Advertisement

Consequences of Antimicrobial Chemotherapy: Overgrowth, Resistance, and Virulence

  • Stephanie J. Dancer

Summary

The right antibiotic, given at the right time and in the correct dose, can cure infection and save lives. Unfortunately, these drugs cause adverse effects, which sometimes make things worse. These may be due to resistant organisms that overgrow in response to a course of antibiotics, or they may be due to the fact that the original pathogen was not eradicated and continues to cause a problem. It is even possible that the original pathogen actually becomes more virulent following exposure to antibiotics. This article reviews the evidence that getting it wrong regarding antibiotic therapy creates more problems for individual patients as well as encouraging antibiotic resistance for future patients.

Keywords

Staphylococcus Aureus Antimicrob Agent Antimicrobial Chemotherapy Virulence Determinant Fusidic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, R.A., Matthews, K.R., Cifrian, E., et al. 1996. Staphylococcus aureus invasion of bovine mammary epithelial cells. J Dairy Sci 79:1021–6.CrossRefPubMedGoogle Scholar
  2. Altemeier, W.A., Hummel, R.P., and Hill, E.O. 1963. Staphylococcal enteritis following therapy. Ann Surg 157:847–58.CrossRefPubMedGoogle Scholar
  3. Andrews, M.-M., Parent, E.M., Barry, M., and Parsonnet, J. 2001. Recurrent non-menstrual toxic shock syndrome: Clinical manifestations, diagnosis, and treatment. Clin Infect Dis 32:1471–9.CrossRefGoogle Scholar
  4. Anonymous. 1999. Four paediatric deaths from community-acquired MRSA— Minnesota and North Dakota, 1997–1999. MMWR 48:707–10.Google Scholar
  5. Beaber, J.W., Hochhut, B., and Waldor, M.K. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–4.CrossRefPubMedGoogle Scholar
  6. Bernardo, K., Pakulat, N., Fleer, S., et al. 2004. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother 48:546–55.CrossRefPubMedGoogle Scholar
  7. Bhakdi, S., and Tranum-Jensen J. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–51.PubMedGoogle Scholar
  8. Bisognano, C., Vaudaux, P.E., Lew, D.P., Ng, E.Y.W., and Hooper, D.C. 1997. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother 41:906–13.PubMedGoogle Scholar
  9. Brouillette, E., Martinez, A., Boyll, B.J., Allen, N.E., and Malouin, F. 2004. Persistence of a Staphylococcus aureus small-colony variant under antibiotic pressure. FEMS Immunol Med Microbiol 41: 35–41.CrossRefPubMedGoogle Scholar
  10. Butcher, W.G., Close, J., Krajewska-Pietrasik, D., and Switalski, L.M. 1994. Antibiotics alter interactions of Staphylococcus aureus with collagenous substrata. Chemotherapy 40:114–23.CrossRefPubMedGoogle Scholar
  11. Chuard, C., Vaudaux, P.E., Proctor, R.A., and Lew, D.P. 1997. Decreased susceptibility to antibiotic killing of a stable small colony variant of Staphylococcus aureus in fluid phase and on fibronectin-coated surfaces. J Antimicrob Chemother 39:603–8.CrossRefPubMedGoogle Scholar
  12. Dancer, S.J. 2001. The problem with cephalosporins. J Antimicrob Chemother 48:463–78.CrossRefPubMedGoogle Scholar
  13. Dancer, S.J. 2004. How antibiotics can make us sick: The less obvious effects of antimicrobial chemotherapy. Lancet Infect Dis 4: 611–9.CrossRefPubMedGoogle Scholar
  14. Donabedian, H. 2003. Quorum sensing and its relevance to infectious diseases. J Infect 46: 207–14.CrossRefPubMedGoogle Scholar
  15. Donlan, R.M. 2002. Biofilms: Microbial life on surfaces. Emerg Infect Dis 8: 881–90.PubMedGoogle Scholar
  16. Dostal, R.E., Seale, J.P., and Yan, B.J. 1992. Resistance to ciprofloxacin of respiratory pathogens in patients with cystic fibrosis. Med J Aust 156: 20–4.PubMedGoogle Scholar
  17. Drummond, L.J., Smith, D.G.E., and Poxton, I.R. 2003. Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile. J Med Microbiol 52: 1033–8.CrossRefPubMedGoogle Scholar
