar
  60. Vogel, J. P., C. Roy, and R. R. Isberg. 1996. Use of salt to isolate Legionella pneumophila mutants unable to replicate in macrophages. Ann NY Acad Sci 797:271–2.PubMedCrossRefGoogle Scholar
  61. Vogel, J. P., H. L. Andrews, S. K. Wong, and R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–6.PubMedCrossRefGoogle Scholar
  62. Watarai, M., H. L. Andrews, and R. R. Isberg. 2001. Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol Microbiol 39:313–29.PubMedCrossRefGoogle Scholar
  63. Weber, S. S., C. Ragaz, K. Reus, Y. Nyfeler, and H. Hilbi. 2006. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46.PubMedCrossRefGoogle Scholar
  64. Wiater, L. A., K. Dunn, F. R. Maxfield, and H. A. Shuman. 1998. Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila. Infect Immun 66:4450–60.PubMedGoogle Scholar
  65. Zuckman, D. M., J. B. Hung, and C. R. Roy. 1999. Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol Microbiol 32:990–1001.PubMedCrossRefGoogle Scholar
  66. Zusman, T., O. Gal-Mor, and G. Segal. 2002. Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J Bacteriol 184:67–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jason J. LeBlanc
  • Joseph P. Vogel

There are no affiliations available

Personalised recommendations