Optimizing Antimicrobial Chemotherapy in the ICU—A Review

  • Ian M. Gould


Infection is a common cause of admission to the ICU and is also commonly acquired on the ICU. Appropriate, early treatment improves outcome but choice of therapy is often empiric because of the delay in processing most microbiological specimens. This encourages the use of broad spectrum agents which leads to the selection of multiresistant bacteria, setting up a vicious circle of antibiotic use and resistance. The problem is enhanced by poor adherence to infection control procedures and the most intensive use of antibiotics anywhere in the hospital. Current resistant problems are greater than ever experienced and herald the dawn of untreatable infections. This comes during a period of reduced pharmaceutical company research on developing new agents. The author reviews the various strategies that can be employed to improve the quality of antibiotic prescribing in order to both improve patient outcome and reduce the selection of resistant strains. The use of the microbiological laboratory is explored in particular detail as are new pharmacodynamic concepts which guide dosing schedules. Particular attention is paid to combination therapy, stewardship strategies, and empiric treatment choices.


Minimum Inhibitory Concentration Methicillin Resistant Staphylococcus Aureus Empiric Therapy Antimicrobial Chemotherapy Acinetobacter Baumannii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, G.S., Mannino, D.M., Eaton, S., & Moss, M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348:1546–54.CrossRefPubMedGoogle Scholar
  2. 2.
    Vincent, J.-L. 2003. Nosocomial infections in adult intensive-care units. The Lancet 361:2068–77.CrossRefGoogle Scholar
  3. 3.
    McGowan, J.E., & Tenover, F.C. 2004. Confronting bacterial resistance in healthcare settings: A crucial role for microbiologists. Nature 2:251–8.Google Scholar
  4. 4.
    Fridkin, S.K., Hill, H.A., Volkova, N.V., Edwards, J.R., Lawton, R.M., Gaynes, R.P., McGowan, J.E., et al. 2002. Temporal changes in prevalence of antimicrobial resistance in 23 U.S. hospitals. Emerging Infectious Diseases 8:697–701.Google Scholar
  5. 5.
    Fridkin, S.K. 2001. Increasing prevalence of antimicrobial resistance in intensive care units. Critical Care Medicine 29(Suppl):N64–N68.CrossRefPubMedGoogle Scholar
  6. 6.
    Gould, I.M. 2001. Antibiotic rotation to control resistance, in Gaffey, H.F. (ed.). Critical Care Focus. pp 41–7.Google Scholar
  7. 7.
    Gould, I.M. 2000. A review of the role of antibiotic policies in the control of antibiotic resistance. Journal of Antimicrobial Chemotherapy 43:459–65.CrossRefGoogle Scholar
  8. 8.
    Paramythiotou, E., Lucet, J., Timsit, J., Vanjak, D., Paugam-Burtz, C., Trouillet, J., Belloc, S., et al. 2004. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: Role of antibiotics with antipseudomonas activity. Clinical Infectious Diseases 38:670–7.CrossRefPubMedGoogle Scholar
  9. 9.
    El Shafie, S.S., Alishaq, M., & Garcia, M.L. 2004. Investigation of an outbreak of multi-drug resistant Acinetobacter baumannii in trauma intensive care unit. Journal of Hospital Infection 56:101–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Corbella, X., Montero, A., Pujol, M., Domìnguez, M.A., Ayats, J., Argerich, M.J., Garrigosa, F., et al. 2000. Emergence of rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. Journal of Clinical Microbiology 38:4086–95.PubMedGoogle Scholar
  11. 11.
    Johnson, A.P., Henwood, C., Mushtaq, S., Warner, J.M., Livermore, D.M., The ICU Study Group. 2003. Susceptibility of Gram-positive bacteria from ICU patients in UK hospitals to antimicrobial agents. Journal of Hospital Infection 54:179–87.CrossRefPubMedGoogle Scholar
  12. 12.
    Puzniak, L.A., Mayfield, J., Leet, T., Kollef, M., & Mundy, L.M. 2001. Acquisition of vancomycin-resistant enterococci during scheduled antimicrobial rotation in an intensive care unit. Clinical Infectious Diseases 33:151–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Rodriguez-Villalobos, H., Struelens, M.J., Jones, & R.N. 2003. Resistance in pathogens from patients admitted to intensive care unit (ICU): A report from the SENTRY surveillance program, Europe 2000–2002. Abstract C2-1971. 43rd ICAAC, American Society for Microbiology, p. 148.Google Scholar
  14. 14.