  18. Farrell, R.J., and LaMont, J.T. 2000. Pathogenesis and clinical manifestations of Clostridium difficile diarrhea and colitis. Curr Top Microbiol Immunol 250: 109–25.PubMedGoogle Scholar
  19. Feder, H.M. 2000. Methicillin-resistant Staphylococcus aureus infections in 2 pediatric patients. Arch Fam Med 9: 560–2.CrossRefPubMedGoogle Scholar
  20. Finch, R.G., Pritchard, D.I., Bycroft, B.W., Williams, P., and Stewart, G.S.A.B. 1998. Quorum sensing: A novel target for anti-infective therapy. J Antimicrob Chemother 42: 569–71.CrossRefPubMedGoogle Scholar
  21. Gabello, M., and Iglewski, B.H. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase production. J Bacteriol 173: 3000–9.Google Scholar
  22. Goerke, C., Koller, J., and Wolz, C. 2006. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother 50: 171–7.CrossRefPubMedGoogle Scholar
  23. Gorske, B.C., and Blackwell, H.E. 2006. Interception of quorum sensing in Staphylococcus aureus: A new niche for peptidomimetics. Org Biomol Chem 4: 1441–5.CrossRefPubMedGoogle Scholar
  24. Harbarth, S., Garbino, J., Pugin, J., Romand, J.A., Lew, D., and Pittet, D. 2003. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115: 529–35.CrossRefPubMedGoogle Scholar
  25. Hastings, P.J., Rosenberg, S.M., and Slack, A. 2004. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol 12: 401–4.CrossRefPubMedGoogle Scholar
  26. He, P., Li, N., and Li, S. 2001. A study on beta-lactamase activity of biofilm Escherichia coli. Zhonghua Jie He He Hu Xi Za Zhi 24: 537–8.PubMedGoogle Scholar
  27. Herbert, S., Barry, P., and Novick, R.P. 2001. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect Immun 69: 2996–3003.CrossRefPubMedGoogle Scholar
  28. Hingley, S.T., Hastie, A.T., Kueppers, F., et al. 1986. Effect of ciliostatic factors from Pseudomonas aeruginosa on rabbit respiratory cilia. Infect Immun 51: 254 –62.PubMedGoogle Scholar
  29. Horii, T., Muramatsu, H., Monji, A., and Miyagishima, D. 2005. Release of exotoxin A, peptidoglycan and endotoxin after exposure of clinical Pseudomonas aeruginosa isolates to carbapenems in vitro. Chemotherapy 51: 324 –31.CrossRefPubMedGoogle Scholar
  30. Hurley, J.C. 1992. Antibiotic induced release of endotoxin: A reappraisal. Clin Infect Dis 15: 840 –54.PubMedGoogle Scholar
  31. Ismaeel, A., Senok, A.C., Bindayna, K.M., et al. 2005. Effect of antibiotic subinhibitory concentration on cytolethal distending toxin production by Campylobacter jejuni. J Infect 51: 144 –9.CrossRefPubMedGoogle Scholar
  32. Ji, G., Beavis, R.C., and Novick, R.P. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA 92: 12055 –9.CrossRefPubMedGoogle Scholar
  33. Kain, K.C., Schulzer, M., and Chow, A.W. 1993. Clinical spectrum of non-menstrual toxic shock syndrome (TSS) comparison with menstrual TSS by multivariate discriminant analyses. Clin Infect Dis 16:100–6.PubMedGoogle Scholar
  34. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230: 3–18.CrossRefGoogle Scholar
  35. Kernodle, D.S., McGraw, P.A., Barg, N.L., et al. 1995. Growth of Staphylococcus aureus with nafcillin in vitro induces alpha-toxin production and increases the lethal activity of sterile broth filtrates in a murine model. J Infect Dis 172: 410 –19.PubMedGoogle Scholar
  36. Kernodle, D.S., Classen, D.C., Stratton, C.W., and Kaiser, A.B. 1998. Association of borderline oxacillin-susceptible strains of Staphylococcus aureus with surgical wound infections. J Clin Microbiol 36: 219 –22.PubMedGoogle Scholar
  37. Klugman, K.P. 2003. Implications for antimicrobial prescribing of strategies based on bacterial eradication. Int J Infect Dis 7 (Suppl 1): S27–31.Google Scholar
  38. Kodama, T., Santo, T., Yokoyama, T., et al. 1997. Postoperative enteritis caused by methicillin-resistant Staphylococcus aureus. Surg Today 27: 816–25.CrossRefPubMedGoogle Scholar
  39. Kollef, M.H. 2003. Appropriate empirical antibacterial therapy for nosocomial infections. Drugs 63: 2157–68.CrossRefPubMedGoogle Scholar
