Advertisement

New Hospital Initiatives in Fighting Resistance

  • Fiona Cooke
  • Alison Holmes

Summary

The fight against the emergence and spread of antibiotic resistant organisms in hospitals demands a wide-ranging and comprehensive strategy of attack. Although a multifaceted approach is required, the following discussion will be restricted to the translation of new molecular techniques into diagnostic tests, and initiatives to optimize antibiotic prescribing in hospitals. An ideal rapid test would determine categorically whether a pathogen is present or not in a clinical sample, and if so, the identification and antibiotic susceptibility, all within 1–2 hours. Widespread use of such tests, and their translation into portable “near patient tests,” will undoubtedly have significant consequences regarding patient management and control of antibiotic resistance. In the wider hospital setting, developments in information technology and new applications of management, organization, and service delivery must be adopted to optimize antibiotic prescribing. By combining timely diagnostics with the larger-scale hospital systems for the delivery of care, we may start to win the battle against antibiotic resistance.

Keywords

Necrotizing Fasciitis Antibiotic Prescribe Balance Scorecard Antibiotic Stewardship Care Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranoff, D., A. Stich, et al. (2005) Proteomic fingerprinting for the diagnosis of human African trypanosomiasis. Trends Parasitol 21(4):154–7.CrossRefPubMedGoogle Scholar
  2. Anon (2003) Winning Ways: Working together to reduce healthcare associated infection in England. Report of the Chief Medical Officer, Department of Health.Google Scholar
  3. Anon (2004) Improving patient care by reducing the risk of hospital acquired infection: A progress report. U.K. National Audit Office.Google Scholar
  4. Belanger, S. D., M. Boissinot, et al. (2003) Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol 41(2):730–4.CrossRefPubMedGoogle Scholar
  5. Bergeron M.G. and M.Ouellette (1998) Minireview, Preventing Antibiotic Resistance through Rapid Genotypic Identification of Bacteria and of Their Antibiotic Resistance Genes in the Clinical Microbiology Laboratory. J chin Micro 36(8):2169-72.Google Scholar
  6. Boissinot, M. and M. G. Bergeron (2002) Toward rapid real-time molecular diagnostic to guide smart use of antimicrobials. Curr Opin Microbiol 5(5):478–82.CrossRefPubMedGoogle Scholar
  7. Bryant, P. A., D. Venter, et al. (2004) Chips with everything: DNA microarrays in infectious diseases. Lancet Infect Dis 4(2):100–11.CrossRefPubMedGoogle Scholar
  8. Call, D. R., M. K. Bakko, et al. (2003) Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother 47(10):3290–5.CrossRefPubMedGoogle Scholar
  9. Classen, D. C., R. S. Evans, et al. (1992) The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 326(5):281–6.PubMedCrossRefGoogle Scholar
  10. Cooker, F. J., A.H. Holmes (2007) The missing care bundle: antibiotic prescribing in hospitals, Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2007.03.003.Google Scholar
  11. Cooper, B. S., S. P. Stone, et al. (2003) Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: A review of the literature with epidemiological and economic modelling. Health Technol Assess 7(39):1–194.PubMedGoogle Scholar
  12. Corona, A., G. Bertolini, et al. (2003) Variability of treatment duration for bacteraemia in the critically ill: A multinational survey. J Antimicrob Chemother 52(5):849–52.CrossRefPubMedGoogle Scholar
  13. Coyne, S. R., P. D. Craw, et al. (2004) Comparative analysis of the Schleicher and Schuell IsoCode Stix DNA isolation device and the Qiagen QIAamp DNA Mini Kit. J Clin Microbiol 42(10):4859–62.CrossRefPubMedGoogle Scholar