    National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 to June 2002, issued August 2002. 2002. American Journal of Infection Control 30:458–75.Google Scholar
  15. 15.
    Fridkin, S.K., Lawton, R., Edwards, J.R., Tenover, F.C., McGowan, J.E., Gaynes, R.P.,the Intensive Care Antimicrobial Resistance Epidemiology (ICARE) project and the National Nosocomial Infections Surveillance (NNIS) System Hospitals. 2002. Monitoring antimicrobial use and resistance: Comparison with a national benchmark on reducing vancomycin-resistant enterococci. Emerging Infectious Diseases 8:702–7.PubMedGoogle Scholar
  16. 16.
    Lagatolla, C., Tonin, E.A., Monti-Bragadin, C., Dolzani, L., Gombac, F., Bearzi, C., Edalucci, E., et al. 2004. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-?-lactamase determinants in European hospital. Emerging Infectious Diseases 10:535–8.PubMedGoogle Scholar
  17. 17.
    Lee, S., Kim, J., Choi, S., Kim, T., Chung, J., Woo, J., Ryu, J., et al. 2004. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: A case–control study. Antimicrobial Agents and Chemotherapy 48:224–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Shannon, K.P., & French, G.L. 2004. Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995–2000. Journal of Antimicrobial Chemotherapy 53:818–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Garnacho-Montero, J., Garcia-Garmendia, J.L., Barrero-Almodovar, A., Jiminez-Jiminez, F.J., Perez-Parades, C., & Ortiz-Leyba, C. 2003. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Critical Care Medicine 31:2742–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Kang, C., Kim, S., Kim, H., Park, S., Choe, Y., Oh, M., Kim, E., et al. 2003. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases 37:745.CrossRefPubMedGoogle Scholar
  21. 21.
    Gould, I.M., & MacKenzie, F.M. 1997. The response of Enterobacteriaceae to ?-lactam antibiotics—“Round forms, filaments and the root of all evil.” Journal of Antimicrobial Chemotherapy 40:495–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Gould, I.M., & MacKenzie, F.M. 2002. Antibiotic exposure as a risk factor for emergence of resistance: The influence of concentration. Journal of Applied Microbiology 92(Suppl1):78S–84S.CrossRefPubMedGoogle Scholar
  23. 23.
    Drenkare, E., & Ausubel, F.M. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotype variation. Nature 416:740–3.CrossRefGoogle Scholar
  24. 24.
    Blàzquez, J. 2003. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clinical Infectious Diseases 37:1201–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Pankey, G.A., & Sabath, L.D. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clinical Infectious Diseases 38:864–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Celfand, J.A., Elin, R.J., Berry, F.W., et al. 1976. Endotoxemia associated with the Jarisch-Herxheimer reaction. New England Journal of Medicine 295:211.CrossRefGoogle Scholar
  27. 27.
    McKinnon, P.S., & Davis, S.L. 2004. Pharmacokinetic and pharmacodynamic issues in the treatment of bacterial infectious diseases. European Journal of Clinical Microbiology & Infectious Diseases 23:271–88.CrossRefGoogle Scholar
  28. 28.
    Drusano, G.L. 2004. Antimicrobial pharmacodynamics: Critical interactions of “bug and drug.” Nature 2:289–300.Google Scholar
  29. 29.
    Schentag, J.J. 2001. Antimicrobial management strategies for Gram-positive bacterial resistance in the intensive care unit. Critical Care Medicine 29:100–7.CrossRefGoogle Scholar
  30. 30.
    McKenzie, F.M., Gould, I.M., Chapman, D.G., & Jason, D. 1994. The post antibiotic effect of meropenem on members of the family Enterobacteriaceae determined by five methods. Antimicrobial Agents & Chemotherapy 38:2583–9.Google Scholar
  31. 31.
    Benko, A.S., Cappelletty, D.M., Kruse, J.A., & Rybak, M.J. 1996. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected Gram-negative infections. Antimicrobial Agents & Chemotherapy 40:691–5.Google Scholar
  32. 32.
    Buabeng, K.O., MacKenzie, A.R., Laing, R.B.S., Cook, I., Jappy, B. & Gould, I.M. 1999. Assessment of the efficacy, safety and quality of gentamicin use in Aberdeen Royal Infirmary. Journal of Antimicrobial Chemotherapy 45:843–5.CrossRefGoogle Scholar
  33. 33.
    Smith, S.V., & Gould, I.M. 2004. Optimization of antibiotic dosing schedules in the light of increasing antibiotic resistance. Expert Review of Anti-infective Therapies 2:89–96.Google Scholar
  34. 34.
