Cystic Fibrosis—Coping with Resistance

  • Oana Ciofu
  • Niels Høiby


Reduced volume of the epithelial lining fluid and viscous mucus leading to dysfunction of the mucociliary escalator are the consequences of a nonfunctional CFTR chloride channel in the lungs of patients with cystic fibrosis (CF). This impairment of the noninflammatory defense mechanism of the respiratory tract leads to early recruitment of the inflammatory defense mechanism, e.g., polymorphonuclear leukocytes (PMN) and antibodies.


Cystic Fibrosis Pseudomonas Aeruginosa Cystic Fibrosis Patient Antimicrob Agent Lactam Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso A, Campanario E, Martinez JL. 1999. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145:2857–2862.PubMedGoogle Scholar
  2. Anwar H, Costerton JW. 1990. Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrob Agents Chemother 34:1666–1671.PubMedGoogle Scholar
  3. Anwar H, Strap JL, Costerton JW. 1992. Establishment of aging biofilms: Possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351.PubMedGoogle Scholar
  4. Babini GS, Livermore DM. 2000. Effect of conalbumin on the activity of Syn 2190, a 1,5 dihydroxy-4-pyridon monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 45:105–109.CrossRefPubMedGoogle Scholar
  5. Bagge N, Ciofu O, Hentzer M, Campbell JI, Givskov M, Høiby N. 2002. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46:3406–3411.CrossRefPubMedGoogle Scholar
  6. Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N. 2004a. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48:1168–1174.CrossRefPubMedGoogle Scholar
  7. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Høiby N. 2004b. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187.CrossRefPubMedGoogle Scholar
  8. Ballestero S, Escobar H, Villaverde R, Elia M, Ojeda-Vargas M, Baquero F. 1993. Continuous monitoring of antimicrobial resistance in cystic fibrosis patients, in Escobar H, Baquero F, Suarez L (eds). Clinical Ecology of Cystic Fibrosis. Madrid, Elsevier Science Publishers, pp 63–72.Google Scholar
  9. Barclay ML, Begg EJ, Chambers ST, Thornley PE, Pattemore PK, Grimwood K. 1996. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother 37:1155–1164.CrossRefPubMedGoogle Scholar
  10. Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Høiby N, Givskov M. 2005. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383.CrossRefPubMedGoogle Scholar
  11. Blázquez J, Gómez-Gómez J M, Oliver A, Juaz C, kapur V, Martins. 2006. PBP3 inhibition elicits adapture responses in Pseudomomas arruginosa Mol. Microbiol 62:84–99.CrossRefPubMedGoogle Scholar
  12. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. 2004. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664.CrossRefPubMedGoogle Scholar
  13. Bradford PA. 2001. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951, table of contents.CrossRefPubMedGoogle Scholar
  14. Chopra I, O’Neill AJ, Miller K. 2003. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 6:137–145.CrossRefPubMedGoogle Scholar
  15. Ciofu O. 2003. Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS Suppl:1–47.Google Scholar
  16. Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. 2000. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13.CrossRefPubMedGoogle Scholar
  17. Ciofu O, Fussing V, Bagge N, Koch C, Høiby N. 2001. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: Antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother 48:391–396.CrossRefPubMedGoogle Scholar
  18. Ciofu O, Bagge N, Høiby N. 2002. Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS 110:881–891.CrossRefPubMedGoogle Scholar
  19. Ciofu O, Riis B, Pressler T, Poulsen HE, Høiby N. 2005. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282.CrossRefPubMedGoogle Scholar
  20. Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S. 2001. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob Agents Chemother 45:2807–2812.CrossRefPubMedGoogle Scholar
  21. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284:1318–1322.CrossRefPubMedGoogle Scholar
  22. Davies D, Parsek M, Pearson J, Iglewski B, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of bacterial biofilms. Science 280:295–298.CrossRefPubMedGoogle Scholar
  23. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG. 2001. Multidrug efflux pumps: Expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45:1761–1770.CrossRefPubMedGoogle Scholar