  40. Koszczol, C., Bernardo, K., Kronke, M., and Krut, O. 2006. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus. J Antimicrob Chemother 58: 564 –74.CrossRefPubMedGoogle Scholar
  41. Krut, O., Sommer, H., and Kronke, M. 2004. Antibiotic-induced persistence of cytotoxic Staphylococcus aureus in non-phagocytic cells. J Antimicrob Chemother 52: 167 –73.CrossRefGoogle Scholar
  42. Langsrud, S., Sidhu, M.S., Heir, E., and Holck, A.L. 2003. Bacterial disinfectant resistance—A challenge for the food industry. Int Biodeterioration Biodegrad 51: 283 –90.CrossRefGoogle Scholar
  43. LeBlanc, L., Pepin, J., Toulouse, K., Ouellette, M.-F., Coulombe, M.-A., Corriveau, M.P., and Alary, M.-E. 2006. Fluoroquinolones and risk for methicillin-resistant Staphylococcus aureus, Canada. Emerg Infect Dis 12. Available from http://www.cdc.gov/ncidod/EID/vol12no09/06-0397.htm (last accessed 14 September 2006).
  44. Lindsay, D., and von Holy, A. 2006. Bacterial biofilms within the clinical setting: What healthcare professionals should know. J Hosp Infect 64:313–25.CrossRefPubMedGoogle Scholar
  45. Lorian, V., and Gemmell, G.C. 1991. Effect of low antibiotic concentrations on bacteria: Effects on ultrastructure, virulence, and susceptibility to immunodefenses, in Lorian, V. (ed). Antibiotics in Laboratory Medicine. Baltimore, Williams & Wilkins, pp. 493–555.Google Scholar
  46. Lundén, J., Autio, T., Markkula, A., Hellström, S., and Korkeala, H. 2003. Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. Int J Food Microbiol 82: 265 –72.CrossRefPubMedGoogle Scholar
  47. Maiques, E., Ubeda, C., Campoy, S., et al. 2006. β-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol 188: 2726 –9.CrossRefPubMedGoogle Scholar
  48. Mason, B.W., Howard, A.J., and Magee, J.T. 2003. Fusidic acid resistance in community isolates of methicillin-susceptible Staphylococcus aureus and fusidic acid prescribing. J Antimicrob Chemother 51: 1033–6.CrossRefPubMedGoogle Scholar
  49. Meyer, B. 2003. Approaches to prevention, removal and killing of biofilms. Int Biodeterioration Biodegrad 51: 249–53.CrossRefGoogle Scholar
  50. Morrison, D.A. 1997. Streptococcal competence for genetic transformation: Regulation by peptide pheromones. Microb Drug Resist 3: 27–37.CrossRefPubMedGoogle Scholar
  51. Muller, A., Thouverez, M., Talon, D., and Bertrand, X. 2003. Contribution of antibiotic pressure in the acquisition of methicillin-resistant Staphylococcus aureus (MRSA) in a university hospital. Pathol Biol 51: 454–9.CrossRefPubMedGoogle Scholar
  52. Nelson, J.M., Smith, K.E., Vugia, D.J., et al. 2004. Prolonged diarrhea due to ciprofloxacinresistant campylobacter infection. J Infect Dis 190: 1150–7.CrossRefPubMedGoogle Scholar
  53. Ohlsen, K., Ziebuhr, W., Koller, K.-P., Hell, W., Wichelhaus, T.A., and Hacker, J. 1998. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 42: 2817–23.PubMedGoogle Scholar
  54. Pechere, J.C. 1989. Resistance to third generation cephalosporins: The current situation. Infection 17: 333–7.CrossRefPubMedGoogle Scholar
  55. Pepin, J., Valiquette, L., Alary, M.-E., et al. 2004. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: A changing pattern of disease severity. Can Med Assoc J 171: 466–72.CrossRefGoogle Scholar
  56. Proctor, R.A., Olbrantz, P.J., and Mosher, D.F. 1983. Subinhibitory concentrations of antibiotics alter fibronectin binding to Staphylococcus aureus. Antimicrob Agents Chemother 24: 823–6.PubMedGoogle Scholar
  57. Recse, P., Kreiswirth, B., O’Reilly, M., Schlievert, P., Gruss, A., and Novick, R.P. 1986. Regulation of exoprotein expression in Staphylococcus aureus by agar. Mol Gen Genet 202: 58 –61.CrossRefGoogle Scholar
  58. Renzoni, A., Francois, P., Li, D., et al. 2004. Modulation of fibronectin adhesins and other virulence factors in a teicoplanin-resistant derivative of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 48: 2958 –65.CrossRefPubMedGoogle Scholar