    Gould, I.M. 2001. Measurement of antibiotic efficacy—Beyond the MIC. Journal of Chemotherapy 13:12–6.Google Scholar
  35. 35.
    Lipstitch, M., Bergstrom, C.T., & Levin, B.R. 2000. The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. PNAS 97:1938–43.CrossRefGoogle Scholar
  36. 36.
    Paul, M., Benuri-Silbiger, I., Soares-Weiser, K., & Leibovici, L. 2004. βlactam monotherapy versus lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: Systematic review and meta-analysis of randomised trials. British Medical Journal 328:668–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Paul, M., Soares-Weiser, K., & Leibovici, L. 2003. βlactam monotherapy versus lactamaminoglycoside combination therapy for fever for neutropenia: Systematic review and meta-analysis. British Medical Journal 326:1111–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Gould, I.M. 1994. Risk factors for acquisition of multiply-resistant Gram negative bacteria. European Journal Clinical Microbiology and Infectious Diseases 13:30–8.CrossRefGoogle Scholar
  39. 39.
    Chamot, E., El Amari, E.B., Rohner, P., & Van Delden, C. 2003 Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteraemia. Antimicrobial Agents and Chemotherapy 47:2756–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Zelenitsky, S.A., Harding, G.K.M., Sun, S., Ubhi, K., & Ariano, R.E. 2003. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: An antibiotic pharmacodynamic analysis. Journal of Antimicrobial Chemotherapy 52:668–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Spanu, T., Santangelo, R., Andreotti, F., Lo Cascio, G., Velardi, G., & Fadda, G. 2004. Antibiotic therapy for severe bacterial infections: Correlation between the inhibitory quotient and outcome. International Journal of Antimicrobial Agents 23:120–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Mackay, M.L., Milne, K., & Gould, I.M. 2000. Comparison of methods for assessing synergic antibiotic interactions. International Journal of Antimicrobial Agents 15:125–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Gould, I.M., Milne, K., & MacKenzie, F.M. 2004. The breakpoint index—a new pharmacodynamic parameter for assessing antibiotic combinations. 14th ECCMID, Prague, Abstract P1796.Google Scholar
  44. 44.
    Bignardi, G.E., Woodford, N., Chapman, A., Johnson, A.P., & Speller, D.C. 1996. Detection of the mec-A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillin resistance. Journal of Antimicrobial Chemotherapy 37:53–63.CrossRefPubMedGoogle Scholar
  45. 45.
    Mackenzie, A.R., Robertson, L., Jappy, B., Laing, R.B.S., & Gould, I.M. 2003. Audit of an antibiotic policy and microbiological investigations for treating bacteraemia in a large teaching hospital. International Journal of Antimicrobial Agents 22:618–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Cunney, R.J., & Smyth, E.G. 2000. The impact of laboratory reporting practice on antibiotic utilisation. International Journal of Antimicrobial Agents 14:13–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Scottish Infections Standards and Strategies (SISS) Group. 2003. Good practice guidance for antibiotic prescribing in hospital. Journal of the Royal College of Physicians of Edinburgh 33:281–4.Google Scholar
  48. 48.
    Gould, I.M. 2004 Antibiotic use—Ecological issues and required actions, in Gould, I.M., & van Der Meer, J. (ed) Antibiotic Theory & Practice. Kluwer, Amsterdam, pp 702–15.Google Scholar
  49. 49.
    Monnet, D.L., Suetens, C., Jepsen, O.B., Burman, L.G., Carsauw, H., Gastmeier, P., Jurkuvenas, V., Sainz, A., the European Strategy for Antibiotic Prophylaxis (ESAP) Project Team. 2000. Overall antimicrobial use and control strategies in intensive care units from 6 European countries (abstract P-S2–03). 4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections, Atlanta, Georgia, USA. Infection Control and Hospital Epidemiology 21:88.CrossRefGoogle Scholar
  50. 50.
    Chaix, C., Durand-Zaleski, I., Alberti, C., & Brun-Buisson, C. 1999. 1280Control of endemic methicillin-resistant Staphylococcus aureus. Journal of the American Medical Association 282:1745–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Lopez-Lozano, J.M., Monnet, D.L., Yague, A., Burgos, A., Gonzalo, N., Campillos, P., & Saez, M. 2000. Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: A time series analysis. International Journal of Antimicrobial Agents 14:21–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Gould, I.M., Hampson, J., Taylor, E., & Wood, M. 1994. Hospital antibiotic control measures in the UK—Results of a BSAC Working Party Survey. Journal of Antimicrobial Chemotherapy 34:21–42.CrossRefGoogle Scholar
  53. 53.