  14. Davey, P., E. Brown, et al. (2006) Systematic review of antimicrobial drug prescribing in hospitals. Emerg Infect Dis 12(2):211–6.PubMedGoogle Scholar
  15. Dean, B., W. Lawson, et al. (2002) The use of serial point prevalence studies to investigate antiinfective prescribing. Int J Pharm Pract 10: 121–5.Google Scholar
  16. Diep, B. A., S. R. Gill, et al. (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–9.CrossRefPubMedGoogle Scholar
  17. Edwards, N., M. J. Kornacki, et al. (2002) Unhappy doctors: What are the causes and what can be done? BMJ 324:835–8.CrossRefPubMedGoogle Scholar
  18. Espy, M. J., J. R. Uhl, et al. (2006) Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clin Microbiol Rev 19:165–256.CrossRefPubMedGoogle Scholar
  19. Evans, R. S., S. L. Pestotnik, et al. (1998) A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 338:232–8.CrossRefPubMedGoogle Scholar
  20. Fleischmann, R. D., M. D. Adams, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.CrossRefPubMedGoogle Scholar
  21. Foster, K. R. and H. Grundmann (2006) Do we need to put society first? The potential for tragedy in antimicrobial resistance. PLoS Med 3(2): e29.CrossRefPubMedGoogle Scholar
  22. Goldmann, D. A., R. A. Weinstein, et al. (1996) Strategies to prevent and control the emergence and spread of antimicrobial-resistant microorganisms in hospitals. A challenge to hospital leadership. JAMA 275: 234–40.CrossRefPubMedGoogle Scholar
  23. Hackett, S. J., M. Guiver, et al. (2002) Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch Dis Child 86: 44–6.CrossRefPubMedGoogle Scholar
  24. Hardy, K. J., B. A. Oppenheim, et al. (2006) Use of variations in staphylococcal interspersed repeat units for molecular typing of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 44: 271–3.CrossRefPubMedGoogle Scholar
  25. Holland, C. A. and F. L. Kiechle (2005) Point-of-care molecular diagnostic systems—Past, present and future. Curr Opin Microbiol 8: 504–9.CrossRefPubMedGoogle Scholar
  26. Holmes, A. (2006) Organisational change for infection protection. Developing an organisational model for infection control at Hammersmith Hospitals trust. Health Service Journal 8: 19–22, http://www.publicservice.co.uk/pdf/health/issue8/H8%20Dr%20Alison%20Holmes%20ATL.pdf
  27. Huletsky, A., R. Giroux, et al. (2004) New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol 42: 1875–84.CrossRefPubMedGoogle Scholar
  28. Huletsky, A., P. Lebel, et al. (2005) Identification of methicillin-resistant Staphylococcus aureus carriage in less than 1 hour during a hospital surveillance program. Clin Infect Dis 40: 976–81.CrossRefPubMedGoogle Scholar
  29. Kaplan, R. D.P. Norton (1996) The Balanced Scorecard: Translating Strategy into Action. Harvard Business School Press.Google Scholar
  30. Knox, K., W. Lawson, et al. (2003) Multidisciplinary antimicrobial management and the role of the infectious diseases pharmacist—A UK perspective. J Hosp Infect 53: 85–90.CrossRefPubMedGoogle Scholar
  31. Knox, K. L., Lawson, A. Holmes (2004) Multidisciplinary Antimicrobial Management Teams and the Role of the Pharmacist in Management of Infection.Google Scholar
  32. Kuroda, M., T. Ohta, et al. (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357: 1225–40.CrossRefPubMedGoogle Scholar
  33. Kusunoki, S., T. Ezaki, et al. (1991) Application of colorimetric microdilution plate hybridization for rapid genetic identification of 22 Mycobacterium species. J Clin Microbiol 29: 1596–603.PubMedGoogle Scholar
  34. Lambert, H. P. (1999) Don’t keep taking the tablets? Lancet 354: 943–5.CrossRefPubMedGoogle Scholar
  35. Lapierre, P., A. Huletsky, et al. (2003) Real-time PCR assay for detection of fluoroquinolone resistance associated with grlA mutations in Staphylococcus aureus. J Clin Microbiol 41: 3246–51.CrossRefPubMedGoogle Scholar
  36. Maiden, M. C., J. A. Bygraves, et al. (1998) Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95: 3140–5.CrossRefPubMedGoogle Scholar