  24. Döring G, Høiby N. 2004. Early intervention and prevention of lung disease in cystic fibrosis: A European consensus. J Cyst Fibros 3:67–91.CrossRefPubMedGoogle Scholar
  25. Döring G, Goldstein W, Botzenhart K, Kharazmi A, Schiøtz PO, Høiby N, Dasgupta M. 1986. Elastase from polymorphonuclear leucocytes: A regulatory enzyme in immune complex disease. Clin Exp Immunol 64:597–605.PubMedGoogle Scholar
  26. Drenkard E, Ausubel FM. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743.CrossRefPubMedGoogle Scholar
  27. Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392.PubMedGoogle Scholar
  28. Equi A, Balfour-Lynn IM, Bush A, Rosenthal M. 2002. Long term azithromycin in children with cystic fibrosis: A randomised, placebo-controlled crossover trial. Lancet 360:978–984.CrossRefPubMedGoogle Scholar
  29. Frederiksen B, Koch C, Høiby N. 1999. Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974–1995). Pediatr Pulmonol 28:159–166.CrossRefPubMedGoogle Scholar
  30. Friedberg EC, Walker GC, Siede W. 1995. DNA Repair and Mutagenesis. Washington, DC, ASM Press.Google Scholar
  31. Fux CA, Costerton JW, Stewart PS, Stoodley P. 2005. Survival strategies of infectious biofilms. Trends Microbiol 13:34–40.CrossRefPubMedGoogle Scholar
  32. Geisenberger O, Givskov M, Riedel K, Høiby N, Tummler B, Eberl L. 2000. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiol Lett 184:273–278.PubMedGoogle Scholar
  33. Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Høiby N. 1990. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother 26:247–259.CrossRefPubMedGoogle Scholar
  34. Giwercman B, Jensen ET, Høiby N, Kharazmi A, Costerton JW. 1991. Induction of betalactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother 35:1008–1010.PubMedGoogle Scholar
  35. Giwercman B, Meyer C, Lambert PA, Reinert C, Høiby N. 1992. High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother 36:71–76.PubMedGoogle Scholar
  36. Good L, Nielsen PE. 1998. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16:355–358.CrossRefPubMedGoogle Scholar
  37. Haagensen J.A, Klausen M, Ernst R, Miller S.I, Folkesson A, Tolker Nielsen T, Malin S. 2007. Differentiation and distribution of Colistin and Sodium Dodecyl Sulfate Tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacterial 189:28–37.CrossRefGoogle Scholar
  38. Hancock RE, Raffle VJ, Nicas TI. 1981. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 19:777–785.PubMedGoogle Scholar
  39. Hentzer M, Eberl L, Givskov M. 2005. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: Anaerobic respiration and iron limitation. Biofilms 2:37–61.CrossRefGoogle Scholar
  40. Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C. 2005. Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43:5085–5090.CrossRefPubMedGoogle Scholar
  41. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. 2005. Amino-glycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175.CrossRefPubMedGoogle Scholar
  42. Høiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O, Kharazmi A. 2001. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35.CrossRefPubMedGoogle Scholar
  43. Høiby N, Frederiksen B, Pressler T. 2005. Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4 Suppl 2:49–54.CrossRefGoogle Scholar
  44. Hull J, Vervaart P, Grimwood K, Phelan P. 1997. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 52:557–560.CrossRefPubMedGoogle Scholar
  45. Jaffe A, Bush A. 2001. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31:464–473.CrossRefPubMedGoogle Scholar
  46. Jalal S, Ciofu O, Høiby N, Gotoh N, Wretlind B. 2000. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712.CrossRefPubMedGoogle Scholar
  47. Jensen T, Pedersen SS, Garne S, Heilmann C, Høiby N, Koch C. 1987. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 19:831–838.CrossRefPubMedGoogle Scholar
  48. Jensen T, Kharazmi A, Schiøtz PO, Nielsen H, Stenvang Pedersen S, Stafanger G, Koch C, Høiby N. 1988. Effect of oral N-acetylcysteine administration on human blood neutrophil and monocyte function. APMIS 96:62–67.CrossRefPubMedGoogle Scholar
  49. Johansen HK, Ciofu O, Koch C, Høiby N. 2003. Emergence and elimination of colistin resistant Pseudomonas aeruginosa in chronically infected Danish cystic fibrosis patients. In: 26th European Cystic Fibrosis Conference, Belfast, Northen Ireland.Google Scholar
  50. Karlowsky JA, Saunders MH, Harding GA, Hoban DJ, Zhanel GG. 1996. In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40:1387–1393.PubMedGoogle Scholar