    Monnet, D.L., MacKenzie, F.M., Lòpez-Lozano, J.M., Beyaert, A., Carmacho, M., Wilson, R., Stuart, D., et al The role of antimicrobial use in the Aberdeen MRSA outbreak 1996–2000. Emerging Infectious Diseases 2004; 10: 1432–41PubMedGoogle Scholar
  54. 54.
    Gleisner, A.L.M., Argenta, R., Pimental, M., Simon, T.K., Jungblut, C.F., Petteffi, L., de Souza, R.M., et al 2004. Infective complications according to duration of antibiotic treatment in acute abdomen. International Journal of Infectious Diseases 8:155–62.CrossRefPubMedGoogle Scholar
  55. 55.
    Scottish Intercollegiate Guidelines Network. 2000. Antibiotic Prophylaxis in Surgery. A National Clinical Guideline. Publication No.45. London, Royal College of Physicians.Google Scholar
  56. 56.
    Harbarth, S., Samore, M.H., Lichtenberg, D., & Carmeli, Y. 2000. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation 101:2916–21.PubMedGoogle Scholar
  57. 57.
    Aarts, M., & Marshall, J.C. 2002. In defense of evidence. The continuing saga of selective decontamination of the digestive tract. American Journal of Respiratory and Critical Care Medicine 166:1014–5.CrossRefPubMedGoogle Scholar
  58. 58.
    Kollef, M.H. 2001. Is there a role for antibiotic cycling in the intensive care unit? Critical Care Medicine 29:135–42.CrossRefGoogle Scholar
  59. 59.
    Wunderink, R.G., Rello, J., Cammarata, S.K., Croos-Dabrera, R.V., & Kollef, M.H. 2003. Linezolid vs vancomycin. Chest 124:1789–97.CrossRefPubMedGoogle Scholar
  60. 60.
    Wilcox, M., Nathwani, D., & Dryden, M. 2004. Linezolid compared with teicoplanin for the treatment of suspected or proven Gram-positive infections. Journal of Antimicrobial Chemotherapy 53:335–44.CrossRefPubMedGoogle Scholar
  61. 61.
    Ioanas, M., & Lode, H. 2004. Linezolid in VAP by MRSA: A better choice? Intensive Care Medicine 30:343–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Kollef, M.H., Rello, J., Cammarata, S.K., Croos-Dabrera, R.V., & Wunderink, R.G. 2004. Clinical cure and survival in Gram-positive ventilator-associated pneumonia: Retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Medicine 30:388–94.CrossRefPubMedGoogle Scholar
  63. 63.
    Moellering, R.C., Linden, P.K., Reinhardt, J., Blumberg, E.A., Bompart, F., & Talbot, G.H. 1999. The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Journal of Antimicrobial Chemotherapy 44:251–61.CrossRefPubMedGoogle Scholar
  64. 64.
    Baysallar, M., Kilic, A., Aydogan, H., Cilli, F., & Doganci, L. 2004. Linezolid and quinupristin/dalfopristin resistance in vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus prior to clinical use in Turkey. International Journal of Antimicrobial Agents 23:510–20.CrossRefPubMedGoogle Scholar
  65. 65.
    Tenover, F.C., Weigel, L.M., Appelbaum, P.C., McDougal, L.K., Chaitram, J., McAllister, S., Clark, N., et al 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrobial Agents & Chemotherapy 48:275–80.CrossRefGoogle Scholar
  66. 66.
    MacKenzie, F.M., Greig, P., Morrison, D., Edwards, G., & Gould, I.M. 2002. Identification and characterization of teicoplanin-intermediate Staphylococcus aureus blood culture isolates in NE Scotland. Journal of Antimicrobial Chemotherapy 50:689–97.CrossRefPubMedGoogle Scholar
  67. 67.
    MacKenzie, F.M., Miller, C., & Gould, I.M. 2002. Comparison of screening methods for TEM- and SHV-derived extended-spectrum β-lactamase detection. Clinical Microbiology & Infection 11:715–24.Google Scholar
  68. 68.
    Cheung, T.K.M., Chu, Y.W., Chu, M.A., Ma Ha, C., Yung, R.W., & Kam, K.M. 2005. Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype enteritidis in Hong Kong. Journal of Antimicrobial Chemotherapy 56:586–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ian M. Gould
    • 1
  1. 1.Department of Medical MicrobiologyAberdeen Royal InfirmaryAberdeenAustralia

Personalised recommendations