  37. Morozumi, M., E. Nakayama, et al. (2006) Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. J Clin Microbiol 44: 1440–6.CrossRefPubMedGoogle Scholar
  38. Mortimer, P. and C. Arnold (2001) FAFLP: last word in microbial genotyping? J Med Microbiol 50: 393–5.PubMedGoogle Scholar
  39. Nikkari, S., I. J. McLaughlin, et al. (2001) Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol 39: 1956–9.CrossRefPubMedGoogle Scholar
  40. Peters, R. P., T. Mohammadi, et al. (2004a) Detection of bacterial DNA in blood samples from febrile patients: Underestimated infection or emerging contamination? FEMS Immunol Med Microbiol 42: 249–53.CrossRefPubMedGoogle Scholar
  41. Peters, R. P., M. A. van Agtmael, et al. (2004b) New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 4: 751–60.CrossRefPubMedGoogle Scholar
  42. Peters, R. P., P. H. Savelkoul, et al. (2006) Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J Clin Microbiol 44: 119–23.CrossRefPubMedGoogle Scholar
  43. Picard, F. J. and M. G. Bergeron (2002) Rapid molecular theranostics in infectious diseases. Drug Discov Today 7: 1092–101.CrossRefPubMedGoogle Scholar
  44. Pulcini, C., C. Pradier, et al. (2006) Factors associated with adherence to infectious diseases advice in two intensive care units. J Antimicrob Chemother 57: 546–50.CrossRefPubMedGoogle Scholar
  45. Relman, D. A. (2003) Shedding light on microbial detection. N Engl J Med 349: 2162–3.CrossRefPubMedGoogle Scholar
  46. Rider, T. H., M. S. Petrovick, et al. (2003) A B cell-based sensor for rapid identification of pathogens. Science 301: 213–5.CrossRefPubMedGoogle Scholar
  47. Roger, M., P. St-Antoine, et al. (2001) Vancomycin-resistant enterococci in health care facilities. N Engl J Med 345: 768–9.CrossRefPubMedGoogle Scholar
  48. Seaton, R. A., D. Nathwani, et al. (1999) Clinical record keeping in patients receiving antibiotics in hospital. Health Bull (Edinb) 57: 128–33.Google Scholar
  49. Silversin, J. and M.J. kornacki (2000) Leading Physicians through Change: How to Achieve and Sustain Results. American College of Physician Executives.Google Scholar
  50. Sintchenko, V., J. R. Iredell, et al. (2005) Handheld computer-based decision support reduces patient length of stay and antibiotic prescribing in critical care. J Am Med Inform Assoc 12: 398–402.CrossRefPubMedGoogle Scholar
  51. Stefanelli, P., A. Carattoli, et al. (2003) Prediction of decreased susceptibility to penicillin of Neisseria meningitidis strains by real-time PCR. J Clin Microbiol 41: 4666–70.CrossRefPubMedGoogle Scholar
  52. Tan, J. A., V. N. Naik, et al. (2006) Exploring obstacles to proper timing of prophylactic antibiotics for surgical site infections. Qual Saf Health Care 15: 32–8.CrossRefPubMedGoogle Scholar
  53. Uhl, J. R., S. C. Adamson, et al. (2003) Comparison of LightCycler PCR, rapid antigen immunoassay, and culture for detection of group A streptococci from throat swabs. J Clin Microbiol 41: 242–9.CrossRefPubMedGoogle Scholar
  54. Uhl, J. R., E. A. Vetter, et al. (2005) Use of the Roche LightCycler Strep B assay for detection of group B streptococcus from vaginal and rectal swabs. J Clin Microbiol 43: 4046–51.CrossRefPubMedGoogle Scholar
  55. Wolk, D., S. Mitchell, et al. (2001) Principles of molecular microbiology testing methods. Infect Dis Clin North Am 15: 1157–204.CrossRefPubMedGoogle Scholar
  56. Yang, S. and R. E. Rothman (2004) PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4: 337–48.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fiona Cooke
    • 1
    • 2
  • Alison Holmes
    • 3
  1. 1.Imperial College LondonLondonUK
  2. 2.The Wellcome Trust Sanger InstituteHinxtonUK
  3. 3.Department of Infectious DiseasesImperial College London and Hammersmith Hospitals NHS TrustLondonUK

Personalised recommendations