  51. Katsorchis T, Legakis NJ, Shearer B, Genmmata V, Pataryas H. 1985. Outer surface changes of Pseudomonas aeruginosa in relation to resistance to gentamicin and carbenicillin. J Med Microbiol 19:375–381.CrossRefPubMedGoogle Scholar
  52. Koch C, Hjelt K, Pedersen SS, Jensen ET, Jensen T, Lanng S, Valerius NH, Pedersen M, Høiby N. 1991. Retrospective clinical study of hypersensitivity reactions to aztreonam and six other beta-lactam antibiotics in cystic fibrosis patients receiving multiple treatment courses. Rev Infect Dis 13 Suppl 7:S608–611.PubMedGoogle Scholar
  53. Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. 2005. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:565–570.CrossRefPubMedGoogle Scholar
  54. Lagrange-Puget M, Durieu I, Ecochard R, Abbas-Chorfa F, Drai J, Steghens JP, Pacheco Y, Vital-Durand D, Bellon G. 2004. Longitudinal study of oxidative status in 312 cystic fibrosis patients in stable state and during bronchial exacerbation. Pediatr Pulmonol 38:43–49.CrossRefPubMedGoogle Scholar
  55. LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211.CrossRefPubMedGoogle Scholar
  56. Li XZ, Zhang L, Srikumar R, Poole K. 1998. Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:399–403.PubMedGoogle Scholar
  57. Macfarlane EL, Kwasnicka A, Hancock RE. 2000. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146 (Pt 10):2543–2554.PubMedGoogle Scholar
  58. Macia MD, Borrell N, Segura M, Gomez C, Perez JL, Oliver A. 2006. Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:975–983.CrossRefPubMedGoogle Scholar
  59. MacLeod DL, Nelson LE, Shawar RM, Lin BB, Lockwood LG, Dirk JE, Miller GH, Burns JL, Garber RL. 2000. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis 181:1180–1184.CrossRefPubMedGoogle Scholar
  60. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310.CrossRefPubMedGoogle Scholar
  61. McPhee JB, Lewenza S, Hancock RE. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50:205–217.CrossRefPubMedGoogle Scholar
  62. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. 2004. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631.CrossRefPubMedGoogle Scholar
  63. Moskowitz SM, Burns JL, Nguyen CD, Høiby N, Ernst RK, Miller SI. 2000. Polymyxin resistance and lipid A structure of Pseudomonas aeruginosa isolated from colistin-treated and colistin-naive cystic fibrosis patients. Pediatr Pulmonol Suppl 20:272.Google Scholar
  64. Moskowitz SM, Foster JM, Emerson J, Burns JL. 2004. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922.CrossRefPubMedGoogle Scholar
  65. Murakami K, Ono T, Viducic D, Kayama S, Mori M, Hirota K, Nemoto K, Miyake Y. 2005. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 242:161–167.CrossRefPubMedGoogle Scholar
  66. Nagino K, Kobayashi H. 1997. Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa. Clin Microbiol Infect 3:432–439.CrossRefPubMedGoogle Scholar
  67. Nakae T, Nakajima A, Ono T, Saito K, Yoneyama H. 1999. Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. Antimicrob Agents Chemother 43:1301–1303.PubMedGoogle Scholar
  68. Nichols WW, Evans MJ, Slack MP, Walmsley HL. 1989. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 135:1291–1303.PubMedGoogle Scholar
  69. Nickel JC, Ruseska I, Wright JB, Costerton JW. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624.PubMedGoogle Scholar
  70. Oliver A, Canton R, Campo P, Baquero F, Blazquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254.CrossRefPubMedGoogle Scholar
  71. Oliver A, Levin BR, Juan C, Baquero F, Blazquez J. 2004. Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: Implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48:4226–4233.CrossRefPubMedGoogle Scholar
  72. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130.CrossRefPubMedGoogle Scholar
  73. Pedersen SS, Høiby N, Espersen F, Koch C. 1992. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:6–13.CrossRefPubMedGoogle Scholar
  74. Powers RA, Morandi F, Shoichet BK. 2002. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 10:1013–1023.CrossRefPubMedGoogle Scholar
  75. Radman M, Taddei F, Matic I. 2000. Evolution-driving genes. Res Microbiol 151:91–95.CrossRefPubMedGoogle Scholar
  76. Ramsey BW, Pepe MS, Quan JM, Otto KL, Montgomery AB, Williams-Warren J, Vasiljev KM, Borowitz D, Bowman CM, Marshall BC, Marshall S, Smith AL. 1999. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 340:23–30.CrossRefPubMedGoogle Scholar
