Skip to main content

Plant Centromeres

  • Chapter
  • First Online:
Plant Cytogenetics

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 4))

  • 2335 Accesses

Abstract

The centromeres of maize, Arabidopsis, and rice are compared. Plant centromeres are quite diverse on the DNA sequence level but possess similar structural features across taxa, namely megabase-sized arrays of small repeats interspersed with a specific retrotransposon family. On the contrary, the protein components of the kinetochore that functions in chromosome movement and forms over the site of the centromere is highly conserved. Plant centromeres exhibit epigenetic properties of specification as evidenced by the frequent finding of inactive centromeres that contain a full spectrum of DNA elements but are inherited over generations without forming a kinetochore. Plant centromeres have been demonstrated to be divisible by the process of misdivision, but the smaller centromeres produced show impaired function when their size falls below a threshold of a few hundred kilobases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B-chromosome centric sequence. Genetics 135:589–597

    CAS  PubMed  Google Scholar 

  • Ananiev E, Phillips RL, Rines H (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    Article  CAS  PubMed  Google Scholar 

  • Bao W, Zhang W, Yang Q, Zhang Y, Han B, Gu M, Xue Y, Cheng Z (2006) Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Genet Genomics 275:421–430

    Article  CAS  PubMed  Google Scholar 

  • Brock RD, Pryor AJ (1996) An unstable minichromosome generates variegated oil yellow maize seedlings. Chromosoma 104:575–584

    Article  CAS  PubMed  Google Scholar 

  • Carlson WR (1970) Nondisjunction and isochromosome formation in the B chromosome of maize. Chromosoma 30:356–365

    Article  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito M, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  CAS  PubMed  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang G-L., Ronald PC, Jiang J (1998) Rice (Ozyza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140

    Article  CAS  PubMed  Google Scholar 

  • Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205

    Article  CAS  PubMed  Google Scholar 

  • Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170:1913–1927

    Article  CAS  PubMed  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  CAS  PubMed  Google Scholar 

  • Han F, Lamb JC, Yu W, Gao Z, Birchler JA (2007a) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19:524–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han F, Gao Z, Yu W, Birchler JA (2007b) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion. Plant Cell 19:3853–3863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from the centromeric regions of Arabidopsis chromosomes. Plant Cell 11:31–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11: 241–253

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA and Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaszas E, Birchler J (1996) Misdivision analysis of centromere structure in maize. EMBO J 15:5246–5255

    CAS  PubMed  Google Scholar 

  • Kaszas E, Birchler J (1998) Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics 150:1683–1692

    CAS  PubMed  Google Scholar 

  • Kato A, Lamb, JC, Birchler JA (2004) Chromosome painting in maize using repetitive DNA sequences as probes for somatic chromosome identification. Proc Natl Acad Sci USA 101:13554–13559

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Zheng Y-Z, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109:156–165

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Genet Genomics 272:593–602

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Nasuda S (2006) Polymorphic chromosomal specificity of centromere satellite families in Arabidopsis halleri ssp. gemmifera. Genetica 126:335–342

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Kato A, Birchler JA (2005) Centromere associated sequences are present throughout the maize B chromosome. Chromosoma 113:337–349

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Meyer JM, Birchler JA (2007) A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116:237–247

    Article  CAS  PubMed  Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin B-Y (1978) Regional control of nondisjunction of the B chromosome in maize. Genetics 90:613–627

    CAS  PubMed  Google Scholar 

  • Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 103:383–388

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251–259

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007a) Evolutionary history and positional shift of a rice centromere. Genetics 177:1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007b) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  CAS  PubMed  Google Scholar 

  • Maguire MP (1987) Meiotic behavior of a tiny fragment chromosome that carries a transposed centromere. Genome 29:744–747

    Article  CAS  PubMed  Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79

    Article  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    CAS  PubMed  Google Scholar 

  • Miller JT, Cong FG, Jackson SA, Song J, Jiang JM (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623

    CAS  PubMed  Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Japan J Genet 69:361–370

    Article  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003a) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    CAS  PubMed  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003b) Chromatin immunoprecipitation reveals that the 180 bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855

    Article  CAS  PubMed  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  CAS  PubMed  Google Scholar 

  • Neuman P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761

    Article  Google Scholar 

  • Phan BH, Jin W, Topp CN, Zhong CX, Jiang J, Dawe RK, Parrott WA (2006) Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16:341–351

    Article  PubMed  Google Scholar 

  • Phelps-Durr TL, Birchler JA (2004) An asymptotic determination of minimum centromere size for the maize B chromosome. Cytogenet Genome Res 106:309–313

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MM (1940) Studies of a telocentric chromosome in maize with reference to the stability of its centromere. Genetics 25:483–521

    CAS  PubMed  Google Scholar 

  • Roman HL (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32:391–409

    CAS  PubMed  Google Scholar 

  • Roman HL (1948) Directed fertilization in maize. Proc Natl Acad Sci USA 34:36–42

    Article  CAS  PubMed  Google Scholar 

  • Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 7:1045–1053

    CAS  PubMed  Google Scholar 

  • Sharma A, Presting GG (2008) Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Mol Genet Genomics 279:133–147

    Article  CAS  PubMed  Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop-Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253:247–252

    Article  CAS  PubMed  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991

    Article  CAS  PubMed  Google Scholar 

  • Ward E (1973) Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 73:387–391

    CAS  PubMed  Google Scholar 

  • Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S, Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yi C, Bao W, Liu B, Cui J, Yu H, Cao X, Gu M, Liu M, Cheng Z (2005) The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol 139:306–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y-Z, Roseman RR, Carlson WR (1999) Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153:1435–1444

    CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Research on this topic in our laboratory is supported by grants DBI 0423898, DBI 0421671, and DBI 0701297 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Birchler, J.A., Gao, Z., Han, F. (2012). Plant Centromeres. In: Bass, H., Birchler, J. (eds) Plant Cytogenetics. Plant Genetics and Genomics: Crops and Models, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70869-0_6

Download citation

Publish with us

Policies and ethics