  59. Sakoulas, G., Gold, H.S., Cohen, R.A., Venkataraman, L., Moellering, R.C., and Eliopoulos, G.M. 2006. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother 57: 699 –704.CrossRefPubMedGoogle Scholar
  60. Sanyal, S.C., and Mokaddas, E.M. 1999. The increase in carbapenem use and emergence of Stenotrophomonas maltophilia as an important nosocomial pathogen. J Chemother 11: 28–33.PubMedGoogle Scholar
  61. Schrader-Fischer, G., and Berger-Bachi, B. 2001. The AbcA transporter of Staphylococcus aureus affects autolysis. Antimicrob Agents Chemother 45: 407–12.CrossRefPubMedGoogle Scholar
  62. Sendi, P., Rohrbach, M., Graber, P., Frei, R., Ochsner, P.E., and Zimmerli, W. 2006. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis 43: 961–7.CrossRefPubMedGoogle Scholar
  63. Seral, C., Barcia-Macay, M., Migeot-Leclercq, M.P., Tulkens, P.M., and Van Bambeke, F. 2005. Comparative activity of quinolones (ciprofloxacin, levofloxacin, moxifloxacin and garenoxacin) against extracellular and intracellular infection by Listeria monocytogenes and Staphylococcus aureus in J774 macrophages. J Antimicrob Chemother 55: 511–7.CrossRefPubMedGoogle Scholar
  64. Shramm, G.E., Johnson, J.A., Doherty, J.A., Micek, S.T., and Kollef, M.H. 2006. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med 34: 2069–74.CrossRefGoogle Scholar
  65. Taylor, C.M., Riordan, F.A.I., and Graham, C. 2006. New football boots and toxic shock syndrome. BMJ 332: 1376–8.CrossRefPubMedGoogle Scholar
  66. Tenke, P., Kovacs, B., Jäckel, M., and Nagy, E. 2006. The role of biofilm infection in urology. World J Urol 24: 13 –20.CrossRefPubMedGoogle Scholar
  67. Van der Waaij, D. 1987. Colonisation resistance of the digestive tract—Mechanism and clinical consequences. Nahrung 31: 507–17.CrossRefPubMedGoogle Scholar
  68. Varma, J.K., Molbak, K., Barrett, T.J., et al. 2005. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalisations. J Infect Dis 191: 554 –61.CrossRefPubMedGoogle Scholar
  69. Vaudaux, P.E., Monzillo, V., Francois, P., Lew, D.P., Foster, T.J., and Berger-Bachi, B. 1998. Introduction of the mec element (methicillin resistance) into Staphylococcus aureus alters in vitro functional activities of fibrinogen and fibronectin adhesins. Antimicrob Agents Chemother 42: 564 –70.PubMedGoogle Scholar
  70. Vaudaux, P., Kelley, W.L., and Lew, D.P. 2006. Staphylococcus aureus small colony variants: Difficult to diagnose and difficult to treat. Clin Infect Dis 43: 968–70.CrossRefPubMedGoogle Scholar
  71. Venezia, R.A., Domaracki, B.E., Evans, A.M., Preston, K.E., and Graffunder, E.M. 2001. Selection of high-level oxacillin resistance in heteroresistant Staphylococcus aureus by fluoroquinolone exposure. J Antimicrob Chemother 48: 375–81.CrossRefPubMedGoogle Scholar
  72. Weber, S.G., Gold, H.S., Hooper, D.C., Karchmer, A.W., and Carmeli, Y. 2003. Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalised patients. Emerg Infect Dis 9: 1415–22.PubMedGoogle Scholar
  73. Wey, S.B., Mori, M., Pfaller, M.A., Woolson, R.F., and Wenzel, R.P. 1989. Risk factors for hospital-acquired candidemia. A matched case control study. Arch Intern Med 149: 2349 –53.CrossRefPubMedGoogle Scholar
  74. Williams, I., Venables, W.A., Lloyd, D., Paul, F., and Critchley, I. 1997. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiol 143: 2407–13.CrossRefGoogle Scholar
  75. Worlitzsch, D., Kaygin, H., Steinhuber, A., Dalhoff, A., Botzenhart, K., and Doring, G. 2001. Effects of amoxicillin, gentamicin, and moxifloxacin on the haemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob Agents Chemother 45: 196–202.CrossRefPubMedGoogle Scholar
  76. Zhang, X., McDaniel, A.D., Wolf, L.E., Keusch, G.T., Waldor, M.K., and Acheson, D.W. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181: 664–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephanie J. Dancer
    • 1
  1. 1.Department of MicrobiologSouthern General HospitalGlasgowScotland

Personalised recommendations