  77. Rasmussen TB, Givskov M. 2006. Quorum sensing inhibitors: A bargain of effects. Microbiology 152:895–904.CrossRefPubMedGoogle Scholar
  78. Roum JH, Borok Z, McElvaney NG, Grimes GJ, Bokser AD, Buhl R, Crystal RG. 1999. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 87:438–443.PubMedGoogle Scholar
  79. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW 3rd. 2003. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 290:1749–1756.CrossRefPubMedGoogle Scholar
  80. Sanders CC, Gates ML, Sanders WE Jr. 1988. Heterogeneity of class I beta-lactamase expression in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 32:1893–1895.PubMedGoogle Scholar
  81. Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, Tanaka SK. 1999. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 43:2877–2880.PubMedGoogle Scholar
  82. Shearer BG, Legakis NJ. 1985. Pseudomonas aeruginosa: Evidence for the involvement of lipopolysaccharide in determining outer membrane permeability to carbenicillin and gentamicin. J Infect Dis 152:351–355.PubMedGoogle Scholar
  83. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764.CrossRefPubMedGoogle Scholar
  84. Stafanger G, Koch C. 1989. N-acetylcysteine in cystic fibrosis and Pseudomonas aeruginosa infection: Clinical score, spirometry and ciliary motility. Eur Respir J 2:234–237.PubMedGoogle Scholar
  85. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B. 1997. Role of mutator alleles in adaptive evolution. Nature 387:700–702.CrossRefPubMedGoogle Scholar
  86. Takahashi A, Yomoda S, Ushijima Y, Kobayashi I, Inoue M. 1995. Ofloxacin, norfloxacin and ceftazidime increase the production of alginate and promote the formation of biofilm of Pseudomonas aeruginosa in vitro. J Antimicrob Chemother 36:743–745.CrossRefPubMedGoogle Scholar
  87. Tanaka G, Shigeta M, Komatsuzawa H, Sugai M, Suginaka H, Usui T. 1999. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: Beta-lactams and fluoroquinolones. Chemotherapy 45:28–36.CrossRefPubMedGoogle Scholar
  88. Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C. 2001. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933.CrossRefPubMedGoogle Scholar
  89. Thomassen MJ, Demko CA, Boxerbaum B, Stern RC, Kuchenbrod PJ. 1979. Multiple of isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J Infect Dis 140:873–880.PubMedGoogle Scholar
  90. Tondi D, Morandi F, Bonnet R, Costi MP, Shoichet BK. 2005. Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 127:4632–4639.CrossRefPubMedGoogle Scholar
  91. Valerius NH, Koch C, Høiby N. 1991. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338:725–726.CrossRefPubMedGoogle Scholar
  92. Vogne C, Aires JR, Bailly C, Hocquet D, Plesiat P. 2004. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:1676–1680.CrossRefPubMedGoogle Scholar
  93. Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-beta-lactamases: The quiet before the storm? Clin Microbiol Rev 18:306–325.CrossRefPubMedGoogle Scholar
  94. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323.CrossRefPubMedGoogle Scholar
  95. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. 2002. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: A randomised trial. Thorax 57:212–216.CrossRefPubMedGoogle Scholar
  96. Wong K, Roberts MC, Owens L, Fife M, Smith AL. 1984. Selective media for the quantitation of bacteria in cystic fibrosis sputum. J Med Microbiol 17:113–119.CrossRefPubMedGoogle Scholar
  97. Wood LG, Fitzgerald DA, Gibson PG, Cooper DM, Collins CE, Garg ML. 2001. Oxidative stress in cystic fibrosis: Dietary and metabolic factors. J Am Coll Nutr 20:157–165.PubMedGoogle Scholar
  98. Wood LF, Leech AJ, Ohman DE. 2006. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426.CrossRefPubMedGoogle Scholar
  99. Yamane K, Doi Y, Yokoyama K, Yagi T, Kurokawa H, Shibata N, Shibayama K, Kato H, Arakawa Y. 2004. Genetic environments of the rmtA gene in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 48:2069–2074.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Oana Ciofu
    • 1
  • Niels Høiby
    • 2
  1. 1.Institute of Medical Microbiology and ImmunologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Clinical Microbiology and Danish Cystic Fibrosis Center, RigshospitaletInstitute of Medical Microbiology and Immunology, University of CopenhagenCopenhagenDenmark

Personalised recommendations